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No eigenvalues outside the support Absence of eigenvalues outside the support

Definition of a support

P. Billingsley, “Probability and measure,” Wiley New York, 2008.

According to Billingsley, a support of the probability measure P is any subspace A of Ω such
that P(A) = 1. If F is the probability distribution of the random variable X , then
F (x) = P({ω : X(ω) ≤ x})
In random matrix theory, we call “the support of F ” the smallest subspace of Ω of probability
one (in the inclusion sense).

Example: the distribution of density f (x) = I{0≤x≤1} + δ(x − 10) has support [0, 1].
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No eigenvalues outside the support Absence of eigenvalues outside the support

Why go beyond the spectrum?

Limiting spectral results only say where “most” of the eigenvalues are asymptotically. Say
FN ⇒ F , with fN (x) = 1

N

PN
k=1 δ(x − ak ).

f (0)
N (x) = 1

N δ(x) + 1
N

PN−1
k=1 δ(x − ak ) also converges to F .

in general, for any F (0)
N , if FN − F (0)

N ⇒ 0, then F (0)
N ⇒ F

this is true for instance if FN and F (0)
N differ by o(N) eigenvalues.

We know that, for XN ∈ CN×n with i.i.d. zero mean variance 1/n,

F XN XH
N ⇒ Fc

with Fc is the compactly supported Marc̆enko-Pastur law of parameter c = limN
N
n .

Question: for very large N, where are the eigenvalues of XN XH
N ?
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No eigenvalues outside the support Absence of eigenvalues outside the support

Are there eigenvalues outside the support ?
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500
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No eigenvalues outside the support Absence of eigenvalues outside the support

No eigenvalue outside the support of sample covariance matrices

Z. D. Bai, J. W. Silverstein, “No eigenvalues outside the support of the limiting spectral distribution
of large-dimensional sample covariance matrices,” The Annals of Probability, vol. 26, no.1 pp.
316-345, 1998.

Theorem

Let XN ∈ CN×n have i.i.d. entries with zero mean, variance 1/n and finite 4th order moment. Let

TN ∈ CN×N be nonrandom and uniformly bounded with N. The e.s.d. of BN = T
1
2
N XNXH

N T
1
2
N

converges weakly and almost surely to some F, as N, n → ∞. Let F◦
N be the distribution whose

Stieltjes transform mF◦
N
(z) is solution of

m = −
„

z − N

n

Z
τ

1 + τm
dF TN (τ)

«−1

Choose N0 ∈ N and [a, b], a > 0, outside the union of the supports of F and F◦
N for all N ≥ N0.

Denote LN(ω) the set of eigenvalues of BN(ω). Then,

P(ω,LN(ω) ∩ [a, b] 6= ∅ i.o.) = 0
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No eigenvalues outside the support Absence of eigenvalues outside the support

How to read the result?

If TN = IN for all N, then this result is equivalent to

“For [a, b] outside the support of the Marc̆enko-Pastur law, for all large N, BN has no
eigenvalue in [a, b], with probability 1”

If TN is not identity,

for any large N0 , take the l.s.d. of BN as if limN F TN = F
TN0 , and add the resulting support to some

space A ⊂ R.
do the previous for all N ≥ N0 and for the asymptotic limN F TN . This forms A.
take [a, b] outside A, the result shows, for all N large, there is no eigenvalue there.

this is very different from taking [a, b] only outside the support of F !!!

this is essential to understand spiked models, discussed in Section 23.
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No eigenvalues outside the support Absence of eigenvalues outside the support

No eigenvalue outside which the support: which models?

J. W. Silverstein, P. Debashis, “No eigenvalues outside the support of the limiting empirical
spectral distribution of a separable covariance matrix,” Journal of Multivariate Analysis vol. 100,
no. 1, pp. 37-57, 2009.

It has been shown yet that (for all large N) there is no eigenvalues outside the support of,

Marc̆enko-Pastur law: XXH, X i.i.d. with zero mean, variance 1/N, finite 4th order moment.

Sample covariance matrix: T
1
2 XXHT

1
2 and XHTX, X i.i.d. with zero mean, variance 1/N, finite 4th

order moment.
Doubly-correlated matrix: R

1
2 XTXHR

1
2 , X with i.i.d. zero mean, variance 1/N, finite 4th order

moment.

J. W. Silverstein, Z.D. Bai, Y.Q. Yin, “A note on the largest eigenvalue of a large dimensional
sample covariance matrix,” Journal of Multivariate Analysis, vol. 26, no. 2, pp. 166-168, 1988.

If 4th order moment is infinite,

lim sup
N

λXXH

max = ∞

Unknown but worth digging are:
information plus noise models

(X + A)(X + A)H

Important remark: T and R need not be deterministic as long as they have limiting
distributions with probability 1 (thanks to Fubini/Tonelli’s theorem).
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No eigenvalues outside the support Absence of eigenvalues outside the support

Sketch of Proof

Proof entirely relies on the Stieltjes transform!
Up to now, we know

|mBN
(z) − mFN

(z)| a.s.−→ 0

This is not enough, we need in fact to show: for z = x + i
√

kvN , vN = 1
N1/68 , k = 1, . . . , 34,

max
1≤k≤34

sup
x∈[a,b]

˛
˛
˛mN (x + ik

1
2 vN) − m◦

N((x + ik
1
2 vN )

˛
˛
˛ = o(v67

N )

Expanding the Stieltjes transforms and considering only the imaginary parts, this is

max
1≤k≤34

sup
x∈[a,b]

˛
˛
˛
˛
˛

Z
d(F BN (λ) − FN(λ))

(x − λ)2 + kv2
N

˛
˛
˛
˛
˛
= o(v66

N )

almost surely. Taking successive differences over the 34 values of k , we end up with

sup
x∈[a,b]

˛
˛
˛
˛
˛

Z
(v2

N )33d(F BN (λ) − FN(λ))
Q34

k=1((x − λ)2 + kv2
N)

˛
˛
˛
˛
˛
= o(v66

N )

Consider a′ < a and b′ > b such that [a′, b′] is outside the support of F . We then have

sup
x∈[a,b]

˛
˛
˛
˛
˛
˛

Z 1R+\[a′,b′](λ)d(FBN (λ) − FN(λ))
Q34

k=1((x − λ)2 + kv2
N)

+
X

λj∈[a′,b′]

v68
N

Q34
k=1((x − λj)2 + kv2

N)

˛
˛
˛
˛
˛
˛

= o(1)

almost surely. If, there is one eigenvalue of all Bφ(N) in [a, b], then one term of the sum is
1/34! > 0. So the integral must away from zero. But the integral tends to 0. Contradiction.

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 11 / 55



No eigenvalues outside the support Absence of eigenvalues outside the support

Sketch of Proof

Proof entirely relies on the Stieltjes transform!
Up to now, we know

|mBN
(z) − mFN

(z)| a.s.−→ 0

This is not enough, we need in fact to show: for z = x + i
√

kvN , vN = 1
N1/68 , k = 1, . . . , 34,

max
1≤k≤34

sup
x∈[a,b]

˛
˛
˛mN (x + ik

1
2 vN) − m◦

N((x + ik
1
2 vN )

˛
˛
˛ = o(v67

N )

Expanding the Stieltjes transforms and considering only the imaginary parts, this is

max
1≤k≤34

sup
x∈[a,b]

˛
˛
˛
˛
˛

Z
d(F BN (λ) − FN(λ))

(x − λ)2 + kv2
N

˛
˛
˛
˛
˛
= o(v66

N )

almost surely. Taking successive differences over the 34 values of k , we end up with

sup
x∈[a,b]

˛
˛
˛
˛
˛

Z
(v2

N )33d(F BN (λ) − FN(λ))
Q34

k=1((x − λ)2 + kv2
N)

˛
˛
˛
˛
˛
= o(v66

N )

Consider a′ < a and b′ > b such that [a′, b′] is outside the support of F . We then have

sup
x∈[a,b]

˛
˛
˛
˛
˛
˛

Z 1R+\[a′,b′](λ)d(FBN (λ) − FN(λ))
Q34

k=1((x − λ)2 + kv2
N)

+
X

λj∈[a′,b′]

v68
N

Q34
k=1((x − λj)2 + kv2

N)

˛
˛
˛
˛
˛
˛

= o(1)

almost surely. If, there is one eigenvalue of all Bφ(N) in [a, b], then one term of the sum is
1/34! > 0. So the integral must away from zero. But the integral tends to 0. Contradiction.
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No eigenvalues outside the support Absence of eigenvalues outside the support

What’s the link with wireless communications?

assume N sensors wish to detect the presence of a signal. They scan successive samples
x1, . . . , xn. Then

if Rn = 1
n

Pn
i=1 xi x

H
i has eigenvalues outside the support: with high probability, a signal was

transmitted.
if Rn has all eigenvalues inside the expected noise support, what can we say?

we cannot conclude straight away
we need further study of the spectrum
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No eigenvalues outside the support Further details on the asymptotic spectrum

Stieltjes transform inversion for covariance matrix models

J. W. Silverstein, S. Choi, “Analysis of the limiting spectral distribution of large dimensional random
matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 295-309, 1995.

We know for the model T
1
2
N XN , XN ∈ CN×n that the Stieltjes transform of the e.s.d. of

BN = T
1
2
N XN XH

NT
1
2
N satisfies mBN

(z)
a.s.−→ mF (z), with

mF (z) =

„

−z − n

N

Z
t

1 + tmN(z)
dH(t)

«−1

which is unique on the set {z ∈ C+, mF (z) ∈ C+}.

This can be inverted into

zF (m) = − 1

m
− c

Z
t

1 + tm
dH(t)

for m ∈ C+.
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No eigenvalues outside the support Further details on the asymptotic spectrum

Stieltjes transform inversion and spectrum characterization

Remember that we can evaluate the spectrum density by taking a complex line close to R and
evaluating ℑ[mF (z)] along this line. Now we can do better.

It is shown that
lim

z→x∈R
∗

z∈C
+

mF (z) = m0(x)

exists. We also have,
for x0 inside the support, the density f (x) of F in x is 1

π ℑ[m0(x)] with m0(x) the unique solution
m ∈ C

+ of

x = − 1

m
− c

Z

t

1 + tm
dH(t)

let m0 ∈ R
∗ and xF the equivalent to zF on the real line. Then “x0 outside the support of F ” is

equivalent to “x′
F (mF (x0)) > 0, mF (x0) 6= 0, −1/mF (x0) outside the support of H”.

This provides another way to determine the support!. For m ∈ (−∞, 0), evaluate xF (m).
Whenever xF decreases, the image is outside the support. The rest is inside.
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No eigenvalues outside the support Further details on the asymptotic spectrum

Another way to determine the spectrum: spectrum to analyze

1 3 7
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Empirical eigenvalue distribution

Limit law

Figure: Histogram of the eigenvalues of BN = T
1
2
N XN XH

N T
1
2
N , N = 300, n = 3000, with TN diagonal composed of

three evenly weighted masses in 1, 3 and 7.
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No eigenvalues outside the support Further details on the asymptotic spectrum

Another way to determine the spectrum: inverse function method

−1 − 1
3 − 1

7
0

1

3

7

m

x F
(m

)

xF (m), m ∈ B

Support of F

Figure: Stieltjes transform of BN = T
1
2
N XN XH

N T
1
2
N , N = 300, n = 3000, with TN diagonal composed of three

evenly weighted masses in 1, 3 and 7. The support of F is read on the vertical axis, whenever mF is decreasing.
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No eigenvalues outside the support Further details on the asymptotic spectrum

Cluster boundaries in sample covariance matrix models

Xavier Mestre, “Improved estimation of eigenvalues of covariance matrices and their associated
subspaces using their sample estimates,” IEEE Transactions on Information Theory, vol. 54, no.
11, Nov. 2008.

Theorem

Let XN ∈ CN×n have i.i.d. entries of zero mean, variance 1/n, and TN be diagonal such that
F TN ⇒ H, as n, N → ∞, N/n → c, where H′ has K masses in t1, . . . , tK with multiplicity

n1, . . . , nK respectively. Then the l.s.d. of BN = T
1
2
N XNXH

NT
1
2
N has support S given by

S = [x−
1 , x+

1 ] ∪ [x−
2 , x+

2 ] ∪ . . . ∪ [x−
Q , x+

Q ]

with x−
q = xF (m−

q ), x+
q = xF (m+

q ), and

xF (m) = − 1

m
− c

1

n

KX

k=1

nk
tk

1 + tk m

with 2Q the number of real-valued solutions counting multiplicities of x ′
F (m) = 0 denoted in order

m−
1 < m+

1 ≤ m−
2 < m+

2 ≤ . . . ≤ m−
Q < m+

Q .
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No eigenvalues outside the support Further details on the asymptotic spectrum

Comments on spectrum characterization

previous results allows to determine
the spectrum boundaries
the number Q of clusters
as a consequence, the total separation or not of the spectrum in K clusters.

Mestre goes further: to determine local separability of the spectrum,
identify the K inflexion points, i.e. the K solutions m1, . . . , mK to

x′′
F (m) = 0

check whether x′
F (mi ) > 0 and x′

F (mi+1) > 0
if so, the cluster in between corresponds to a single population eigenvalue.

only the case of sample covariance matrix model is yet known

inverse Stieltjes transform does not exist for more involved models
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No eigenvalues outside the support Exact spectrum separation

Outline

1 No eigenvalues outside the support
Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation

2 Spiked models: fundamental limitations

3 Distribution of extreme eigenvalues: the Tracy-Widom law

4 Signal sensing: finite dimension considerations

5 Signal sensing applying asymptotic results
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No eigenvalues outside the support Exact spectrum separation

Further than the “no eigenvalues” result

Z. D. Bai, J. W. Silverstein, “Exact Separation of Eigenvalues of Large Dimensional Sample
Covariance Matrices,” The Annals of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

The result on “no eigenvalues outside the support”
says where eigenvalues are not to be found
does not say, as we feel, that (if cluster separation) in cluster k , there are exactly nk eigenvalues.

This is in fact the case,

Theorem

Let BN = T
1
2
N XNXH

N T
1
2
N with l.s.d. F , XN i.i.d., zero mean, variance 1/n, finite 4th moment,

F TN ⇒ H, and N
n → c. Consider 0 < a < b such that [a, b] is outside the support of F . Denote

additionally λk ’s and τk ’s the ordered eigenvalues of BN and TN . Then we have
1 If c(1 − H(0)) > 1, then the smallest eigenvalue x0 of the support of F is positive and λN → x0 almost

surely, as N → ∞.

2 If c(1 − H(0)) ≤ 1, or c(1 − H(0)) > 1 but [a, b] is not contained in [0, x0], then there exists N0 such that
for all N ≥ N0 ,

P(λiN
> b, λiN +1 < a) = 1

where iN is the unique integer such that

τiN
> −1/mF (b)

τiN +1 < −1/mF (a)
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No eigenvalues outside the support Exact spectrum separation

Consequence of exact separation

if eigenvalues are found outside the expected clusters, something extra “signal” must have
been transmitted.

the quantity of eigenvalues in each cluster gives an exact estimate of the multiplicity of the
population!

see Part 4., essential for eigen-inference.

again, exact separation is only known for the sample covariance matrix model.

if we need it for another model, we need to prove it!
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Spiked models: fundamental limitations

Outline

1 No eigenvalues outside the support
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Spiked models: fundamental limitations

Eigenvalues outside the limiting support ?

We can create sample covariance matrix models T
1
2
N XN XH

NT
1
2
N with l.s.d. F (XN as usual) for

which
some sample eigenvalues are found outside the support of F
the l.s.d. H of TN is a Dirac in 1.

Is that in contradiction to previous Theorem?
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Spiked models: fundamental limitations

Eigenvalues outside the support
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Empirical Eigenvalues

Figure: Eigenvalues of BN = TN
1
2 XN XN

HTN
1
2 , where F TN ⇒ I[1,∞), ....Dimensions: N = 500, n = 1500.
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Spiked models: fundamental limitations

Eigenvalues outside the support

α1 +
cα1

α1−1 , α2 +
cα2

α2−1
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Figure: Eigenvalues of BN = TN
1
2 XN XN

HTN
1
2 , where F TN ⇒ I[1,∞), but TN is a diagonal of ones but for the first

four entries set to {α1, α1, α2, α2}, α1 = 2, α2 = 3.Dimensions: N = 500, n = 1500.
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Spiked models: fundamental limitations

Spiked models

No contradiction with “no eigenvalue” theorem, since the finitely numerous eigenvalues of TN
will form additiional clusters of positive measure in F◦

N .

However, for practical purposes, the presence of “spikes” determine the presence of a signal!

What about the absence of spikes?
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Spiked models: fundamental limitations

Absence of spikes ?
⇒ No signal

J. Baik, J. W. Silverstein, “Eigenvalues of large sample covariance matrices of spiked population
models,” Journal of Multivariate Analysis, vol. 97, no. 6, pp. 1382-1408, 2006.

Theorem

Let BN = T
1
2
N XNXH

N T
1
2
N , where XN ∈ CN×n has i.i.d., zero mean and variance 1/n entries, and

TN ∈ RN×N diagonal given by

TN = diag(α1, . . . , α1
| {z }

k1

, . . . , αM , . . . , αM
| {z }

kM

, 1, . . . , 1
| {z }

N−
PM

i=1 ki

)

with α1 > . . . > αM > 0, c = limN N/n. Call M0 = #{j |αj > 1 +
√

c}. For c < 1, call M1 the
integer such that (M − M1) = #{j |αj < 1 −√

c. Denote λ1, . . . , λN the eigenvalues of BN . We
then have

for 1 ≤ j ≤ M0, 1 ≤ i ≤ kj ,

λk1+...+kj−1+i
a.s.−→ αj +

cαj

αj − 1

>>>
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Spiked models: fundamental limitations

<<<

for the other eigenvalues, we must discriminate upon c,
if c < 1,

for M1 + 1 ≤ j ≤ M, 1 ≤ i ≤ kj ,

λN−kj−...−kM +i
a.s.−→ αj +

cαj

αj − 1

for the eigenvalues of TN inside [1 −
√

c, 1 +
√

c],

λk1+...+kM0
+1

a.s.−→ (1 +
√

c)
2

λN−kM1+1−...−kM
a.s.−→ (1 −

√
c)

2

if c > 1,

λn
a.s.−→ (1 −

√
c)2

λn+1 = . . . = λN = 0

if c = 1,

λmin(n,N)
a.s.−→ 0
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Spiked models: fundamental limitations

Interpretation of the result

if c is large, or alternatively, if some “population spikes” are small, part to all of the population
spikes are attracted in the support!

if so, no way to decide on the existence of the spikes from looking at the largest eigenvalues

in telecommunication words, signals might be missed using largest eigenvalues methods.
as a consequence,

the more the sensors (N),
the larger c = lim N/n,
the more probable we miss a spike
THAT LOOKS LIKE A PARADOX.

(in my opinion) that just means “mere observation” is not the method to go for. A lot more
might be said from the finite size sample eigenvalues than by looking at the position of their
extremes.

lastly, if all population spikes are “projected” to the edge of the spectrum, we should have a
closer look to the edge, that must be “denser” than it should!
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 29 / 55



Distribution of extreme eigenvalues: the Tracy-Widom law

Outline
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Distribution of extreme eigenvalues: the Tracy-Widom law

The finite-size reality

From the previous section, it seems smart to
look at the extreme eigenvalues and compare them to the theoretical limits
take the ratio between largest and smallest eigenvalues to determine if this fit the support size

however,
all theorems imply very large N.
the N0 above which theorems are valid is unknown (only in “i.o.” terms)

in reality, we deal with not-too-large dimensions, so we need to estimate errors using
asymptotic methods.

the solution is to zoom on the relevant part of the spectrum and see what happens there.
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Distribution of extreme eigenvalues: the Tracy-Widom law

Distribution of the largest eigenvalues of XXH

C. A. Tracy, H. Widom, “On orthogonal and symplectic matrix ensembles,” Communications in
Mathematical Physics, vol. 177, no. 3, pp. 727-754, 1996.
K. Johansson, “Shape Fluctuations and Random Matrices,” Comm. Math. Phys. vol. 209, pp.
437-476, 2000.

Theorem

Let X ∈ CN×n have i.i.d. Gaussian entries of zero mean and variance 1/n. Denoting λ+
N the

largest eigenvalue of XXH, then

N
2
3

λ+
N − (1 +

√
c)2

(1 +
√

c)
4
3 c

1
2

⇒ X+ ∼ F+

with c = limN N/n and F+ the Tracy-Widom distribution given by

F+(t) = exp
„

−
Z

∞

t
(x − t)2q2(x)dx

«

with q the Painlevé II function that solves the differential equation

q′′
(x) = xq(x) + 2q3

(x)

q(x) ∼x→∞ Ai(x)

in which Ai(x) is the Airy function.
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Distribution of extreme eigenvalues: the Tracy-Widom law

The law of Tracy-Widom
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Figure: Distribution of N
2
3 c− 1

2 (1 +
√

c)−
4
3
h

λ+
N − (1 +

√
c)2
i

against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model XXH. Empirical distribution
taken over 10, 000 Monte-Carlo simulations.
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Distribution of extreme eigenvalues: the Tracy-Widom law

Comments on the Tracy-Widom law

deeper result than limit eigenvalue result

gives an hint on convergence speed

fairly biased on the left: even fewer eigenvalues outside the support.

can be shown to hold for other distributions than Gaussian under mild assumptions

Now, what about largest eigenvalue of a spiked model?
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Distribution of extreme eigenvalues: the Tracy-Widom law

Generalization of the Tracy-Widom law

J. Baik, “Phase transition of the largest eigenvalue for nonnull complex sample covariance
matrices,” The Annals of Probability, vol. 33, no. 5, pp. 1643-1697, 2005.

Theorem

Let X ∈ C
N×n have i.i.d. Gaussian entries of zero mean and variance 1/n and TN = diag(t1, . . . , tN). Assume,

for some fixed r , tr+1 = . . . = tN = 1 and t1 = . . . = tk while tk+1, . . . , tr lie in a compact subset of (0, t1).

Assume further c = lim N/n < 1. Denoting λ+
N the largest eigenvalue of T

1
2 XXHT

1
2 , we have

If t1 < 1 +
q

N
n ,

N
2
3

λ+
N − (1 +

√
c)2

(1 +
√

c)
4
3 c

1
2

⇒ X+ ∼ F+

with F+ the Tracy-Widom distribution.

If t1 > 1 +
q

N
n ,

 

t2
1 − t2

1 c

(t1 − 1)2

! 1
2

n
1
2

»

λ+
N − (t1 +

t1c

t1 − 1
)

–

⇒ Xk ∼ Gk

for some function Gk that is the distribution of the largest eigenvalue of the k × k GUE.

Gk (x) =
1

Zk

Z x

−∞

· · ·
Z x

−∞

Y

1≤i<j≤k

|ξi − ξj |2
k
Y

i=1

e− 1
2 ξ2

i dξ1 . . . dξk

In particular, G1(x) = erf(x)
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Distribution of extreme eigenvalues: the Tracy-Widom law

Comments on the result

there exists a “phase transition” when the largest population eigenvalues move from inside to
outside (0, 1 +

√
c).

more importantly, for t1 < 1 +
√

c, we still have the same Tracy-Widom,
no way to see the spike even when zooming in
in fact, simulation suggests that convergence rate to the Tracy-Widom is slower with spikes.
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Distribution of extreme eigenvalues: the Tracy-Widom law

Presence of a spike in previous model
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Figure: Distribution of N
2
3 c− 1

2 (1 +
√

c)−
4
3
h

λ+
N − (1 +

√
c)2
i

against the distribution of X+ (distributed as

Tracy-Widom law) for N = 500, n = 1500, c = 1/3, for the covariance matrix model T
1
2 XXHT

1
2 with T diagonal

with all entries 1 but for T11 = 1.5. Empirical distribution taken over 10, 000 Monte-Carlo simulations.
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Distribution of extreme eigenvalues: the Tracy-Widom law

What is left to be done?

given previous slides, it is difficult to detect a population spike!

if the N × n observation matrix is divided into chunks, it works better

there is yet no proposition of an optimal way to detect population spikes.

even if results were more conclusive, they require multiple realizations of large matrices to be
usable... but one often has access to only one-shot results.

given the “extra-tail” of the Tracy-Widom for smaller N, can that be exploited?
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 38 / 55



Distribution of extreme eigenvalues: the Tracy-Widom law

What is left to be done?

given previous slides, it is difficult to detect a population spike!

if the N × n observation matrix is divided into chunks, it works better

there is yet no proposition of an optimal way to detect population spikes.

even if results were more conclusive, they require multiple realizations of large matrices to be
usable... but one often has access to only one-shot results.

given the “extra-tail” of the Tracy-Widom for smaller N, can that be exploited?
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Signal sensing: finite dimension considerations

Outline

1 No eigenvalues outside the support
Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
Exact spectrum separation

2 Spiked models: fundamental limitations

3 Distribution of extreme eigenvalues: the Tracy-Widom law

4 Signal sensing: finite dimension considerations

5 Signal sensing applying asymptotic results
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Signal sensing: finite dimension considerations

Signal sensing scenario

?

Base Station

H

User

Figure: Signal detection scenario
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Signal sensing: finite dimension considerations

System model

Consider N sensors that need to decide on the presence of a (single-source) signal embedded
into white noise. With yk ∈ CN the signal received at time k , we have the situations

yk =


hxk + σwk , information plus noise, hypothesis H1
σwk , pure noise, hpothesis H0

for a signal xk , a flat fading channel h and noise wk at time k . If h is stable for n time instants, this
can be brought into the matrix Y = [y1 . . . yn],

Y =

8
>>>>>>>>>>><

>>>>>>>>>>>:

2

6
4

h1 σ · · · 0
...

...
. . . · · ·

hN 0 · · · σ

3

7
5

2

6
6
6
4

x1 · · · xn
w11 · · · w1n

... · · ·
...

wN1 · · · wNn

3

7
7
7
5

, information plus noise, hypothesis H1

2

6
4

σ · · · 0
...

. . . · · ·
0 · · · σ

3

7
5

2

6
4

w11 · · · w1n
... · · ·

...
wN1 · · · wNn

3

7
5 , pure noise, hpothesis H0
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Signal sensing: finite dimension considerations

Hypothesis test

the problem here consists in finding the most plausible hypothesis among H0 and H1.
while nothing is known about the channel
while σ might not be known
while maybe more than a signal source is present...

strategies of approach,
full blown finite-size Bayesian hypothesis testing give Y
exploiting the asymptotic eigen-structure of Y, assuming it is large enough
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Signal sensing: finite dimension considerations

Maximum entropy decision

R. Couillet, M. Debbah, “A Bayesian Framework for Collaborative Multi-Source Signal Detection,”
submitted to IEEE Trans. on Signal Processing

We need to determine the value of

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
(1)

To cope with the absence of knowledge, we use the maximum-entropy principle to assign
Bayesian a priori to unknown variables. Under knowledge of the SNR only,

h (possibly even H ∈ C
N×M for M hypothetical transmitters) is assigned a Gaussian distribution.

the signal and noise matrices have Gaussian i.i.d. entries.
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Signal sensing: finite dimension considerations

Evaluating C(Y)

Under hypothesis H0,

PY|H0
(Y) =

1

(πσ2)NL
e
− 1

σ2 tr YYH

Under hypothesis H1, assuming M = 1,

PY|I1 (Y) =
e

σ2− 1
σ2
PN

i=1 λi

NπnNσ2(N−1)(n−1)

NX

l=1

e
λl
σ2

QN
i=1
i 6=l

(λl − λi )
JN−n−1(σ

2, λl)

with

Jk (x, y) =

Z +∞

x
tk e−t− y

t dt and λi the eigenvalues of YYH

Finally,

CY|I1(Y) =
1

N

NX

l=1

σ2(N+n−1)e
σ2+

λl
σ2

QN
i=1
i 6=l

(λl − λi )
JN−n−1(σ

2, λl )
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Signal sensing: finite dimension considerations

Generalization

Generalization to M ≥ 1 (M known)

CY|IM
(Y) =

σ2M(N+n−M)(N − M)!eM2σ2

N!M(M−1−2n)M/2
QM−1

j=1 j!

X

a⊂[1,N]

e

PM
i=1 λai
σ2

Y

ai

Y

j 6=a1
...

j 6=ai

(λai
− λj )

X

b∈P(M)

(−1)sgn(b)+M
M
Y

l=1

JN−n−2+bl
(Mσ2, M

in which J(x)
k = Jk (2σ2, 2x).

If M is unknown

P(Y|I0) =

MmaxX

i=1

P(Y|“M = i”, I0) · P(“M = i”|I0)

If σ is unknown, one possibility:

PY|I′M
=

1

σ2
+ − σ2

−

Z σ2
+

σ2
−

PY|σ2(Y, σ2)dσ2

but here, long-standing problem with the maximum entropy principle and the determination of
Pσ2|IM .
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Signal sensing: finite dimension considerations

Results against classical energy detector
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Figure: Power detection performance in SIMO - M = 1, N = 4, L = 8, SNR = −3 dB. On the left, Bayesian
detector; on the right, classical power detector.
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Signal sensing: finite dimension considerations

Bayesian detection gain
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Figure: CDR against FAR for SIMO transmission - M = 1, N = 4, L = 8, SNR = −3 dB. On the left, full FAR
range; on the right, FAR range of practical interest.
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Signal sensing: finite dimension considerations

When σ is unknown
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Figure: FAR and CDR, for different a priori information: exact SNR (0 dB), short range SNR ([−2.5, 2.5] dB) and
large range SNR ([−5, 5] dB) SNR, M = 1, N = 4, L = 8, true SNR = 0 dB
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Signal sensing: finite dimension considerations

Comments on the results

On the plus side,

for this model, only eigenvalues matter.
for known σ, M, Bayesian approach outperforms energy detection.
however, for increasing M, it can be shown energy detection is close-to-optimal.
for unknown σ, M, new results.
for unknown σ, saturation observed: detection is always possible!

However,
formulas are painful to derive
extension to more structured channels is very tough
for applications, formulas are difficult to exploit.
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 49 / 55



Signal sensing: finite dimension considerations

Comments on the results

On the plus side,

for this model, only eigenvalues matter.
for known σ, M, Bayesian approach outperforms energy detection.
however, for increasing M, it can be shown energy detection is close-to-optimal.
for unknown σ, M, new results.
for unknown σ, saturation observed: detection is always possible!

However,
formulas are painful to derive
extension to more structured channels is very tough
for applications, formulas are difficult to exploit.
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Signal sensing applying asymptotic results

Outline

1 No eigenvalues outside the support
Absence of eigenvalues outside the support
Further details on the asymptotic spectrum
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Signal sensing applying asymptotic results

Reminder of the hypothesis testing problem

Reminder: we want to test the hypothesis H0 against H1,

Y =

8
>>>>>>>>>>><

>>>>>>>>>>>:

2

6
4

h1 σ · · · 0
...

...
. . . · · ·

hN 0 · · · σ

3

7
5

2

6
6
6
4

x1 · · · xn
w11 · · · w1n

... · · ·
...

wN1 · · · wNn

3

7
7
7
5

, information plus noise, hypothesis H1

2

6
4

σ · · · 0
...

. . . · · ·
0 · · · σ

3

7
5

2

6
4

w11 · · · w1n
... · · ·

...
wN1 · · · wNn

3

7
5 , pure noise, hpothesis H0

we wish now to simplify the previous results using asymptotic compact-form results.
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 51 / 55



Signal sensing applying asymptotic results

Exploiting the conditioning number

L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative spectrum sensing using random
matrix theory,” International Symposium on Wireless Pervasive Computing, pp. 334-338 , 2008.

under either hypothesis,
if H0, for N large, we expect FYYH close to the Marc̆enko-Pastur law, of support

[σ2 `1 −
√

c
´2

, σ2 `1 +
√

c
´2

].

if H1, if population spike more than 1 +
q

N
n , largest eigenvalue is further away.

the conditioning number of YYH is therefore asymptotically, as N, n → ∞, N/n → c,
if H0,

cond(Y)
∆
=

λmax

λmin
→
`

1 −
√

c
´2

`

1 +
√

c
´2

if H1,

cond(Y) → t1 +
ct1

t1 − 1
>

`

1 −
√

c
´2

`

1 +
√

c
´2

with t1 =
PN

k=1 |hk |2 + σ2

the conditioning number is independent of σ. We then have the decision criterion, whether or
not σ is known,

decide

8
>><

>>:

H0 : if cond(YYH) ≤

„

1−
q

N
n

«2

„

1+
q

N
n

«2 + ε

H1 : otherwise.

for some security margin ε.
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Signal sensing applying asymptotic results

Comments on the method

Advantages are clear,
much simpler than finite size analysis
ratio independent of σ, so σ needs not be known

Drawbacks are however numerous,
however, previous statement stands only for very large N (it is expected that the dimension N for
which asymptotic results arise be a function of σ!)
purely ad-hoc method that does not rely on any performance analysis
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Signal sensing applying asymptotic results

A deeper study of the problem

P. Bianchi, M. Debbah, M. Maı̈da, J. Najim, “Performance of Statistical Tests for Source Detection
using Random Matrix Theory,”, arXiv preprint, 2009.

We use the alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

C(Y) =
supσ2,h PY|h,σ2(Y, h, σ2)

supσ2 PY|σ2(Y|σ2)

Denote

TN =
λmin(YYH)

1
N tr YYH

To guarantee a maximum false alarm ratio of α,

decide

(

H1 : if
“

1 − 1
N

”(1−N)n
T−n

N

“

1 − TN
N

”(1−N)n
> ξN

H0 : otherwise.

for some threshold ξN that can be explicitly given as a function of α.

This test is shown to perform better than the conditioning number test.

But requires the knowledge of σ.
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 54 / 55



Signal sensing applying asymptotic results

A deeper study of the problem

P. Bianchi, M. Debbah, M. Maı̈da, J. Najim, “Performance of Statistical Tests for Source Detection
using Random Matrix Theory,”, arXiv preprint, 2009.

We use the alternative generalized likelihood ratio test (GLRT) decision criterion, i.e.

C(Y) =
supσ2,h PY|h,σ2(Y, h, σ2)

supσ2 PY|σ2(Y|σ2)

Denote

TN =
λmin(YYH)

1
N tr YYH

To guarantee a maximum false alarm ratio of α,

decide

(

H1 : if
“

1 − 1
N

”(1−N)n
T−n

N

“

1 − TN
N

”(1−N)n
> ξN

H0 : otherwise.

for some threshold ξN that can be explicitly given as a function of α.

This test is shown to perform better than the conditioning number test.

But requires the knowledge of σ.
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Signal sensing applying asymptotic results

Conclusions and openings

Summary of this course,
theoretical results on “no eigenvalues outside the support” have large consequences in terms of
signal detection.
results on spiked models exhibit fundamental limits linked to ratio N/n
even when looking closer to limit eigenvalue behaviour, nothing better is achievable.
finite-size considerations may solve the problem but are results are too complex

perspectives,
a better way of using the N samples must be thought about.
statistical results are no good for one-shot treatments, large deviations may not be the solution.
what else to read in the eigenvalues?
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