Random Matrices in Wireless Communications
 Course 2: System performance analysis: capacity and rate regions

Romain Couillet
ST-Ericsson, Supélec, FRANCE romain.couillet@supelec.fr

Outline

(1) Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles
(3) Capacity expressions, Rate Regions
4. Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels

Outline

(1) Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles
(3) Capacity expressions, Rate Regions
4. Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels

Reminder and scope

Stielties transform methods for more elaborate models

- In Part 1 of this course,
- we defined the Stieltjes transform:

Definition

Let F be a distribution function, and $z \in \mathbb{C}^{+}$. Then the Stieltjes transform $m_{F}(z)$ of F is defined as

$$
m_{F}(z)=\int \frac{1}{\lambda-z} d F(\lambda)
$$

For F the spectral distribution of an Hermitian matrix $\mathbf{X} \in \mathbb{C}^{N \times N}$,

$$
m_{F}(z)=\frac{1}{N} \operatorname{tr}\left(\mathbf{X}-z \mathbf{l}_{N}\right)^{-1}
$$

- We gave limiting distribution results for some matrix models.
- We gave a sketch of the proof of the Marčenko-Pastur law.

- In Part 2, we will

- extend the notion of limit distributions to deterministic equivalents
- provide sound mathematical techniques to prove convergence/existence/uniqueness of large N results.
- provide first wireless communication results
- apply the results proven above to self-organized networks

Reminder and scope

Stielties transform methods for more elaborate models

- In Part 1 of this course,
- we defined the Stieltjes transform:

Definition

Let F be a distribution function, and $z \in \mathbb{C}^{+}$. Then the Stieltjes transform $m_{F}(z)$ of F is defined as

$$
m_{F}(z)=\int \frac{1}{\lambda-z} d F(\lambda)
$$

For F the spectral distribution of an Hermitian matrix $\mathbf{X} \in \mathbb{C}^{N \times N}$,

$$
m_{F}(z)=\frac{1}{N} \operatorname{tr}\left(\mathbf{X}-z \mathbf{l}_{N}\right)^{-1}
$$

- We gave limiting distribution results for some matrix models.
- We gave a sketch of the proof of the Marčenko-Pastur law.
- In Part 2, we will
- extend the notion of limit distributions to deterministic equivalents
- provide sound mathematical techniques to prove convergence/existence/uniqueness of large N results.
- provide first wireless communication results
- apply the results proven above to self-organized networks

Limiting results against deterministic equivalents

- previously, we showed results of the type:
"let \mathbf{X}_{N} be random, \mathbf{T}_{N} deterministic with $F^{\mathbf{T}} N \Rightarrow F^{T}$, etc. Then, when $N \rightarrow \infty$, the e.s.d. of \mathbf{X}_{N} tends to F such that m_{F} is solution of a fixed-point equation,

$$
m_{\mathbf{x}_{N}}(z) \rightarrow m_{F}(z) "
$$

- this has major drawbacks
- this assumes \mathbf{T}_{N} has a limiting distribution
- if it does, $m_{x_{N}} x_{N}^{H}$ can at best be approximated by m_{F} which is a function of the limiting F^{\top}. For finite $N, F^{\top} N$ may be very different from F^{\top}
- any sequence T_{N} with I.s.d. F^{T} engenders the same l.s.d. F
- instead, we shall use results of the type
"let X_{N} be random, T_{N} deterministic with $F^{\top} N \Rightarrow F^{T}$, etc. Then the e.s.d. of X_{N} tends to F such that m_{F} is solution of a fixed point equation has Stieltjes transform $m_{\mathbf{X}_{N}}$ well
approximated by the deterministic m_{N}°, which is the unique solution of a fixed-point equation and such that

In this case, m_{N}° is a function of T_{N}, for fixed N and does not require any convergence of $F^{\mathbf{T}} N$

- previously, we showed results of the type:
"let \mathbf{X}_{N} be random, \mathbf{T}_{N} deterministic with $F^{\mathbf{T}} N \Rightarrow F^{\top}$, etc. Then, when $N \rightarrow \infty$, the e.s.d. of \mathbf{X}_{N} tends to F such that m_{F} is solution of a fixed-point equation,

$$
m_{\mathbf{x}_{N}}(z) \rightarrow m_{F}(z) "
$$

- this has major drawbacks
- this assumes \mathbf{T}_{N} has a limiting distribution
- if it does, $m_{\mathbf{x}_{N}} \mathrm{x}_{N}^{\mathrm{H}}$ can at best be approximated by m_{F} which is a function of the limiting F^{T}. For finite $N, F^{\boldsymbol{\top}}{ }^{\boldsymbol{N}}$ may be very different from F^{\top}.
- any sequence \mathbf{T}_{N} with I.s.d. F^{T} engenders the same l.s.d. F.
- instead, we shall use results of the type
"let X_{N} be random, T_{N} deterministic with $F^{\top}{ }_{N} \Rightarrow F^{T}$, etc. Then the e.s.d. of X_{N} tends to F
such that m_{F} is solution of a fixed point equation has Stieltjes transform $m_{\mathbf{X}_{N}}$ well
approximated by the deterministic m_{N}°, which is the unique solution of a fixed-point equation and such that

In this case, m_{N}° is a function of T_{N}, for fixed N and does not require any convergence of F^{T}

- previously, we showed results of the type:
"let \mathbf{X}_{N} be random, \mathbf{T}_{N} deterministic with $F^{\mathbf{T}} N \Rightarrow F^{T}$, etc. Then, when $N \rightarrow \infty$, the e.s.d. of \mathbf{X}_{N} tends to F such that m_{F} is solution of a fixed-point equation,

$$
m_{\mathbf{x}_{N}}(z) \rightarrow m_{F}(z) "
$$

- this has major drawbacks
- this assumes \mathbf{T}_{N} has a limiting distribution
- if it does, $m_{\mathbf{x}_{N} \times_{N}^{H}}$ can at best be approximated by m_{F} which is a function of the limiting F^{T}. For finite $N, F^{\top} N$ may be very different from F^{\top}.
- any sequence \mathbf{T}_{N} with I.s.d. F^{T} engenders the same I.s.d. F.
- instead, we shall use results of the type
"let \mathbf{X}_{N} be random, \mathbf{T}_{N} deterministic with $F^{\top}{ }^{\top} \Rightarrow F^{T}$, etc. Then the e.s.d. of \mathbf{X}_{N} tends to F such that m_{F} is solution of a fixed point equation has Stieltjes transform $m_{\mathbf{x}_{N}}$ well approximated by the deterministic m_{N}°, which is the unique solution of a fixed-point equation and such that

$$
m_{\mathbf{x}_{N}}(z)-m_{N}^{\circ}(z) \xrightarrow{\text { a.s. }} 0 "
$$

In this case, m_{N}° is a function of \mathbf{T}_{N}, for fixed N and does not require any convergence of $F^{\mathbf{T}}$.

Outline of the proofs

It will often be the case that the deterministic equivalent $m_{N}^{\circ}(z)$ satisfies an implicit equation. The steps are then:
(1) find a suitable function f, such that the true Stieltjes transform $m_{\mathbf{X}_{N}}(z)$ satisfies, for fixed $z \in \mathbb{C}^{+}$,

$$
m_{\mathbf{x}_{N}}(z)=f\left(m_{\mathbf{x}_{N}}(z)\right)+\varepsilon_{N}
$$

where $\varepsilon_{N} \xrightarrow{\text { a.s. }} 0$ as $N \rightarrow \infty$.
This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1
(2) For fixed N, prove the existence of a solution to

$$
m=f(m)
$$

This is often based on extracting a converging subsequence of $m_{N}, m_{2 N}$,
such that $m_{j N}$
"has the same properties as $m_{\mathbf{x}_{N}}(z)$ for all j ".
(3) For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
(4) Calling $m_{N}^{\circ}(>)$ the solution, prove finally that
\qquad

Outline of the proof's

It will often be the case that the deterministic equivalent $m_{N}^{\circ}(z)$ satisfies an implicit equation. The steps are then:
(1) find a suitable function f, such that the true Stieltjes transform $m_{\mathbf{x}_{N}}(z)$ satisfies, for fixed $z \in \mathbb{C}^{+}$,

$$
m_{\mathbf{x}_{N}}(z)=f\left(m_{\mathbf{x}_{N}}(z)\right)+\varepsilon_{N}
$$

where $\varepsilon_{N} \xrightarrow{\text { a.s. }} 0$ as $N \rightarrow \infty$.
This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.
(2) For fixed N, prove the existence of a solution to

$$
m=f(m)
$$

This is often based on extracting a converging subsequence of $m_{N}, m_{2 N}$,
"has the same properties as $m_{\mathrm{X}_{N}}(z)$ for all j ".
(3) For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
(4) Calling $m_{N}^{\circ}(>)$ the solution, prove finally that

Outline of the proofs

It will often be the case that the deterministic equivalent $m_{N}^{\circ}(z)$ satisfies an implicit equation. The steps are then:
(1) find a suitable function f, such that the true Stieltjes transform $m_{\mathbf{x}_{N}}(z)$ satisfies, for fixed $z \in \mathbb{C}^{+}$,

$$
m_{\mathbf{x}_{N}}(z)=f\left(m_{\mathbf{x}_{N}}(z)\right)+\varepsilon_{N}
$$

where $\varepsilon_{N} \xrightarrow{\text { a.s. }} 0$ as $N \rightarrow \infty$.
This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.
(2) For fixed N, prove the existence of a solution to

$$
m=f(m)
$$

This is often based on extracting a converging subsequence of $m_{N}, m_{2 N}, \ldots$ such that $m_{j N}$ "has the same properties as $m_{\mathbf{x}_{N}}(z)$ for all j ".
(3) For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
(4) Calling $m_{N}^{\circ}(z)$ the solution, prove finally that

Outline of the proofs

It will often be the case that the deterministic equivalent $m_{N}^{\circ}(z)$ satisfies an implicit equation. The steps are then:
(1) find a suitable function f, such that the true Stieltjes transform $m_{\mathbf{x}_{N}}(z)$ satisfies, for fixed $z \in \mathbb{C}^{+}$,

$$
m_{\mathbf{x}_{N}}(z)=f\left(m_{\mathbf{x}_{N}}(z)\right)+\varepsilon_{N}
$$

where $\varepsilon_{N} \xrightarrow{\text { a.s. }} 0$ as $N \rightarrow \infty$.
This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.
(2) For fixed N, prove the existence of a solution to

$$
m=f(m)
$$

This is often based on extracting a converging subsequence of $m_{N}, m_{2 N}, \ldots$ such that $m_{j N}$ "has the same properties as $m_{\mathbf{x}_{N}}(z)$ for all j ".
(3) For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
(4) Calling $m_{N}^{\circ}(z)$ the solution, prove finally that

$$
m_{\mathbf{x}_{N}}(z)-m_{N}^{\circ}(z) \xrightarrow{\text { a.s. }} 0
$$

Outline

(1) Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles
(3) Capacity expressions, Rate Regions
4. Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels

Stielties transform of a sum of doubly-correlated matrices

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

We will give here the method of proof of the following result

Theorem

For $K, N \in \mathbb{N}$, let

$$
\mathbf{B}_{N}=\sum_{k=1}^{K} \mathbf{R}_{k}^{\frac{1}{2}} \mathbf{x}_{k} \mathbf{T}_{k} \mathbf{x}_{k}^{H} \mathbf{R}_{k}^{\frac{1}{2}}+\mathbf{A} \in \mathbb{C}^{N \times N}
$$

where $\mathbf{X}_{k} \in \mathbb{C}^{N \times n_{k}}$ i.i.d. of zero mean, variance $1 / n_{k} ; \mathbf{R}_{k} \in \mathbb{C}^{N \times N}$ Hermitian nonnegative definite; $\mathbf{T}_{k}=\operatorname{diag}\left(\tau_{1}, \ldots, \tau n_{k}\right) \in \mathbb{R}^{n_{k}} \times n_{k}$, diagonal with $\tau_{i} \geq 0$; the sequences $\left\{F^{\mathbf{T}_{k}}\right\}_{n_{k} \geq 1}$ and $\left\{F^{\mathbf{R}_{k}}\right\}_{N \geq 1}$ are tight; $\mathbf{A} \in \mathbb{C}^{N \times N}$ Hermitian positive definite;
$0<a \leq \lim \inf _{N} c_{k} \leq \lim \sup _{N} c_{N} \leq b<\infty$ with $c_{k}=N / n_{k}$. Then

$$
m_{\mathbf{B}_{N}}(z)-m_{N}^{\circ}(z) \xrightarrow{\text { a.s. }} 0
$$

where

$$
m_{N}^{\circ}(z)=\frac{1}{N} \operatorname{tr}\left(\mathbf{A}+\sum_{k=1}^{K} \int \frac{\tau_{k} d F^{\mathbf{T}_{k}\left(\tau_{k}\right)}}{1+c_{k} \tau_{k} e_{k}(z)} \mathbf{R}_{k}-z \mathbf{l}_{N}\right)^{-1}
$$

and the scalars $\left\{e_{i}(z)\right\}, i \in\{1, \ldots, K\}$, form the unique solution to

$$
e_{i}(z)=\frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(\mathbf{A}+\sum_{k=1}^{K} \int \frac{\tau_{k} d F^{\mathbf{T}} k\left(\tau_{k}\right)}{1+c_{k} \tau_{k} e_{k}(z)} \mathbf{R}_{k}-z_{N}\right)^{-1}
$$

such that $\operatorname{sgn}\left(\Im\left[e_{i}(z)\right]\right)=\operatorname{sgn}(\Im[z])$.

Kronecker models and Variance Profiles
 A "telecom-oriented" version of the same result

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

$$
\mathbf{B}_{N}=\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{H}_{k}^{H}, \text { with } \mathbf{H}_{k}=\mathbf{R}_{k}^{\frac{1}{2}} \mathbf{X}_{k} \mathbf{T}_{k}^{\frac{1}{2}}
$$

with $\mathbf{X}_{k} \in \mathbb{C}^{N \times n_{k}}$ with i.i.d. entries of zero mean, variance $1 / n_{k}, \mathbf{R}_{k}$ Hermitian nonnegative definite, \mathbf{T}_{k} diagonal. Denote $c_{k}=N / n_{k}$. Then, as all N and n_{k} grow large, with ratio c_{k},

$$
m_{F^{B_{N}}}(z)-m_{N}^{\circ}(z) \xrightarrow{\text { a.s. }} 0
$$

where

$$
m_{N}^{\circ}(z)=\frac{1}{N} \operatorname{tr}\left(-z\left[\mathbf{I}_{N}+\sum_{k=1}^{K} \bar{e}_{k}(z) \mathbf{R}_{k}\right]\right)^{-1}
$$

and the set of functions $\left\{e_{i}(z)\right\}$ form the unique solution to the K equations

$$
\begin{aligned}
& e_{i}(z)=\frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(-z\left[\mathbf{I}_{N}+\sum_{k=1}^{K} \bar{e}_{k}(z) \mathbf{R}_{k}\right]\right)^{-1} \\
& \bar{e}_{i}(z)=\frac{1}{n_{i}} \operatorname{tr} \mathbf{T}_{i}\left(-z\left[\mathbf{I}_{n_{i}}+c_{i} e_{i}(z) \mathbf{T}_{i}\right]\right)^{-1}
\end{aligned}
$$

Pastur's method

Pastur's method is not applicable here, unless all \mathbf{R}_{k} 's are diagonal.
Consider $K=2, \mathbf{A}=0$ and denote $H_{k}=R_{k}^{\frac{1}{2}} \mathbf{X}_{k} \mathbf{T}_{k}^{\frac{1}{2}}$, with diagonal \mathbf{R}_{k}. By block-matrix inversion, we have

$$
\begin{aligned}
\left(H_{1} H_{1}^{H}+H_{2} H_{2}^{H}-z l_{N}\right)_{11}^{-1} & =\left(\left[\begin{array}{ll}
h_{1}^{H} & h_{2}^{H} \\
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{ll}
h_{1} & U_{1}^{H} \\
h_{2} & U_{2}^{H}
\end{array}\right]-z l_{N}\right)_{11}^{-1} \\
& =\left[-z-z\left[h_{1}^{H} h_{2}^{H}\right]\left(\left[\begin{array}{ll}
U_{1}^{H} \\
U_{2}^{H}
\end{array}\right]\left[U_{1} U_{2}\right]-z l_{n_{1}+n_{2}}\right)^{-1}\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]\right]^{-1}
\end{aligned}
$$

with the definition $\mathbf{H}_{i}^{\mathrm{H}}=\left[\mathbf{h}_{i} \mathbf{U}_{i}^{\mathrm{H}}\right]$
The inner inverse matrix is

$$
\left(\left[\begin{array}{l}
\mathbf{U}_{1}^{H} \\
\mathbf{U}_{2}^{H}
\end{array}\right]\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]-z \mathbf{I}_{n_{1}+n_{2}}\right)^{-1}=\left[\begin{array}{cc}
\mathbf{U}_{1}^{H} \mathbf{U}_{1}-z \mathbf{I}_{n_{1}} & \mathbf{U}_{1}^{\mathrm{H}} \mathbf{U}_{2} \\
\mathbf{U}_{2}^{H} \mathbf{U}_{1} & \mathbf{U}_{2}^{H} \mathbf{U}_{2}-z \mathbf{I}_{n_{2}}
\end{array}\right]^{-1}
$$

on which we apply another block matrix inverse lemma. The upper-left ($n_{1} \times n_{1}$) entry equals

$$
\left(-z U_{1}^{H}\left(U_{2} U_{2}^{\prime!}-z I_{N-1}\right)^{-1} U_{1}-z I_{n_{1}}\right)^{-1}
$$

For the second block diagonal entry, it suffices to revert all 1's in 2's and vice-versa.

Pastur's method

Pastur's method is not applicable here, unless all \mathbf{R}_{k} 's are diagonal.
Consider $K=2, \mathbf{A}=0$ and denote $\mathbf{H}_{k}=\mathbf{R}_{k}^{\frac{1}{2}} \mathbf{X}_{k} \mathbf{T}_{k}^{\frac{1}{2}}$, with diagonal \mathbf{R}_{k}. By block-matrix inversion, we have

$$
\begin{aligned}
\left(\mathbf{H}_{1} \mathbf{H}_{1}^{\mathrm{H}}+\mathbf{H}_{2} \mathbf{H}_{2}^{\mathrm{H}}-z \mathbf{l}_{N}\right)_{11}^{-1} & =\left(\left[\begin{array}{ll}
\mathbf{h}_{1}^{\mathrm{H}} & \mathbf{h}_{2}^{\mathrm{H}} \\
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{h}_{1} & \mathbf{U}_{1}^{\mathrm{H}} \\
\mathbf{h}_{2} & \mathbf{U}_{2}^{\mathrm{H}}
\end{array}\right]-z \mathbf{l}_{N}\right)_{11}^{-1} \\
& =\left[-z-z\left[\mathbf{h}_{1}^{\mathrm{H}} \mathbf{h}_{2}^{\mathrm{H}}\right]\left(\left[\begin{array}{l}
\mathbf{U}_{1}^{\mathrm{H}} \\
\mathbf{U}_{2}^{\mathrm{H}}
\end{array}\right]\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]-z \mathbf{I}_{n_{1}+n_{2}}\right)^{-1}\left[\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2}
\end{array}\right]\right]^{-1}
\end{aligned}
$$

with the definition $\mathbf{H}_{i}^{\mathrm{H}}=\left[\mathbf{h}_{i} \mathbf{U}_{i}^{\mathrm{H}}\right]$.
The inner inverse matrix is

$$
\left(\left[\begin{array}{l}
\mathbf{U}_{1}^{\mathrm{H}} \\
\mathbf{U}_{2}^{\mathrm{H}}
\end{array}\right]\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]-z \mathbf{I}_{n_{1}+n_{2}}\right)^{-1}=\left[\begin{array}{cc}
\mathbf{U}_{1}^{\mathrm{H}} \mathbf{U}_{1}-z \mathbf{I}_{n_{1}} & \mathbf{U}_{1}^{\mathrm{H}} \mathbf{U}_{2} \\
\mathbf{U}_{2}^{\mathrm{H}} \mathbf{U}_{1} & \mathbf{U}_{2}^{\mathrm{H}} \mathbf{U}_{2}-z \mathbf{I}_{n_{2}}
\end{array}\right]^{-1}
$$

on which we apply another block matrix inverse lemma. The upper-left ($n_{1} \times n_{1}$) entry equals

$$
\left(-z \mathbf{U}_{1}^{H}\left(\mathbf{U}_{2} \mathbf{U}_{2}^{H}-z \mathbf{l}_{N-1}\right)^{-1} \mathbf{U}_{1}-z \mathbf{I}_{n_{1}}\right)^{-1}
$$

For the second block diagonal entry, it suffices to revert all 1's in 2's and vice-versa.

Pastur's method (2)

$$
\begin{aligned}
& \left(\mathbf{H}_{1} \mathbf{H}_{1}^{H}+\mathbf{H}_{2} \mathbf{H}_{2}^{H}-z \mathbf{I}_{N}\right)_{11}^{-1}= \\
& {\left[\begin{array}{cc}
-z-z\left[\mathbf{h}_{1}^{H} \mathbf{h}_{2}^{H}\right]\left[\begin{array}{cc}
\left(-z \mathbf{U}_{1}^{H}\left(\mathbf{U}_{2} \mathbf{U}_{2}^{H}-z \mathbf{l}_{N-1}\right)^{-1} \mathbf{U}_{1}-z \mathbf{I}_{n_{1}}\right)^{-1} & \star \\
\star & \left(-z \mathbf{U}_{2}^{H}\left(\mathbf{U}_{1} \mathbf{U}_{1}^{H}-z \mathbf{I}_{N-1}\right)^{-1} \mathbf{U}_{2}-z \mathbf{I}_{n_{2}}\right)^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2}
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

The other two terms do not depend on $\mathbf{h}_{1}, \mathbf{h}_{2}$. We now use both results,
For $\mathbf{x} \in \mathbb{C}^{N}, \mathbf{y} \in \mathbb{C}^{N}$ i.i.d. with zero mean, variance $1 / N, \mathbf{A} \in \mathbb{C}^{N \times N}$ Hermitian with bounded spectral norm,

$$
\begin{array}{r}
\mathbf{x}^{\mathrm{H}} \mathbf{A} \mathbf{x}-\frac{1}{N} \operatorname{tr} \mathbf{A} \xrightarrow{\text { a.s. }} 0 \\
\mathbf{x}^{\mathrm{H}} \mathbf{A} \mathbf{y} \xrightarrow{\text { a.s. }} 0
\end{array}
$$

Since $\mathbf{R}_{1}, \mathbf{R}_{2}$ are diagonal, $\mathbf{h}_{i}=\sqrt{r_{i 1}} \mathbf{T}_{j}{ }^{\frac{1}{2}} \mathbf{x}_{i}$, with the notation $\mathbf{R}_{i}=\operatorname{diag}\left(r_{i 1}, \ldots, r_{i N}\right)$. Therefore, using the trace and rank-1 perturbation lemma,

$$
\begin{aligned}
& \left(\mathbf{H}_{1} \mathbf{H}_{1}^{\mathrm{H}}+\mathbf{H}_{2} \mathbf{H}_{2}^{\mathrm{H}}-z \mathbf{l}_{N}\right)_{11}^{-1} \rightarrow \\
& {\left[-\boldsymbol{z}-\boldsymbol{z} r_{11} \frac{1}{n_{1}} \operatorname{tr} \mathbf{T}_{1}\left(-z \mathbf{H}_{1}^{\mathrm{H}}\left(\mathbf{H}_{2} \mathbf{H}_{2}^{\mathrm{H}}-z \mathbf{l}_{N}\right)^{-1} \mathbf{H}_{1}-z \mathbf{l}_{n_{1}}\right)^{-1}-z r_{21} \frac{1}{n_{2}} \operatorname{tr} \mathbf{T}_{2}\left(-z \mathbf{H}_{2}^{\mathrm{H}}\left(\mathbf{H}_{1} \mathbf{H}_{1}^{\mathrm{H}}-z \mathbf{l}_{N}\right)^{-1} \mathbf{H}_{1}-z \mathbf{l}_{n_{2}}\right)^{-1}\right]}
\end{aligned}
$$

Pastur's method (3)

Now, denoting $\mathbf{H}_{i}=\left[\tilde{\mathbf{h}}_{i} \tilde{\mathbf{U}}_{i}\right]$ (column selection instead of row),

$$
\begin{aligned}
\mathbf{T}_{1}\left(-z \mathbf{H}_{1}^{H}\left(\mathbf{H}_{2} \mathbf{H}_{2}^{H}-z \mathbf{l}_{N}\right)^{-1} \mathbf{H}_{1}-z \mathbf{l}_{n_{1}}\right)_{11}^{-1} & =\tau_{11}\left[-z-z \tilde{\mathbf{h}}_{1}^{\mathrm{H}}\left(\tilde{\mathbf{U}}_{1} \tilde{\mathbf{U}}_{1}^{\mathrm{H}}+\mathbf{H}_{2} \mathbf{H}_{2}^{\mathrm{H}}-z \mathbf{l}_{N}\right)^{-1} \tilde{\mathbf{h}}_{1}\right]^{-1} \\
& \rightarrow \tau_{11}\left[-z-z c_{1} \tau_{11} \frac{1}{N} \operatorname{tr} \mathbf{R}_{1}\left(\mathbf{H}_{1} \mathbf{H}_{1}^{\mathrm{H}}+\mathbf{H}_{2} \mathbf{H}_{2}^{\mathrm{H}}-z \mathbf{l}_{N}\right)^{-1}\right]^{-1}
\end{aligned}
$$

with $\tau_{i j}$ the $j^{t h}$ diagonal entry of \mathbf{T}_{i}. A similar result holds when changing 1's in 2's. Call now

$$
f_{i}=\frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(\mathbf{H}_{1} \mathbf{H}_{1}^{H}+\mathbf{H}_{2} \mathbf{H}_{2}^{H}-z \mathbf{I}_{N}\right)^{-1}
$$

and

$$
\bar{f}_{i}=\frac{1}{n_{i}} \operatorname{tr} \mathbf{T}_{i}\left(-z \mathbf{H}_{1}^{\mathrm{H}}\left(\mathbf{H}_{2} \mathbf{H}_{2}^{\mathrm{H}}-z \mathbf{I}_{N}\right)^{-1} \mathbf{H}_{1}-z \mathbf{I}_{n_{1}}\right)^{-1}
$$

we have shown

$$
\begin{aligned}
& f_{i}=\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(-z \bar{f}_{1} \mathbf{R}_{1}-z \bar{f}_{2} \mathbf{R}_{2}-z \mathbf{I}_{N}\right)^{-1} \\
& \bar{f}_{i}=\lim _{N \rightarrow \infty} \frac{1}{n_{i}} \operatorname{tr} \mathbf{T}_{i}\left(-z c_{i} f_{i} \mathbf{T}_{i}-z \mathbf{I}_{n_{i}}\right)^{-1}
\end{aligned}
$$

Deterministic equivalent approach: guess work

We will use here the "guess-work" method to find the deterministic equivalent. Consider the simpler case $K=1$.
Back to the original notations, we seek a matrix \mathbf{D} such that

$$
\frac{1}{N} \operatorname{tr}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} \mathbf{D}^{-1} \xrightarrow{\text { a.s. }} 0
$$

as $N \rightarrow \infty$.

Resolvent lemma

For invertible A, B matrices,

$$
\mathbf{A}^{-1}-\mathbf{B}^{-1}=-\mathbf{A}^{-1}(\mathbf{A}-\mathbf{B}) \mathbf{B}^{-1}
$$

Taking the matrix differences,

$$
-\mathbf{D}^{-1}+\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}=\mathbf{D}^{-1}\left(\mathbf{A}+\mathbf{R}^{\frac{1}{2}} \mathbf{X} \mathbf{T X}^{H} \mathbf{R}^{\frac{1}{2}}-z \mathbf{l}_{N}-\mathbf{D}\right)\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}
$$

It seems convenient to take $\mathbf{D}=\mathbf{A}-z \mathbf{l}_{N}-z p_{N} \mathbf{R}$ with p_{N} left to be defined

Deterministic equivalent approach: guess work (2)

"Silverstein's" lemma

Let \mathbf{A} be Hermitian invertible, then for any vector \mathbf{x} and scalar τ such that $\mathbf{A}+\tau \mathbf{x} \mathbf{x}^{H}$ is invertible

$$
\mathbf{x}^{H}\left(\mathbf{A}+\tau \mathbf{\mathbf { x x } ^ { H }}\right)^{-1}=\frac{\mathbf{x}^{\mathrm{H}} \mathbf{A}^{-1}}{1+\tau \mathbf{\mathbf { x A } ^ { - 1 }} \mathbf{x}^{H}}
$$

With $\mathbf{D}=\mathbf{A}-z \mathbf{l}_{N}-z p_{N} \mathbf{R}$,

$$
\begin{aligned}
-\mathbf{D}^{-1}+\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} & =\mathbf{D}^{-1}\left(\mathbf{A}+\mathbf{R}^{\frac{1}{2}} \mathbf{X} \mathbf{T} \mathbf{X}^{H} \mathbf{R}^{\frac{1}{2}}-z \mathbf{l}_{N}-\mathbf{D}\right)\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} \\
& =\mathbf{D}^{-1} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{X} \mathbf{T} \mathbf{X}^{H}\right) \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}+z p_{N} \mathbf{D}^{-1} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} \\
& =\mathbf{D}^{-1} \sum_{j=1}^{n} \tau_{j} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j} \mathbf{x}_{j}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}+z p_{N} \mathbf{D}^{-1} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} \\
& =\sum_{j=1}^{n} \tau_{j} \frac{\mathbf{D}^{-1} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j} \mathbf{x}_{j}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{(j)}-z \mathbf{l}_{N}\right)^{-1}}{1+\tau_{j} \mathbf{x}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{(j)}-z \mathbf{l}_{N}\right)^{-1} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j}}+z p_{N} \mathbf{D}^{-1} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}
\end{aligned}
$$

Deterministic equivalent approach: guess work (2)

"Silverstein's" lemma

Let \mathbf{A} be Hermitian invertible, then for any vector \mathbf{x} and scalar τ such that $\mathbf{A}+\tau \mathbf{x} \mathbf{x}^{H}$ is invertible

$$
\mathbf{x}^{H}\left(\mathbf{A}+\tau \mathbf{\mathbf { x x } ^ { H }}\right)^{-1}=\frac{\mathbf{x}^{\mathrm{H}} \mathbf{A}^{-1}}{1+\tau \mathbf{\mathbf { x A } ^ { - 1 }} \mathbf{x}^{H}}
$$

With $\mathbf{D}=\mathbf{A}-z \mathbf{l}_{N}-z p_{N} \mathbf{R}$,

$$
\begin{aligned}
-\mathbf{D}^{-1}+\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} & =\mathbf{D}^{-1}\left(\mathbf{A}+\mathbf{R}^{\frac{1}{2}} \mathbf{X} \mathbf{T} \mathbf{X}^{H} \mathbf{R}^{\frac{1}{2}}-z \mathbf{l}_{N}-\mathbf{D}\right)\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} \\
& =\mathbf{D}^{-1} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{X} \mathbf{T} \mathbf{X}^{H}\right) \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}+z p_{N} \mathbf{D}^{-1} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} \\
& =\mathbf{D}^{-1} \sum_{j=1}^{n} \tau_{j} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j} \mathbf{x}_{j}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}+z p_{N} \mathbf{D}^{-1} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1} \\
& =\sum_{j=1}^{n} \tau_{j} \frac{\mathbf{D}^{-1} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j} \mathbf{x}_{j}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{(j)}-z \mathbf{l}_{N}\right)^{-1}}{1+\tau_{j} \mathbf{x}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{(j)}-z \mathbf{l}_{N}\right)^{-1} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j}}+z p_{N} \mathbf{D}^{-1} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}
\end{aligned}
$$

Choice of $p_{N}: p_{N}=-\frac{1}{z} \sum_{j=1}^{n} \frac{\tau_{j}}{1+\tau_{j} c \frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}-z 1_{N}\right)^{-1}}$
$\frac{1}{N} \operatorname{tr}\left(\mathbf{B}_{N}-z \mathbf{I}_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} \mathbf{D}^{-1}=\sum_{j=1}^{n} \tau_{j}\left[\frac{\mathbf{x}_{j}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{(j)}-z \mathbf{l}_{N}\right)^{-1} \mathbf{D}^{-1} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j}}{1+\tau_{j} \mathbf{X}^{H} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{(j)}-z \mathbf{l}_{N}\right)^{-1} \mathbf{R}^{\frac{1}{2}} \mathbf{x}_{j}}-\frac{\frac{1}{N} \operatorname{tr} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{N}-z \mathbf{I}_{N}\right)^{-1} \mathbf{R D}^{-1} \mathbf{R}^{\frac{1}{2}}}{1+c \tau_{j} \frac{1}{N} \operatorname{tr} \mathbf{R}^{\frac{1}{2}}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}} \mathbf{R}^{\frac{1}{2}}\right]$

Deterministic equivalent approach: guess work (3)

The same can be done for $\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{I}_{N}\right)^{-1}$ and we get

$$
\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} \mathbf{R D}^{-1} \rightarrow 0
$$

To show that the convergence is almost sure, we use truncation and centralization.

Truncation and centralization

Replace $\mathbf{X}_{N}, \mathbf{T}_{N}$ and \mathbf{R}_{N} by $\overline{\mathbf{X}}_{N}, \overline{\mathbf{T}}_{N}$ and $\overline{\mathbf{R}}_{N}$ in the following fashion

$$
\left(\overline{\mathbf{X}}_{N}\right)_{i j}=\left(\mathbf{X}_{N}\right)_{i j} \cdot I_{\left\{\left(\mathbf{x}_{N}\right)_{i j}<g_{N}\right\}}
$$

for g_{N} that grows

- fast enough to ensure $F^{\mathbf{B}_{N}}-F^{\overline{\mathbf{B}}_{N}} \Rightarrow 0$
- slow enough to ensure $\frac{1}{N} \operatorname{tr}\left(\overline{\mathbf{B}}_{N}-z \mathbf{l}_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} \overline{\mathbf{R}} \overline{\mathbf{D}}^{-1} \xrightarrow{\text { a.s. }} 0$

Showing that some moment of the terms appearing in the difference is summable, applying Borel-Cantelli lemma, we have almost sure convergence.

Application of the Borel-Cantelli lemma

To complete the proof of almost sure convergence, denote

$$
w_{N}=\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} \mathbf{R} \mathbf{D}^{-1}
$$

We divide w_{N} is 4 successive differences $w_{N}=w_{N}^{1}+\ldots+w_{N}^{4}$. The strategy is as follows:

- for all i, show that

$$
\mathrm{E}\left|w_{N}^{i}\right|^{6}<h_{N}^{i}
$$

where h_{N}^{i} is summable

- for $\varepsilon>0$, applying Markov's inequality,

$$
P\left(\left|h_{N}^{i}\right|>\varepsilon\right)<\frac{1}{\varepsilon^{6}} \mathrm{E}\left|w_{N}^{i}\right|^{6}
$$

which is summable.

- from Borel-Cantelli, this implies $P\left(\left|h_{N}^{i}\right|>\varepsilon\right.$ i.o. $)=0$
- therefore the set $\left\{\omega: \lim _{N} m_{\mathbf{B}_{N}(\omega)}(z)-m_{N}^{\circ}(z)=0\right\}^{C}=\bigcup_{\varepsilon}\left\{\left|m_{\mathbf{B}_{N}(z)}-m_{N}^{\circ}(z)\right| \geq \varepsilon\right.$ i.o. $\}$ is a sum of zero probability sets.
- the union above can be done on rational ε 's and then the union has probability zero.
- for the z in question, there therefore exists $\Omega_{z} \subset \Omega$ for which $\lim _{N} m_{\mathbf{B}_{N}(\omega)}(z)-m_{N}^{\circ}(z)=0$. It suffices then to countably sample \mathbb{C}^{+}to generate a dense set of z 's which satisfy convergence with probability 1 . By local analyticity of m_{N}° and $m_{\mathbf{B}_{N}}$, this is true for all $z \in \mathbb{C}^{+}$.

Deterministic equivalent approach: existence and uniqueness

Fix now N and consider the implicit equation in e

$$
e=\frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(\mathbf{A}+\int \frac{\tau d F^{\mathbf{T}}(\tau)}{1+c \tau e} \mathbf{R}-z \mathbf{l}_{N}\right)^{-1}
$$

- Existence: for existence, consider the matrices $\mathbf{T}_{[j]}=\mathbf{T} \otimes \mathbf{I}_{j}, \mathbf{R}_{[j]}=\mathbf{R} \otimes \mathbf{I}_{j}, \mathbf{A}_{[j]}=\mathbf{A} \otimes \mathbf{I}_{j}$. The value of

$$
f(e)=\frac{1}{N} \operatorname{tr} R\left(A_{[j]}+\int \frac{\tau d F^{\boldsymbol{\top}}[\|(\tau)}{1+c \tau e} R_{[j]}-z l_{N}\right)
$$

is constant whatever m. Now, take $\omega \in \Omega$ such that $w_{N}(\omega) \rightarrow 0$. For this ω, write

$$
\tilde{e}(z)=\frac{1}{N} \operatorname{tr}\left(B_{N}(\omega)-\left.z\right|_{N}\right)^{-1}
$$

Showing that $\tilde{e}(z)$ and $\frac{\tau}{1+c \tau e}$ are uniformly bounded over j, we can take a subsequence of $\tilde{e}(z)$ that goes to, say e. For this $e, w_{N}=0$ and then it's a solution.

- Uniqueness: Uniqueness is shown by taking a second solution \underline{e} and by proving that

$$
e-\underline{e}=\gamma(e-\underline{e})
$$

with $\gamma<1$.

Deterministic equivalent approach: existence and uniqueness

Fix now N and consider the implicit equation in e

$$
e=\frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(\mathbf{A}+\int \frac{\tau d F^{\mathbf{T}}(\tau)}{1+c \tau e} \mathbf{R}-z \mathbf{l}_{N}\right)^{-1}
$$

- Existence: for existence, consider the matrices $\mathbf{T}_{[j]}=\mathbf{T} \otimes \mathbf{I}_{j}, \mathbf{R}_{[j]}=\mathbf{R} \otimes \mathbf{I}_{j}, \mathbf{A}_{[j]}=\mathbf{A} \otimes \mathbf{I}_{j}$. The value of

$$
f(e)=\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{A}_{[j]}+\int \frac{\tau d F^{\mathbf{T}}[j(\tau)}{1+c \tau e} \mathbf{R}_{[j]}-z \mathbf{I}_{N}\right)^{-1}
$$

is constant whatever m. Now, take $\omega \in \Omega$ such that $w_{N}(\omega) \rightarrow 0$. For this ω, write

$$
\tilde{e}(z)=\frac{1}{N} \operatorname{tr}\left(\mathbf{B}_{N}(\omega)-z \mathbf{l}_{N}\right)^{-1}
$$

Showing that $\tilde{e}(z)$ and $\frac{\tau}{1+c \tau e}$ are uniformly bounded over j, we can take a subsequence of $\tilde{e}(z)$ that goes to, say e. For this $e, w_{N}=0$ and then it's a solution.
with $\gamma<1$

Deterministic equivalent approach: existence and uniqueness

Fix now N and consider the implicit equation in e

$$
e=\frac{1}{N} \operatorname{tr} \mathbf{R}_{i}\left(\mathbf{A}+\int \frac{\tau d F^{\mathbf{T}}(\tau)}{1+c \tau e} \mathbf{R}-z \mathbf{l}_{N}\right)^{-1}
$$

- Existence: for existence, consider the matrices $\mathbf{T}_{[j]}=\mathbf{T} \otimes \mathbf{I}_{j}, \mathbf{R}_{[j]}=\mathbf{R} \otimes \mathbf{I}_{j}, \mathbf{A}_{[j]}=\mathbf{A} \otimes \mathbf{I}_{j}$. The value of

$$
f(e)=\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{A}_{[j]}+\int \frac{\tau d F^{\mathbf{T}}[j(\tau)}{1+c \tau e} \mathbf{R}_{[j]}-z \mathbf{I}_{N}\right)^{-1}
$$

is constant whatever m. Now, take $\omega \in \Omega$ such that $w_{N}(\omega) \rightarrow 0$. For this ω, write

$$
\tilde{e}(z)=\frac{1}{N} \operatorname{tr}\left(\mathbf{B}_{N}(\omega)-z \mathbf{l}_{N}\right)^{-1}
$$

Showing that $\tilde{e}(z)$ and $\frac{\tau}{1+c \tau e}$ are uniformly bounded over j, we can take a subsequence of $\tilde{e}(z)$ that goes to, say e. For this $e, w_{N}=0$ and then it's a solution.

- Uniqueness: Uniqueness is shown by taking a second solution \underline{e} and by proving that

$$
e-\underline{e}=\gamma(e-\underline{e})
$$

with $\gamma<1$.

- It then suffices to show that $\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}-z \mathbf{l}_{N}\right)^{-1}-e \xrightarrow{\text { a.s. }} 0$

This exploits the fact that, for some ω in a probability one space, $\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}(\omega)-z \mathbf{l}_{N}\right)^{-1}$ is w_{N} away from $\frac{1}{N} \mathbf{D}^{-1} \mathbf{R}$. Using the same argument as for uniqueness, we have

$$
e-\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}(\omega)-z \mathbf{l}_{N}\right)^{-1}=\gamma\left(e-\frac{1}{N} \operatorname{tr} \mathbf{R}\left(\mathbf{B}_{N}(\omega)-z \mathbf{l}_{N}\right)^{-1}\right)+w_{N}
$$

for $\gamma<1$.

- The same argument applies to $m_{N}(z)-m_{N}^{\circ}(z)$.

Result on the Shannon transform of B_{N}

Remember now that

$$
\int \log (1+x t) d F(t)=\int_{1 / x}^{\infty}\left(\frac{1}{t}-m_{F}(-t)\right) d t
$$

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Under the previous model for \mathbf{B}_{N}, as N, n_{k} grow large,

Result on the Shannon transform of \mathbf{B}_{N}

Remember now that

$$
\int \log (1+x t) d F(t)=\int_{1 / x}^{\infty}\left(\frac{1}{t}-m_{F}(-t)\right) d t
$$

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Theorem

Under the previous model for \mathbf{B}_{N}, as N, n_{k} grow large,

$$
\begin{aligned}
\frac{1}{N} \log \operatorname{det}\left(\mathbf{B}_{N}+x \mathbf{I}_{N}\right)- & {\left[\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{N}+\sum_{k=1}^{K} \bar{e}_{k}(-1 / x) \mathbf{R}_{k}\right)\right.} \\
& +\sum_{k=1}^{K} \frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{n_{k}}+c_{k} e_{k}(-1 / x) \mathbf{T}_{k}\right) \\
& \left.-\frac{1}{x} \sum_{k=1}^{K} \bar{e}_{k}(-1 / x) e_{k}(-1 / x)\right] \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

Result on the Shannon transform of \mathbf{B}_{N}

Remember now that

$$
\int \log (1+x t) d F(t)=\int_{1 / x}^{\infty}\left(\frac{1}{t}-m_{F}(-t)\right) d t
$$

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Theorem

Under the previous model for \mathbf{B}_{N}, as N, n_{k} grow large,

$$
\begin{aligned}
\frac{1}{N} \log \operatorname{det}\left(\mathbf{B}_{N}+x \mathbf{I}_{N}\right)- & {\left[\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{N}+\sum_{k=1}^{K} \bar{e}_{k}(-1 / x) \mathbf{R}_{k}\right)\right.} \\
& +\sum_{k=1}^{K} \frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{n_{k}}+c_{k} e_{k}(-1 / x) \mathbf{T}_{k}^{\frac{1}{2}} \mathbf{P}_{k} \mathbf{T}_{k}^{\frac{1}{2}}\right) \\
& \left.-\frac{1}{x} \sum_{k=1}^{K} \bar{e}_{k}(-1 / x) e_{k}(-1 / x)\right] \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

Variance profile

W. Hachem, Ph. Loubaton, J. Najim, "Deterministic equivalents for certain functionals of large random matrices," Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem

Let $\mathbf{X}_{N} \in \mathbb{C}^{N \times n}$ have independent entries with $(i, j)^{t h}$ entry of zero mean and variance $\frac{1}{n} \sigma_{i j}^{2}$. Let $\mathbf{A}_{N} \in \mathbb{R}^{N \times n}$ be deterministic with uniformly bounded column norm. Then

$$
\frac{1}{N} \operatorname{tr}\left(\left(\mathbf{X}_{N}+\mathbf{A}_{N}\right)\left(\mathbf{X}_{N}+\mathbf{A}_{N}\right)^{H}-z \mathbf{I}_{N}\right)^{-1}-\frac{1}{N} \operatorname{tr} \mathbf{T}_{N}(z) \xrightarrow{\text { a.s. }} 0
$$

where $\mathrm{T}_{N}(z)$ is the unique function that solves

$$
\mathbf{T}_{N}(z)=\left(\Psi^{-1}(z)-z \mathbf{A}_{N} \tilde{\Psi}(z) \mathbf{A}_{N}^{\top}\right)^{-1}, \quad \tilde{\mathbf{T}}_{N}(z)=\left(\tilde{\Psi}^{-1}(z)-z \mathbf{A}_{N}^{\top} \Psi(z) \mathbf{A}_{N}\right)^{-1}
$$

with $\Psi(z)=\operatorname{diag}\left(\psi_{i}(z)\right), \tilde{\Psi}(z)=\operatorname{diag}\left(\tilde{\psi}_{i}(z)\right)$, with entries defined as

$$
\psi_{i}(z)=-\left(z\left(1+\frac{1}{n} \operatorname{tr} \tilde{\mathbf{D}}_{i} \tilde{\mathbf{T}}(z)\right)\right)^{-1}, \quad \tilde{\psi}_{j}(z)=-\left(z\left(1+\frac{1}{n} \operatorname{tr} \mathbf{D}_{j} \mathbf{T}(z)\right)\right)^{-1}
$$

and $\mathbf{D}_{j}=\operatorname{diag}\left(\sigma_{i j}^{2}, 1 \leq i \leq N\right), \tilde{\mathbf{D}}_{i}=\operatorname{diag}\left(\sigma_{i j}^{2}, 1 \leq j \leq n\right)$

Variance profile

W. Hachem, Ph. Loubaton, J. Najim, "Deterministic equivalents for certain functionals of large random matrices," Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem

For the previous model, we also have that

$$
\frac{1}{N} \mathrm{E} \log \operatorname{det}\left(\mathbf{I}_{N}+\frac{1}{\sigma^{2}}\left(\mathbf{X}_{N}+\mathbf{A}_{N}\right)\left(\mathbf{X}_{N}+\mathbf{A}_{N}\right)^{\mathrm{H}}\right)
$$

has deterministic equivalent

$$
\frac{1}{N} \log \operatorname{det}\left[\frac{1}{\sigma^{2}} \Psi\left(-\sigma^{2}\right)^{-1}+\mathbf{A}_{N} \tilde{\Psi}\left(-\sigma^{2}\right) \mathbf{A}_{N}^{\top}\right]+\frac{1}{N} \log \operatorname{det} \frac{1}{\sigma^{2}} \Psi\left(-\sigma^{2}\right)^{-1}-\frac{\sigma^{2}}{n N} \sum_{i, j} \sigma_{i j}^{2} \mathbf{T}_{i i}\left(-\sigma^{2}\right) \tilde{\mathbf{T}}_{j j}\left(-\sigma^{2}\right)
$$

Alternative strategies

There exists alternative proof strategies for specific models.

- The Gaussian method:
- this technique is meant for random Gaussian \mathbf{X} matrices
- based on two ingredients: a Gaussian integration by parts formula, and the Nash-Poincaré inequality.
- advantages:
- sequential method, easy to use
- give results on convergence speed
- proves convergence of Gaussian-based models of type $N\left(\mathrm{E} m_{N}-m_{N}^{\circ}\right) \rightarrow 0$
$-\Rightarrow$ very convenient to prove total capacity convergence, instead of average capacity.
- drawbacks:
- somewhat painful to use, leads to much calculus, less "elegant"
- proves convergence of Gaussian-based models of type $N\left(E m_{N}-m_{N}^{\circ}\right) \rightarrow 0$
- \Rightarrow less powerful than almost sure results
- \Rightarrow limited to Gaussian.
- Diagrammatic approaches: moment "drawing"-based approach that uses combinatorics to infer limiting results
- Replica methods: physics-based method, non-mathematically accurate, to conjecture limiting results.

Alternative strategies

There exists alternative proof strategies for specific models.

- The Gaussian method:
- this technique is meant for random Gaussian \mathbf{X} matrices
- based on two ingredients: a Gaussian integration by parts formula, and the Nash-Poincaré inequality.
- advantages:
- sequential method, easy to use
- give results on convergence speed
- proves convergence of Gaussian-based models of type $N\left(\mathrm{E} m_{N}-m_{N}^{\circ}\right) \rightarrow 0$
- \Rightarrow very convenient to prove total capacity convergence, instead of average capacity.
- drawbacks:
- somewhat painful to use, leads to much calculus, less "elegant"
- proves convergence of Gaussian-based models of type $N\left(E m_{N}-m_{N}^{\circ}\right) \rightarrow 0$
- \Rightarrow less powerful than almost sure results
- \Rightarrow limited to Gaussian.
- Diagrammatic approaches: moment "drawing"-based approach that uses combinatorics to infer limiting results
- Replica methods: physics-based method, non-mathematically accurate, to conjecture limiting results.
(1) Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles
(3) Capacity expressions, Rate Regions
4. Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels

Figure: Downlink scenario in multi-user broadcast channel

Rate region of MAC and BC

S. Vishwanath, N. Jindal and A. Goldsmith, "Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels," IEEE Trans. on Information Theory, vol. 49, no. 10, 2003.

Assume all channels are modeled as Kronecker; for $k=1, \ldots, K$

$$
\mathbf{H}_{k}=\mathbf{R}_{k}^{\frac{1}{2}} \mathbf{X}_{k} \mathbf{T}_{k}^{\frac{1}{2}}
$$

- Rate region of multiple access channel for K users with channels $\mathbf{H}=\left[\mathbf{H}_{1}, \ldots, \mathbf{H}_{K}\right]$,

$$
\begin{aligned}
& \mathbf{C}_{\mathrm{MAC}}\left(P_{1}, \ldots, P_{K} ; \mathbf{H}\right)= \\
& \bigcup_{\substack{\operatorname{tr}\left(\mathbf{P}_{i}\right) \leq P_{i} \\
\mathbf{P}_{i} \geq 0 \\
i=1, \ldots, K}}\left\{\left\{R_{i}, 1 \leq i \leq K\right\}: \sum_{i \in \mathcal{S}} R_{i} \leq \frac{1}{N} \log \left|\mathbf{I}+\frac{1}{\sigma^{2}} \sum_{i \in \mathcal{S}} \mathbf{H}_{i} \mathbf{P}_{i} \mathbf{H}_{i}^{H}\right|, \forall \mathcal{S} \subset\{1, \ldots, K\}\right\}
\end{aligned}
$$

- Rate region of broadcast channel for $\mathbf{H}^{\mathrm{H}}=\left[\mathbf{H}_{1}, \ldots, \mathbf{H}_{K}\right]^{\mathrm{H}}$ with total transmit power P,

$$
\mathbf{C}_{\mathrm{BC}}\left(P ; \mathbf{H}^{\mathrm{H}}\right)=\bigcup_{\sum_{k=1}^{K} P_{k} \leq P} \mathbf{C}_{\mathrm{MAC}}\left(P_{1}, \ldots, P_{K} ; \mathbf{H}\right)
$$

Reminder: deterministic equivalent for multi-user channel

Under the previous model for \mathbf{B}_{N}, as N, n_{k} grow large,

$$
\begin{aligned}
\frac{1}{N} \log \left|\mathbf{I}+\frac{1}{\sigma^{2}} \sum_{k \in \mathcal{S}} \mathbf{H}_{k} \mathbf{P}_{k} \mathbf{H}_{k}^{H}\right|- & {\left[\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{N}+\sum_{k \in \mathcal{S}} \bar{e}_{k}(-1 / x) \mathbf{R}_{k}\right)\right.} \\
& +\sum_{k \in \mathcal{S}} \frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{n_{k}}+c_{k} e_{k}(-1 / x) \mathbf{T}_{k}^{\frac{1}{2}} \mathbf{P}_{k} \mathbf{T}_{k}^{\frac{1}{2}}\right) \\
& \left.-\frac{1}{x} \sum_{k=1}^{K} \bar{e}_{k}(-1 / x) e_{k}(-1 / x)\right] \xrightarrow{\text { a.s. }} 0
\end{aligned}
$$

Outline

(1) Stieltjes transform methods for more elaborate models
(2) Kronecker models and Variance Profiles
(3) Capacity expressions, Rate Regions
4. Touching the boundary: optimal power allocation

Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels
- it is desirable to determine the boundary of the rate region
- for theoretical purposes: to fully determine the rate region and alleviate the $\bigcup_{\mathbf{P}_{1}, \ldots, \mathbf{P}_{k}}$ sign.
- for practical purposes: to allow users/the base station to transmit at optimal rate.
- it is also desirable to identify the key parameters of the system
- in theory: to extract physical meanings
- in theory: to identify the minimum feedback requirements
- in practice: to minimize information feedback
- in practice: to ease power allocation processing
- it is desirable to determine the boundary of the rate region
- for theoretical purposes: to fully determine the rate region and alleviate the $\bigcup_{\mathbf{P}_{1}, \ldots, \mathbf{P}_{k}}$ sign.
- for practical purposes: to allow users/the base station to transmit at optimal rate.
- it is also desirable to identify the key parameters of the system
- in theory: to extract physical meanings
- in theory: to identify the minimum feedback requirements
- in practice: to minimize information feedback
- in practice: to ease power allocation processing
R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Consider a subset $\mathcal{S}=\left\{i_{1}, \ldots, \dot{i}_{|\mathcal{S}|}\right\} \subset\{1, \ldots, K\}$.

- With $\mathbf{T}_{k}=\mathbf{U}_{k} \mathbf{D}_{k} \mathbf{U}_{k}^{H}, \mathbf{D}_{k}=\operatorname{diag}\left(\tau_{k 1}, \ldots, \tau_{k n_{k}}\right)$ diagonal, the capacity-achieving matrices $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}^{\star}$ satisfy
where the μ_{k} 's are evaluated such that $\operatorname{tr}\left(\mathbf{Q}_{k}\right)=P_{k}$.
- an iterative water-filling method allows to retrieve the $q_{k i}^{*}$'s by successively
- for a given set $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{1 S I}}$, evaluating $e_{i_{1}}$
- updating the new optimal solution $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}$ for this system
R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Consider a subset $\mathcal{S}=\left\{i_{1}, \ldots, \dot{i}_{|\mathcal{S}|}\right\} \subset\{1, \ldots, K\}$.

- With $\mathbf{T}_{k}=\mathbf{U}_{k} \mathbf{D}_{k} \mathbf{U}_{k}^{H}, \mathbf{D}_{k}=\operatorname{diag}\left(\tau_{k 1}, \ldots, \tau_{k n_{k}}\right)$ diagonal, the capacity-achieving matrices $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}^{\star}$ satisfy
(1) $\mathbf{P}_{k}^{\star}=\mathbf{U}_{k} \mathbf{Q}_{k}^{\star} \mathbf{U}_{k}^{H}$, with \mathbf{Q}_{k}^{\star} diagonal; i.e. the eigenspace of \mathbf{P}_{k}^{\star} is the same as the eigenspace of \mathbf{T}_{k}.
where the μ_{k} 's are evaluated such that $\operatorname{tr}\left(\mathbf{Q}_{k}\right)=P_{k}$.
- an iterative water-filling method allows to retrieve the $q_{k i}^{*}$'s by successively
- for a given set $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{1 S I}}$, evaluating $e_{i_{1}}$
- updating the new optimal solution $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{\mid \mathcal{S}}}$ for this system
\square
R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Consider a subset $\mathcal{S}=\left\{i_{1}, \ldots, i_{|\mathcal{S}|}\right\} \subset\{1, \ldots, K\}$.

- With $\mathbf{T}_{k}=\mathbf{U}_{k} \mathbf{D}_{k} \mathbf{U}_{k}^{H}, \mathbf{D}_{k}=\operatorname{diag}\left(\tau_{k 1}, \ldots, \tau_{k n_{k}}\right)$ diagonal, the capacity-achieving matrices $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}^{\star}$ satisfy
(1) $\mathbf{P}_{k}^{\star}=\mathbf{U}_{k} \mathbf{Q}_{k}^{\star} \mathbf{U}_{k}^{H}$, with \mathbf{Q}_{k}^{\star} diagonal; i.e. the eigenspace of \mathbf{P}_{k}^{\star} is the same as the eigenspace of \mathbf{T}_{k}.
(2) with $\bar{e}_{k}^{\star}=\bar{e}_{k}\left(-\sigma^{2}, \mathbf{P}_{k}^{\star}\right)$, the $i^{\text {th }}$ entry $q_{k i}^{\star}$ of \mathbf{Q}_{k}^{\star} satisfies

$$
q_{k i}^{\star}=\left(\mu_{k}-\frac{1}{c_{k} e_{k}^{\star} \tau_{k i}}\right)^{+}
$$

where the μ_{k} 's are evaluated such that $\operatorname{tr}\left(\mathbf{Q}_{k}\right)=P_{k}$.

- an iterative water-filling method allows to retrieve the $q_{k i}^{\star}$'s by successively
- for a given set $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{S}}$, evaluating $e_{i_{1}}$
- updating the new optimal solution $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{1}}$ for this system
\square
R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Consider a subset $\mathcal{S}=\left\{i_{1}, \ldots, i_{|\mathcal{S}|}\right\} \subset\{1, \ldots, K\}$.

- With $\mathbf{T}_{k}=\mathbf{U}_{k} \mathbf{D}_{k} \mathbf{U}_{k}^{H}, \mathbf{D}_{k}=\operatorname{diag}\left(\tau_{k 1}, \ldots, \tau_{k n_{k}}\right)$ diagonal, the capacity-achieving matrices $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}^{\star}$ satisfy
(1) $\mathbf{P}_{k}^{\star}=\mathbf{U}_{k} \mathbf{Q}_{k}^{\star} \mathbf{U}_{k}^{H}$, with \mathbf{Q}_{k}^{\star} diagonal; i.e. the eigenspace of \mathbf{P}_{k}^{\star} is the same as the eigenspace of \mathbf{T}_{k}.
(2) with $\bar{e}_{k}^{\star}=\bar{e}_{k}\left(-\sigma^{2}, \mathbf{P}_{k}^{\star}\right)$, the $i^{\text {th }}$ entry $q_{k i}^{\star}$ of \mathbf{Q}_{k}^{\star} satisfies

$$
q_{k i}^{\star}=\left(\mu_{k}-\frac{1}{c_{k} e_{k}^{\star} \tau_{k i}}\right)^{+}
$$

where the μ_{k} 's are evaluated such that $\operatorname{tr}\left(\mathbf{Q}_{k}\right)=P_{k}$.

- an iterative water-filling method allows to retrieve the $q_{k i}^{\star}$'s by successively
- for a given set $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}$, evaluating $e_{i_{1}}, \ldots, e_{i_{\mid \mathcal{S}} \mid}$
- updating the new optimal solution $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}$ for this system

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

Capacity maximizing power allocation

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.

Consider a subset $\mathcal{S}=\left\{i_{1}, \ldots, i_{|\mathcal{S}|}\right\} \subset\{1, \ldots, K\}$.

- With $\mathbf{T}_{k}=\mathbf{U}_{k} \mathbf{D}_{k} \mathbf{U}_{k}^{H}, \mathbf{D}_{k}=\operatorname{diag}\left(\tau_{k 1}, \ldots, \tau_{k n_{k}}\right)$ diagonal, the capacity-achieving matrices $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}^{\star}$ satisfy
(1) $\mathbf{P}_{k}^{\star}=\mathbf{U}_{k} \mathbf{Q}_{k}^{\star} \mathbf{U}_{k}^{H}$, with \mathbf{Q}_{k}^{\star} diagonal; i.e. the eigenspace of \mathbf{P}_{k}^{\star} is the same as the eigenspace of \mathbf{T}_{k}.
(2) with $\bar{e}_{k}^{\star}=\bar{e}_{k}\left(-\sigma^{2}, \mathbf{P}_{k}^{\star}\right)$, the $i^{\text {th }}$ entry $q_{k i}^{\star}$ of \mathbf{Q}_{k}^{\star} satisfies

$$
q_{k i}^{\star}=\left(\mu_{k}-\frac{1}{c_{k} e_{k}^{\star} \tau_{k i}}\right)^{+}
$$

where the μ_{k} 's are evaluated such that $\operatorname{tr}\left(\mathbf{Q}_{k}\right)=P_{k}$.

- an iterative water-filling method allows to retrieve the $q_{k i}^{\star}$'s by successively
- for a given set $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}$, evaluating $e_{i_{1}}, \ldots, \boldsymbol{e}_{i_{|\mathcal{S}|}}$
- updating the new optimal solution $\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}$ for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

Proof of water-filling optimality

- Consider the functions

$$
\begin{aligned}
& C\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)= \\
& \sum_{k \in \mathcal{S}} \frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{n_{k}}+c_{k} e_{k} \mathbf{T}_{k} \mathbf{P}_{k}\right)+\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{N}+\sum_{k \in \mathcal{S}} \bar{e}_{k} \mathbf{R}_{k}\right)-\sigma^{2} \sum_{k \in \mathcal{S}} \bar{e}_{k}\left(-\sigma^{2}\right) e_{k}\left(-\sigma^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{i}=e_{i}\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)=\frac{1}{N} \operatorname{tr} \mathbf{T}_{i}\left(\sigma^{2}\left[\mathbf{I}_{N}+\sum_{k \in \mathcal{S}} \bar{e}_{k} \mathbf{T}_{k}\right]\right)^{-1} \\
& \bar{e}_{i}=\bar{e}_{i}\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)=\frac{1}{n_{i}} \operatorname{tr} \mathbf{R}_{i} \mathbf{P}_{i}\left(\sigma^{2}\left[\mathbf{I}_{n_{i}}+c_{i} e_{i}(z) \mathbf{R}_{i} \mathbf{P}_{i}\right]\right)^{-1}
\end{aligned}
$$

and $V:\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}, \bar{e}_{i_{1}}, \ldots, \bar{e}_{i_{|\mathcal{S}|}}, \boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{|\mathcal{S}|}}\right) \mapsto C\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)$.

- From chain rule,

- Consider the functions

$$
\begin{aligned}
& C\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)= \\
& \sum_{k \in \mathcal{S}} \frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{n_{k}}+c_{k} e_{k} \mathbf{T}_{k} \mathbf{P}_{k}\right)+\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{N}+\sum_{k \in \mathcal{S}} \bar{e}_{k} \mathbf{R}_{k}\right)-\sigma^{2} \sum_{k \in \mathcal{S}} \bar{e}_{k}\left(-\sigma^{2}\right) e_{k}\left(-\sigma^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& e_{i}=e_{i}\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)=\frac{1}{N} \operatorname{tr} \mathbf{T}_{i}\left(\sigma^{2}\left[\mathbf{I}_{N}+\sum_{k \in \mathcal{S}} \bar{e}_{k} \mathbf{T}_{k}\right]\right)^{-1} \\
& \bar{e}_{i}=\bar{e}_{i}\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)=\frac{1}{n_{i}} \operatorname{tr} \mathbf{R}_{i} \mathbf{P}_{i}\left(\sigma^{2}\left[\mathbf{I}_{n_{i}}+c_{i} e_{i}(z) \mathbf{R}_{i} \mathbf{P}_{i}\right]\right)^{-1}
\end{aligned}
$$

and $V:\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}, \bar{e}_{i_{1}}, \ldots, \bar{e}_{i_{|\mathcal{S}|}}, \boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{|\mathcal{S}|}}\right) \mapsto C\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)$.

- From chain rule,

$$
\frac{\partial}{\partial \mathbf{P}_{i}} C=\sum_{k \in \mathcal{S}} \frac{\partial V}{\partial e_{k}} \frac{\partial \boldsymbol{e}_{k}}{\partial \mathbf{P}_{i}}+\frac{\partial V}{\partial \bar{e}_{k}} \frac{\partial \bar{e}_{k}}{\partial \mathbf{P}_{i}}+\frac{\partial V}{\partial \mathbf{P}_{i}}
$$

Proof of water-filling optimality (2)

- Remark that

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{e}_{k}} V\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}, \bar{e}_{i_{1}}, \ldots, \bar{e}_{i_{|\mathcal{S}|}}, e_{i_{1}}, \ldots, \boldsymbol{e}_{i_{|\mathcal{S}|}}\right)=\frac{1}{N} \operatorname{tr}\left[\left(\mathbf{I}+\sum_{i \in \mathcal{S}} \bar{e}_{i} \mathbf{R}_{i}\right)^{-1} \mathbf{R}_{k}\right]-\sigma^{2} e_{k} \\
& \frac{\partial}{\partial e_{k}} V\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}, \bar{e}_{i_{1}}, \ldots, \bar{e}_{i_{|\mathcal{S}|}}, e_{i_{1}}, \ldots, \boldsymbol{e}_{i_{|\mathcal{S}|}}\right)=c_{k} \frac{1}{N} \operatorname{tr}\left[\left(\mathbf{I}+c_{k} e_{k} \mathbf{T}_{i} \mathbf{P}_{i}\right)^{-1} \mathbf{T}_{k} \mathbf{P}_{k}\right]-\sigma^{2} \bar{e}_{k}
\end{aligned}
$$

both being null whenever, for all $k, e_{k}=e_{k}\left(-\sigma^{2}, \mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)$ and $\bar{e}_{k}=\bar{e}_{k}\left(-\sigma^{2}, \mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)$, which is true in particular for the unique power optimal solution $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}^{\star}$ whenever $e_{k}=e_{k}^{\star}$ and $\bar{e}_{k}=\bar{e}_{k}^{\star}$.

- Remark that

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{e}_{k}} V\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}, \bar{e}_{i_{1}}, \ldots, \bar{e}_{i_{|\mathcal{S}|}}, e_{i_{1}}, \ldots, e_{i_{|\mathcal{S}|}}\right)=\frac{1}{N} \operatorname{tr}\left[\left(\mathbf{I}+\sum_{i \in \mathcal{S}} \bar{e}_{i} \mathbf{R}_{i}\right)^{-1} \mathbf{R}_{k}\right]-\sigma^{2} e_{k} \\
& \frac{\partial}{\partial e_{k}} V\left(\mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}, \bar{e}_{i_{1}}, \ldots, \bar{e}_{i_{|\mathcal{S}|}}, e_{i_{1}}, \ldots, e_{i_{|\mathcal{S}|}}\right)=c_{k} \frac{1}{N} \operatorname{tr}\left[\left(\mathbf{I}+c_{k} e_{k} \mathbf{T}_{i} \mathbf{P}_{i}\right)^{-1} \mathbf{T}_{k} \mathbf{P}_{k}\right]-\sigma^{2} \bar{e}_{k}
\end{aligned}
$$

both being null whenever, for all $k, e_{k}=e_{k}\left(-\sigma^{2}, \mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)$ and $\bar{e}_{k}=\bar{e}_{k}\left(-\sigma^{2}, \mathbf{P}_{i_{1}}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}}\right)$, which is true in particular for the unique power optimal solution $\mathbf{P}_{i_{1}}^{\star}, \ldots, \mathbf{P}_{i_{|\mathcal{S}|}^{\star}}^{\star}$ whenever $e_{k}=e_{k}^{\star}$ and $\bar{e}_{k}=\bar{e}_{k}^{\star}$.

- When, for all $k, e_{k}=e_{k}^{\star}, \bar{e}_{k}=\bar{e}_{k}^{\star}$, the maximum of V over the \mathbf{P}_{k} 's is then obtained by maximizing the expressions log $\operatorname{det}\left(\mathbf{I}_{n_{k}}+c_{k} e_{k}^{\star} \mathbf{T}_{k} \mathbf{P}_{k}\right)$ over \mathbf{P}_{k}.

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0$ instead of $E m_{N}-m_{N}^{\circ} \rightarrow 0$
- loose hypotheses on the \mathbf{R}_{k} 's and T_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_{k} 's for diagonal T_{k} 's

Compact expressions

Onlv K scalar narameters (the e_{K} 's) determine the behaviour of the whole system.

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0$ instead of $E m_{N}-m_{N}^{\circ} \rightarrow 0$
- loose hypotheses on the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and T_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_{k} 's for diagonal T_{k} 's

Compact expressions
Only K scalar narameters (the e_{k} 's) determine the behaviour of the whole system.

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0$ instead of $\mathrm{E} m_{N}-m_{N}^{\circ} \rightarrow 0$
- loose hypotheses on the \mathbf{R}_{k} 's and T_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_{k} 's for diagonal T_{k} 's
\square
Only K scalar parameters (the e_{k} 's) determine the behaviour of the whole system.

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0$ instead of $\mathrm{E} m_{N}-m_{N}^{\circ} \rightarrow 0$
- loose hypotheses on the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and T_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_{k} 's for diagonal T_{k} 's

Only K scalar parameters (the e_{k} 's) determine the behaviour of the whole system.

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0$ instead of $\mathrm{E} m_{N}-m_{N}^{\circ} \rightarrow 0$
- loose hypotheses on the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_{k} 's for diagonal T_{k} 's

Only K scalar parameters (the e_{k} 's) determine the behaviour of the whole system.

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0$ instead of $\mathrm{E} m_{N}-m_{N}^{\circ} \rightarrow 0$
- loose hypotheses on the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian \mathbf{X}_{k} 's for diagonal \mathbf{T}_{k} 's
\square

Some consequences of the previous results are worth mentioning

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form

$$
m_{N}-m_{N}^{\circ} \xrightarrow{\text { a.s. }} 0 \text { instead of } \mathrm{E} m_{N}-m_{N}^{\circ} \rightarrow 0
$$

- loose hypotheses on the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's: strong antenna correlation allowed
- the \mathbf{R}_{k} 's and \mathbf{T}_{k} 's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian \mathbf{X}_{k} 's for diagonal \mathbf{T}_{k} 's

Compact expressions

Only K scalar parameters (the e_{k} 's) determine the behaviour of the whole system.

Figure: (Per-antenna) rate region C_{BC} for $K=2$ users, theory against simulation, $N=8, n_{1}=n_{2}=4$, $\operatorname{SNR}=20 \mathrm{~dB}$, random transmit-receive solid angle of aperture $\pi / 2, d_{\mathrm{T}} / \lambda=10, d_{\mathrm{R}} / \lambda=1 / 4$.

Performance of the deterministic equivalent (2)

Figure: (Per-antenna) rate region $\mathcal{C}_{\mathrm{BC}}$ for $K=2$ users, $N=8, n_{1}=n_{2}=4$, $\mathrm{SNR}=-5 \mathrm{~dB}$, random transmit-receive solid angle of aperture $\pi / 2, d_{\mathrm{T}} / \lambda=10, d_{\mathrm{R}} / \lambda=1 / 4$. In thick line, capacity limit when $\mathbf{E}\left[\mathbf{s s}^{H}\right]=\mathbf{I}_{\mathrm{N}}$.
R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback"

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

- accounting for base station antenna correlation, user path losses
- assuming limited channel state information

```
Results:
- on optimal number of users to serve
- on ontimal regularization narameter
- eventually, optimal feedback time
- close behaviour with respect to finite size systems for \(N \geq 4\)
```

R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback"

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

- accounting for base station antenna correlation, user path losses
- assuming limited channel state information

Results:

- on optimal number of users to serve
- on optimal regularization parameter
- eventually, optimal feedback time
- close behaviour with respect to finite size systems for $N \geq 4$
R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback"

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

- accounting for base station antenna correlation, user path losses
- assuming limited channel state information

Results:

- on optimal number of users to serve
- on optimal regularization parameter
- eventually, optimal feedback time
- close behaviour with respect to finite size systems for $N \geq 4$

Linearly precoded broadcast channels with imperfect CSI

Figure: Left: Ergodic sum-rate vs. average SNR with $\mathbf{R}=\mathbf{I}_{M}, \mathbf{L}=\mathbf{I}_{K}, M=10, \beta=1, \tau^{2}=0.1$. Right: $\mathbf{R Z F}, \mathbf{R}=\mathbf{I}_{M}$, $\mathbf{L}=\mathbf{I}_{K}, M=32, \beta=1$, simulation results are indicated by circle marks
(1) Stieltjes transform methods for more elaborate models
(2) Kronecker models and Variance Profiles
(3) Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels

Stieltjes transform methods for more elaborate models

Kronecker models and Variance Profiles

Capacity expressions, Rate Regions
(4) Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks - Orthogonal CDMA networks

- Spectrum sharing in multiple access channels

Before to apply the previous results, we consider first an alternative, simpler, better adapted model, which

- provides a deterministic equivalent to a model involving Haar (unitary) matrices
- uses R-, S - and η-transforms
- is a striking example of the feedback minimization discussed before.

Before to apply the previous results, we consider first an alternative, simpler, better adapted model, which

- provides a deterministic equivalent to a model involving Haar (unitary) matrices
- uses R-, S - and η-transforms
- is a striking example of the feedback minimization discussed before.

Figure: Self-organizing CDMA network

Figure: Self-organizing CDMA network

- Consider a set of K clusters, all using independently orthogonal CDMA transmissions. Each cluster is composed of at most N users. We wish
- to obtain a deterministic equivalent for the achievable uplink sum-rate
- to provide a cheap feedback solution for the network to organize itself to collectively maximize the uplink rate.
- We denote
- $\mathbf{L}_{k}=\operatorname{diag}\left(\lambda_{k 1}, \ldots, \lambda_{k N}\right)$ the diagonal of channel gains (inverse path losses).
- $\mathbf{P}_{k}=\operatorname{diag}\left(p_{k 1}, \ldots, p_{k N}\right)$ the diagonal of transmit powers from the users in cell k
- $W_{k} \in \mathbb{C N} \times N$ the unitary CDMAA code matrix used in cell k.
o the received signal $y \in \mathbb{C}^{N}$ at the base station reads

- the sum-rate $C\left(\sigma^{2}\right)$ is

- Consider a set of K clusters, all using independently orthogonal CDMA transmissions. Each cluster is composed of at most N users. We wish
- to obtain a deterministic equivalent for the achievable uplink sum-rate
- to provide a cheap feedback solution for the network to organize itself to collectively maximize the uplink rate.
- We denote
- $\mathbf{L}_{k}=\operatorname{diag}\left(\lambda_{k 1}, \ldots, \lambda_{k N}\right)$ the diagonal of channel gains (inverse path losses).
- $\mathbf{P}_{k}=\operatorname{diag}\left(p_{k 1}, \ldots, p_{k N}\right)$ the diagonal of transmit powers from the users in cell k.
- $\mathbf{W}_{k} \in \mathbb{C}^{N \times N}$ the unitary CDMA code matrix used in cell k.
- the received signal $\mathbf{y} \in \mathbb{C}^{N}$ at the base station reads

$$
\mathbf{y}=\sum_{k=1}^{K} \mathbf{w}_{k} \mathbf{L}_{k}^{\frac{1}{2}} \mathbf{P}_{k}^{\frac{1}{2}} \mathbf{s}_{k}+\mathbf{n}
$$

- the sum-rate $C\left(\sigma^{2}\right)$ is

$$
C\left(\sigma^{2}\right)=\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}_{N}+\frac{1}{\sigma^{2}} \sum_{k=1}^{K} \mathbf{W}_{k}\left(\mathbf{P}_{k} \mathbf{L}_{k}\right) \mathbf{W}_{k}^{\mathrm{H}}\right)
$$

Case study: exchanging relevant data in large self-organized networks
R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have

$$
C_{N}\left(\sigma^{2}\right)-C_{N}^{\circ}\left(\sigma^{2}\right) \rightarrow 0
$$

with

$$
C_{N}^{\circ}\left(\sigma^{2}\right)=\log \left(1+\frac{1}{\sigma^{2}} \sum_{k=1}^{K} \beta_{k}\right)+\sum_{k=1}^{K} \frac{1}{N} \log \operatorname{det}\left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k}+\left[1-\frac{\eta \beta_{k}}{\sigma^{2}}\right] \mathbf{I}_{N}\right)
$$

where β_{k} and η are defined as

$$
\eta=\left(1+\frac{1}{\sigma^{2}} \sum_{i=1}^{K} \beta_{i}\right)^{-1}
$$

and $\left\{\beta_{k}\right\}$ are solutions of

$$
\beta_{k}=\frac{1}{N} \operatorname{tr} \mathbf{P}_{k} \mathbf{L}_{k}\left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k}+\left[1-\frac{\eta \beta_{k}}{\sigma^{2}}\right] \mathbf{I}_{N}\right)^{-1}
$$

Case study: exchanging relevant data in large self-organized networks
R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have

$$
C_{N}\left(\sigma^{2}\right)-C_{N}^{\circ}\left(\sigma^{2}\right) \rightarrow 0
$$

with

$$
C_{N}^{\circ}\left(\sigma^{2}\right)=\log \left(1+\frac{1}{\sigma^{2}} \sum_{k=1}^{K} \beta_{k}\right)+\sum_{k=1}^{K} \frac{1}{N} \log \operatorname{det}\left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k}+\left[1-\frac{\eta \beta_{k}}{\sigma^{2}}\right] \mathbf{I}_{N}\right)
$$

where β_{k} and η are defined as

$$
\eta=\left(1+\frac{1}{\sigma^{2}} \sum_{i=1}^{K} \beta_{i}\right)^{-1}
$$

and $\left\{\beta_{k}\right\}$ are solutions of

$$
\beta_{k}=\frac{1}{N} \operatorname{tr} \mathbf{P}_{k} \mathbf{L}_{k}\left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k}+\left[1-\frac{\eta \beta_{k}}{\sigma^{2}}\right] \mathbf{I}_{N}\right)^{-1}
$$

Case study: exchanging relevant data in large self-organized networks
R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have

$$
C_{N}\left(\sigma^{2}\right)-C_{N}^{\circ}\left(\sigma^{2}\right) \rightarrow 0
$$

with

$$
C_{N}^{\circ}\left(\sigma^{2}\right)=\log \left(1+\frac{1}{\sigma^{2}} \sum_{k=1}^{K} \beta_{k}\right)+\sum_{k=1}^{K} \frac{1}{N} \log \operatorname{det}\left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k}+\left[1-\frac{\eta \beta_{k}}{\sigma^{2}}\right] \mathbf{I}_{N}\right)
$$

where β_{k} and η are defined as

$$
\eta=\left(1+\frac{1}{\sigma^{2}} \sum_{i=1}^{K} \beta_{i}\right)^{-1}
$$

and $\left\{\beta_{k}\right\}$ are solutions of

$$
\beta_{k}=\frac{1}{N} \operatorname{tr} \mathbf{P}_{k} \mathbf{L}_{k}\left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k}+\left[1-\frac{\eta \beta_{k}}{\sigma^{2}}\right] \mathbf{I}_{N}\right)^{-1}
$$

Instead of working with the Stieltjes transform, we use the (totally equivalent) η-transform. We define $\eta_{1}, \ldots, \eta_{K}$ as

$$
\eta_{k}(x)=\int \frac{1}{1+x t} \mu_{k}(d t)
$$

with μ_{k} the probability distribution of $\mathbf{P}_{k} \mathbf{L}_{k}$. We will use the R-transform for further development.
For each k, denote R_{k} the R-transform of $\mathbf{W}_{k} \mathbf{L}_{k} \mathbf{P}_{k} \mathbf{W}_{k}^{H}$, defined as

$$
\eta\left(-\frac{1}{R(x)+\frac{1}{x}}\right)=x R(x)+1
$$

Since the \mathbf{W}_{k} 's are isometric and independent, they are free random variables. Hence, the R-transform $R(x)$ of the sum of the individual R-transforms $R_{1}(x), \ldots, R_{K}(x)$ satisfiesi asymptotically

$$
R(x)=\sum_{k=1}^{K} R_{k}(x)
$$

\square

Instead of working with the Stieltjes transform, we use the (totally equivalent) η-transform. We define $\eta_{1}, \ldots, \eta_{K}$ as

$$
\eta_{k}(x)=\int \frac{1}{1+x t} \mu_{k}(d t)
$$

with μ_{k} the probability distribution of $\mathbf{P}_{k} \mathbf{L}_{k}$. We will use the R-transform for further development. For each k, denote R_{k} the R-transform of $\mathbf{W}_{k} \mathbf{L}_{k} \mathbf{P}_{k} \mathbf{W}_{k}^{H}$, defined as

$$
\eta\left(-\frac{1}{R(x)+\frac{1}{x}}\right)=x R(x)+1
$$

Since the \mathbf{W}_{k} 's are isometric and independent, they are free random variables. Hence, the R-transform $R(x)$ of the sum of the individual R-transforms $R_{1}(x), \ldots, R_{K}(x)$ satisfiesi asymptotically

$$
R(x)=\sum_{k=1}^{K} R_{k}(x)
$$

The strategy is then to use the R-transform as a "pivot" in the proof,

- obtain a relation of R_{k} as a function of the entries of $\mathbf{P}_{k} \mathbf{L}_{k}$
- obtain an expression of the eigenvalues of $\sum_{k=1}^{K} \mathbf{W}_{k} \mathbf{P}_{k} \mathbf{L}_{k} \mathbf{W}_{k}^{\mathrm{H}}$ as a function of R

Instead of working with the Stieltjes transform, we use the (totally equivalent) η-transform. We define $\eta_{1}, \ldots, \eta_{K}$ as

$$
\eta_{k}(x)=\int \frac{1}{1+x t} \mu_{k}(d t)
$$

with μ_{k} the probability distribution of $\mathbf{P}_{k} \mathbf{L}_{k}$. We will use the R-transform for further development. For each k, denote R_{k} the R-transform of $\mathbf{W}_{k} \mathbf{L}_{k} \mathbf{P}_{k} \mathbf{W}_{k}^{H}$, defined as

$$
\eta\left(-\frac{1}{R(x)+\frac{1}{x}}\right)=x R(x)+1
$$

Since the \mathbf{W}_{k} 's are isometric and independent, they are free random variables. Hence, the R-transform $R(x)$ of the sum of the individual R-transforms $R_{1}(x), \ldots, R_{K}(x)$ satisfiesi asymptotically

$$
R(x)=\sum_{k=1}^{K} R_{k}(x)
$$

The strategy is then to use the R-transform as a "pivot" in the proof,

- obtain a relation of R_{k} as a function of the entries of $\mathbf{P}_{k} \mathbf{L}_{k}$
- obtain an expression of the eigenvalues of $\sum_{k=1}^{K} \mathbf{W}_{k} \mathbf{P}_{k} \mathbf{L}_{k} \mathbf{W}_{k}^{\mathrm{H}}$ as a function of R The first relation is obtained by the definition of the η-transform applied in $-1 /\left(R_{k}(x)+\frac{1}{x}\right)$

$$
x R_{k}+1=\int \frac{1}{1-\frac{t}{R_{k}(x)+\frac{1}{x}}} \mu_{k}(d t)
$$

The expression

$$
x R_{k}(x)+1=\int \frac{1}{1-\frac{t}{R_{k}(x)+\frac{1}{x}}} \mu_{k}(d t)
$$

leads to

$$
R_{k}(x)=\frac{1}{x} \int \frac{t}{R_{k}(x)+\frac{1}{x}-t} \mu_{k}(d t)
$$

and, in particular, defining $\beta_{k}(x)=R_{k}(-x \eta)$, we have

$$
\beta_{k}(x)=\int \frac{t}{1-x \eta \beta_{k}+x \eta t} \mu_{k}(d t)
$$

Now, since $R(x)=\sum_{k=1}^{K} R_{k}(x)$ asymptotically on N, using the reverse definition of the R-transform

$$
R(-x \eta(x))=-\frac{1}{x}\left(1-\frac{1}{\eta}(x)\right)
$$

we have

$$
\eta(x)=\left(1+x \sum_{k=1}^{K} R_{k}(-x \eta)\right)^{-1}=\left(1+x \sum_{k=1}^{K} \beta_{k}\right)^{-1}
$$

which completes the proof.

The power allocation policy $p_{k n}=p_{k n}^{\star}$ optimizing the deterministic approximation of $C\left(\sigma^{2}\right)$ satisfies, for all k, n,

$$
p_{k n}^{\star}=\left(\alpha_{k}-\frac{\sigma^{2}-\eta^{\star} \beta_{k}^{\star}}{\lambda_{k n} \eta^{\star}}\right)^{+}
$$

where $\eta^{\star}, \beta_{k}^{\star}$ are the respective values of η and β_{k} when C achieves its maximum, and α_{k} is such that $\sum_{k} p_{k n}^{\star}=P_{k}$.

Upon convergence, the following algorithm converges to the optimal power allocation policy,

end for
end for
end while

The power allocation policy $p_{k n}=p_{k n}^{\star}$ optimizing the deterministic approximation of $C\left(\sigma^{2}\right)$ satisfies, for all k, n,

$$
p_{k n}^{\star}=\left(\alpha_{k}-\frac{\sigma^{2}-\eta^{\star} \beta_{k}^{\star}}{\lambda_{k n} \eta^{\star}}\right)^{+}
$$

where $\eta^{\star}, \beta_{k}^{\star}$ are the respective values of η and β_{k} when C achieves its maximum, and α_{k} is such that $\sum_{k} p_{k n}^{\star}=P_{k}$.

Lemma (Iterative Water-filling)

Upon convergence, the following algorithm converges to the optimal power allocation policy,
At initialization, for all $k, p_{k n}=\frac{P_{k}}{N}, \eta=1, \beta_{k}=1$.
while the $p_{k n}$'s have not converged do
for $k \in\{1, \ldots, K\}$ do
Solve fixed-point equation for (η, β_{k}), $p_{k n}$ fixed for $n=1 \ldots, N$ do

Set $p_{k n}=\left(\alpha_{k}-\frac{\sigma^{2}-\eta \beta_{k}}{\lambda_{k n} \eta}\right)^{+}$, with α_{k} such that $\sum_{n} p_{k n}=P_{k}$.
end for
end for
end while

- Local optimization: From the formulas of η and β_{k}, at step (t) of the iterative water-filling, we can write
- $\eta^{(t)}(x)=\left(\frac{1}{\eta^{(t-1)}(x)}+x\left(\beta_{k}^{(t)}-\beta_{k}^{(t-1)}\right)\right)^{-1}$
- $\beta_{k}^{(t)}=f\left(\beta_{k}^{(t)}, \eta^{(t)}\right)$

$$
\text { This is only dependent on } k \text {. }
$$

\Rightarrow Cluster k does not need to know all $\lambda_{i n}, i \neq k$.

- Iterative self-organized process The preceding algorithm can be rewritten such that,
- at each time step (t), based on $\eta^{(t-1)}$, cell k performs self-optimization of \mathbf{P}_{k} and updates $\eta^{(t-1)}$ to $\eta^{(t)}$
- cell k forwards $\eta^{(1)}$ to next cell $(k+1)$
- upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)
- Local optimization: From the formulas of η and β_{k}, at step (t) of the iterative water-filling, we can write
- $\eta^{(t)}(x)=\left(\frac{1}{\eta^{(t-1)}(x)}+x\left(\beta_{k}^{(t)}-\beta_{k}^{(t-1)}\right)\right)^{-1}$
- $\beta_{k}^{(t)}=f\left(\beta_{k}^{(t)}, \eta^{(t)}\right)$

This is only dependent on k.
\Rightarrow Cluster k does not need to know all $\lambda_{i n}, i \neq k$.

- Iterative self-organized process The preceding algorithm can be rewritten such that,
- at each time step (t), based on $\eta^{(t-1)}$, cell k performs self-optimization of \mathbf{P}_{k} and updates $\eta^{(t-1)}$ to
- upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)
- Local optimization: From the formulas of η and β_{k}, at step (t) of the iterative water-filling, we can write
- $\eta^{(t)}(x)=\left(\frac{1}{\eta^{(t-1)}(x)}+x\left(\beta_{k}^{(t)}-\beta_{k}^{(t-1)}\right)\right)^{-1}$
- $\beta_{k}^{(t)}=f\left(\beta_{k}^{(t)}, \eta^{(t)}\right)$

This is only dependent on k.
\Rightarrow Cluster k does not need to know all $\lambda_{i n}, i \neq k$.

- Iterative self-organized process The preceding algorithm can be rewritten such that,
- at each time step (t), based on $\eta^{(t-1)}$, cell k performs self-optimization of \mathbf{P}_{k} and updates $\eta^{(t-1)}$ to $\eta^{(t)}$
- cell k forwards $\eta^{(t)}$ to next cell $(k+1)$
- upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)

Figure: Self-organization in orthogonal CDMA network

Figure: Self-organization in orthogonal CDMA network

Stieltjes transform methods for more elaborate models

Kronecker models and Variance Profiles

Capacity expressions, Rate Regions
(4) Touching the boundary: optimal power allocation
(5) Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels
- Somewhat similarly as η for the clustered CDMA system, user k of a multiple-access channel can find its optimal transmit covariance matrix from the estimation of e_{k}.
- if F frequency bands are shared among the users, the MAC rate region is the set of rates R_{1}, \ldots, R_{K} such that, for any subset $\mathcal{K} \subset\{1, \ldots, K\}$,

$$
\sum_{k \in \mathcal{K}} R_{k} \leq \frac{1}{N} \sum_{f=1}^{F} \log \operatorname{det}\left(\mathbf{I}_{N}+\frac{1}{\sigma^{2}} \sum_{k \in \mathcal{K}} \mathbf{H}_{k, f}^{\mathrm{H}} \mathbf{P}_{k, f} \mathbf{H}_{k, f}\right)
$$

- the optimal $\mathbf{P}_{k, f}$'s have eigenvectors aligned to the transmit correlation matrix and eigenvectors $q_{k, f, 1}, \ldots, q_{k, f, n_{k}}$ given by

with

- Iterative water-filling is still optimal in this case.
- Somewhat similarly as η for the clustered CDMA system, user k of a multiple-access channel can find its optimal transmit covariance matrix from the estimation of e_{k}.
- if F frequency bands are shared among the users, the MAC rate region is the set of rates R_{1}, \ldots, R_{K} such that, for any subset $\mathcal{K} \subset\{1, \ldots, K\}$,

$$
\sum_{k \in \mathcal{K}} R_{k} \leq \frac{1}{N} \sum_{f=1}^{F} \log \operatorname{det}\left(\mathbf{I}_{N}+\frac{1}{\sigma^{2}} \sum_{k \in \mathcal{K}} \mathbf{H}_{k, f}^{\mathrm{H}} \mathbf{P}_{k, f} \mathbf{H}_{k, f}\right)
$$

- the optimal $\mathbf{P}_{k, f}$'s have eigenvectors aligned to the transmit correlation matrix and eigenvectors $q_{k, f, 1}, \ldots, q_{k, f, n_{k}}$ given by

$$
q_{k, f, i}=\left(\mu_{k}-\frac{1}{c_{k} e_{k, f} t_{k, f, i}}\right)^{+}
$$

with

$$
\left\{\begin{aligned}
e_{k, f} & =\frac{1}{N} \operatorname{tr} \mathbf{R}_{k, f}\left(\sigma^{2}\left[\mathbf{I}_{N}+\sum_{k^{\prime} \in \mathcal{K}} \delta_{k^{\prime}, f} \mathbf{R}_{k^{\prime}, f}\right]\right)^{-1} \\
\bar{e}_{k, f} & =\frac{1}{n_{k}} \operatorname{tr} \mathbf{T}_{k, f}\left(\sigma^{2}\left[\mathbf{I}_{k}+c_{k} e_{k, f} \mathbf{P}_{k, f} \mathbf{T}_{k, f}\right]\right)^{-1}
\end{aligned}\right.
$$

- Iterative water-filling is still optimal in this case.
- Classical ways to share spectrum,
- via central entity: may be onerous and/or not possible
- game theoretical considerations: may fall in bad Nash equilibrium
- Through random matrix theory approaches, it seems that the fundamental system parameters naturally appear. In this case,
- for given $e_{k, 1}, \ldots, e_{k, F}$, user k can evaluate $\bar{e}_{k, 1}, \ldots, \bar{e}_{k, f}$ and optimize $\mathbf{P}_{k, 1}, \ldots, \mathbf{P}_{k, F}$
- for given $\bar{e}_{k, 1}, \ldots, \bar{e}_{k, F}$, the base station can evaluate $e_{k, 1}, \ldots, e_{k, t}$
- Classical ways to share spectrum,
- via central entity: may be onerous and/or not possible
- game theoretical considerations: may fall in bad Nash equilibrium
- Through random matrix theory approaches, it seems that the fundamental system parameters naturally appear. In this case,
- for given $e_{k, 1}, \ldots, e_{k, F}$, user k can evaluate $\bar{e}_{k, 1}, \ldots, \bar{e}_{k, f}$ and optimize $\mathbf{P}_{k, 1}, \ldots, \mathbf{P}_{k, F}$
- for given $\bar{e}_{k, 1}, \ldots, \bar{e}_{k, F}$, the base station can evaluate $e_{k, 1}, \ldots, e_{k, t}$
R. Couillet, H. V. Poor, M. Debbah, "Self-organized spectrum sharing in large MIMO multiple-access channels", to be submitted to ISIT 2010.

Depending on the correlation pattern at the base station, we obtain two iterative algorithms,

- Base-station aided algorithm, in case of receive correlation

Initialization: for all $k, f, \bar{e}_{k, f}=1$. Define convergence threshold $\varepsilon>0$.
while $\max _{k, f}\left\|\mathbf{P}_{k, f}-\mathbf{P}_{k, f}^{\star}\right\|>\varepsilon$ do
for $k \in\{1, \ldots, K\}$ do
for $f \in\{1, \ldots, F\}$ do
The base station computes $e_{k, f}$
end for
The base station transmits $\left(e_{k, 1}, \ldots, e_{k, F}\right)$ to user k
for $f \in\{1, \ldots, F\}$ do
Based on $e_{k, f}$, user k computes $\mathbf{P}_{k, f}$
Based on $\boldsymbol{e}_{k, f}$ and $\mathbf{P}_{k, f}$, user k computes $\bar{e}_{k, f}$
end for
User k transmits $\left(\bar{e}_{k, 1}, \ldots, \bar{e}_{k, F}\right)$ to the base station
end for
end while

- Self-organized iterative water-filling, if no correlation at the base station

Initialization: for all $k, f, \bar{e}_{k, f}=1$. Define convergence threshold $\varepsilon>0$.
while $\max _{k, f}\left\|\mathbf{P}_{k, f}-\mathbf{P}_{k, f}^{\star}\right\|>\varepsilon$, do
for $k \in\{1, \ldots, K\}$ do
for $f \in\{1, \ldots, F\}$ do
Based on e_{f}, user k computes $\mathbf{P}_{k, f}$
Based on $\left\{\boldsymbol{e}_{f}, \mathbf{P}_{k, f}\right\}$, user k computes $\bar{e}_{k, f}$
Based on $\bar{e}_{k, f}$, user k updates $e_{k, f}$
end for
User k transmits $\left(e_{k, 1}, \ldots, e_{k, F}\right)$ to user $k+1(\bmod K)$
end for
end while

- however, proposed algorithm is sequential, time harvesting. Next step is to work on asynchronous schemes using,
- gossiping approaches
- graph theory
- coding theory
- transmission bands must be uncorrelated. Currently working on frequency selective channels.
- Self-organized iterative water-filling, if no correlation at the base station

Initialization: for all $k, f, \bar{e}_{k, f}=1$. Define convergence threshold $\varepsilon>0$.
while $\max _{k, f}\left\|\mathbf{P}_{k, f}-\mathbf{P}_{k, f}^{\star}\right\|>\varepsilon$, do
for $k \in\{1, \ldots, K\}$ do
for $f \in\{1, \ldots, F\}$ do
Based on e_{f}, user k computes $\mathbf{P}_{k, f}$
Based on $\left\{\boldsymbol{e}_{f}, \mathbf{P}_{k, f}\right\}$, user k computes $\bar{e}_{k, f}$
Based on $\bar{e}_{k, f}$, user k updates $e_{k, f}$
end for
User k transmits $\left(e_{k, 1}, \ldots, e_{k, F}\right)$ to user $k+1(\bmod K)$
end for
end while

- however, proposed algorithm is sequential, time harvesting. Next step is to work on asynchronous schemes using,
- gossiping approaches
- graph theory
- coding theory
- transmission bands must be uncorrelated. Currently working on frequency selective channels.

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

- generalize Stieltjes transform approaches to structured matrices
- use random matrix theory to solve open issues
- optimal Wiener filter in broadcast channels
- optimal feedback for communications with imperfect CSI
- decentralized network organization using random matrix theory,
- propose efficient feedback schemes
- prove convergence or quasi-convergence
- develop subopitimal schemes
- generalize Stieltjes transform approaches to structured matrices
- use random matrix theory to solve open issues
- optimal Wiener filter in broadcast channels
- optimal feedback for communications with imperfect CSI
- decentralized network organization using random matrix theory,
- propose efficient feedback schemes
- prove convergence or quasi-convergence
- develop suboptimal schemes
- A. Moustakas, S. Simon and A. Sengupta, "MIMO Capacity Through Correlated Channels in the Presence of Correlated Interferers and Noise: A (Not So) Large N Analysis," IEEE Trans. on Information Theory, vol. 49, no. 10, 2003.
- C. K. Wen, Y. N. Lee, J. T. Chen, and P. Ting, "Asymptotic spectral efficiency of MIMO multiple-access wireless systems exploring only channel spatial correlations," IEEE Transactions on Signal Processing, vol. 53, no. 6, pp. 2059-2073, 2005.
- D. Guo and S. Verdú, "Multiuser Detection and Statistical Physics," Communications on Information and Network Security, Kluwer Academic Publishers, 2003.
- B. Zaidel, S. Shamai and S. Verdú, "Multicell Uplink Spectral Efficiency of Coded DS-CDMA With Random Signatures," IEEE Journal on Selected Areas in Communications, vol. 19, no. 8, 2001.
- Z. Bai and J. Silverstein, "On the signal-to-interference-ratio of CDMA systems in wireless communications," Annals of Applied Probability vol. 17 no. 1, pp. 81-101, 2007.
- R. B. Dozier and J. W. Silverstein, "On the Empirical Distribution of Eigenvalues of Large Dimensional Information-Plus-Noise Type Matrices," Journal of Multivariate Analysis 98(4), pp. 678-694, 2007.
- A.M. Tulino, A. Lozano and S. Verdù, "Impact of antenna correlation on the capacity of multiantenna channels," IEEE Trans. on Information Theory, vol. 51, no. 7, pp. 2491-2509, 2005.
- J. Dumont, S. Lasaulce, W. Hachem, Ph. Loubaton and J. Najim, "On the Capacity Achieving Covariance Matrix for Rician MIMO Channels: An Asymptotic Approach", submitted to IEEE Trans. on Information Theory.
- D. N. C. Tse, and S. V. Hanly, "Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities," IEEE Trans. Information Theory, vol. 44, no. 7, pp. 2796-2815, 1998.
- W. Hachem, Ph. Loubaton, and J. Najim, "A CLT for information theoretic statistics of Gram random matrices with a given variance profile," Annals of Applied Probability, vol. 18, no. 6, pp. 2071-2130, 2008.
- S. Vishwanath, N. Jindal, and A. Goldsmith, "Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels," IEEE Trans. Information Theory, vol. 49, no. 10, pp. 2658-2668, 2003.
- A. M. Tulino, and S. Verdù, "Random Matrix Theory and Wireless Communications," Now Publishers Inc., Dordrecht, The Netherlands, 2004.
- R. Couillet, S. Wagner, M. Debbah, "Asymptotic Analysis of Correlated Multi-Antenna Broadcast Channels", WCNC 2009, Budapest, Hungary.
- R. Couillet, M. Debbah, "Bayesian Inference for Multiple Antenna Cognitive Receivers", WCNC 2009, Budapest, Hungary.
- R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.
- R. Couillet, S. Wagner, M. Debbah, "Asymptotic Analysis of Linear Precoding Techniques in Correlated Multi-Antenna Broadcast Channels," submitted to IEEE Trans. on Information Theory.
- R. Couillet, M. Debbah, J. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.
- R. Couillet, J. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", in preparation, to be submitted to ISIT 2010.
- R. Couillet, M. Debbah, V. Poor, "Self-organized spectrum sharing in large MIMO multiple access channels", submitted to ISIT 2010.
- R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback" to be submitted

