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Stieltjes transform methods for more elaborate models

Reminder and scope

In Part 1 of this course,
we defined the Stieltjes transform:

Definition

Let F be a distribution function, and z ∈ C
+. Then the Stieltjes transform mF (z) of F is defined as

mF (z) =
∫

1

λ − z
dF (λ)

For F the spectral distribution of an Hermitian matrix X ∈ C
N×N ,

mF (z) =
1

N
tr(X − zIN )

−1

We gave limiting distribution results for some matrix models.
We gave a sketch of the proof of the Marc̆enko-Pastur law.

In Part 2, we will
extend the notion of limit distributions to deterministic equivalents
provide sound mathematical techniques to prove convergence/existence/uniqueness of large N
results.
provide first wireless communication results
apply the results proven above to self-organized networks
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Stieltjes transform methods for more elaborate models

Limiting results against deterministic equivalents

previously, we showed results of the type:

“let XN be random, TN deterministic with F TN ⇒ F T , etc. Then, when N → ∞, the e.s.d. of
XN tends to F such that mF is solution of a fixed-point equation,

mXN
(z) → mF (z) ”

this has major drawbacks
this assumes TN has a limiting distribution
if it does, mXN XH

N
can at best be approximated by mF which is a function of the limiting F T . For finite

N, F TN may be very different from F T .
any sequence TN with l.s.d. F T engenders the same l.s.d. F .

instead, we shall use results of the type

“let XN be random, TN deterministic with F TN ⇒ F T , etc. Then the e.s.d. of XN tends to F
such that mF is solution of a fixed-point equation has Stieltjes transform mXN

well
approximated by the deterministic m◦

N , which is the unique solution of a fixed-point equation
and such that

mXN
(z)− m◦

N(z)
a.s.−→ 0 ”

In this case, m◦
N is a function of TN , for fixed N and does not require any convergence of F TN .
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Stieltjes transform methods for more elaborate models

Outline of the proofs

It will often be the case that the deterministic equivalent m◦
N(z) satisfies an implicit equation. The

steps are then:
1 find a suitable function f , such that the true Stieltjes transform mXN

(z) satisfies, for fixed
z ∈ C+,

mXN
(z) = f (mXN

(z)) + εN

where εN
a.s.−→ 0 as N → ∞.

This can be done
using Pastur’s method (see proof of Marc̆enko-Pastur law in Part 1)
using guess-work (see Bai and Silverstein’s proofs)

Remark: This is as far as we went in Part 1.
2 For fixed N, prove the existence of a solution to

m = f (m)

This is often based on extracting a converging subsequence of mN ,m2N , . . . such that mjN
“has the same properties as mXN

(z) for all j”.

3 For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if
two solutions exist.

4 Calling m◦
N(z) the solution, prove finally that

mXN
(z)− m◦

N(z)
a.s.−→ 0
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Kronecker models and Variance Profiles

Stieltjes transform of a sum of doubly-correlated matrices

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

We will give here the method of proof of the following result

Theorem

For K , N ∈ N, let

BN =

K
∑

k=1
R

1
2
k Xk Tk XH

k R
1
2
k + A ∈ C

N×N

where Xk ∈ C
N×nk i.i.d. of zero mean, variance 1/nk ; Rk ∈ C

N×N Hermitian nonnegative definite; Tk = diag(τ1, . . . , τnk
) ∈ R

nk ×nk ,

diagonal with τi ≥ 0; the sequences {FTk }nk ≥1 and {FRk }N≥1 are tight; A ∈ C
N×N Hermitian positive definite;

0 < a ≤ lim infN ck ≤ lim supN cN ≤ b < ∞ with ck = N/nk . Then

mBN
(z) − m◦

N (z)
a.s.
−→ 0

where

m◦
N (z) =

1

N
tr



A +

K
∑

k=1

∫ τk dFTk (τk )

1 + ck τk ek (z)
Rk − zIN





−1

and the scalars {ei (z)}, i ∈ {1, . . . , K}, form the unique solution to

ei (z) =
1

N
tr Ri



A +

K
∑

k=1

∫ τk dFTk (τk )

1 + ck τk ek (z)
Rk − zIN





−1

such that sgn(ℑ[ei (z)]) = sgn(ℑ[z]).
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Kronecker models and Variance Profiles

A “telecom-oriented” version of the same result

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

BN =
K
∑

k=1

Hk HH
k , with Hk = R

1
2
k Xk T

1
2
k

with Xk ∈ CN×nk with i.i.d. entries of zero mean, variance 1/nk , Rk Hermitian nonnegative
definite, Tk diagonal. Denote ck = N/nk . Then, as all N and nk grow large, with ratio ck ,

mFBN (z)− m◦
N(z)

a.s.−→ 0

where

m◦
N(z) =

1

N
tr



−z



IN +
K
∑

k=1

ēk (z)Rk









−1

and the set of functions {ei (z)} form the unique solution to the K equations

ei (z) =
1

N
tr Ri



−z



IN +
K
∑

k=1

ēk (z)Rk









−1

ēi (z) =
1

ni
tr Ti

(

−z
[

Ini + ci ei (z)Ti
])−1
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Kronecker models and Variance Profiles

Pastur’s method

Pastur’s method is not applicable here, unless all Rk ’s are diagonal.

Consider K = 2, A = 0 and denote Hk = R
1
2
k Xk T

1
2
k , with diagonal Rk . By block-matrix inversion,

we have

(

H1HH
1 + H2HH

2 − zIN
)−1

11
=

(

[

hH
1 hH

2
U1 U2

]

[

h1 UH
1

h2 UH
2

]

− zIN

)−1

11

=

[

−z − z[hH
1 hH

2 ]

([

UH
1

UH
2

]

[U1U2]− zIn1+n2

)−1 [h1
h2

]

]−1

with the definition HH
i = [hi UH

i ].
The inner inverse matrix is

([

UH
1

UH
2

]

[U1U2]− zIn1+n2

)−1

=

[

UH
1 U1 − zIn1 UH

1 U2
UH

2 U1 UH
2 U2 − zIn2

]−1

on which we apply another block matrix inverse lemma. The upper-left (n1 × n1) entry equals

(

−zUH
1 (U2UH

2 − zIN−1)
−1U1 − zIn1

)−1

For the second block diagonal entry, it suffices to revert all 1’s in 2’s and vice-versa.
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Kronecker models and Variance Profiles

Pastur’s method (2)

(

H1HH
1 + H2HH

2 − zIN
)−1

11
=



−z − z[hH
1 hH

2 ]





(

−zUH
1 (U2UH

2 − zIN−1)
−1U1 − zIn1

)−1
⋆

⋆
(

−zUH
2 (U1UH

1 − zIN−1)
−1U2 − zIn2

)−1





[

h1
h2

]





−

The other two terms do not depend on h1, h2. We now use both results,

For x ∈ CN , y ∈ CN i.i.d. with zero mean, variance 1/N, A ∈ CN×N Hermitian with bounded
spectral norm,

xHAx − 1

N
tr A a.s.−→ 0

xHAy a.s.−→ 0

Since R1, R2 are diagonal, hi =
√

ri1Ti
1
2 xi , with the notation Ri = diag(ri1, . . . , riN). Therefore,

using the trace and rank-1 perturbation lemma,
(

H1HH
1 + H2HH

2 − zIN
)−1

11
→

[

−z − zr11
1

n1
tr T1

(

−zHH
1 (H2HH

2 − zIN )
−1H1 − zIn1

)−1
− zr21

1

n2
tr T2

(

−zHH
2 (H1HH

1 − zIN )
−1H1 − zIn2

)−1
]
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Kronecker models and Variance Profiles

Pastur’s method (3)

Now, denoting Hi = [h̃i Ũi ] (column selection instead of row),

T1

(

−zHH
1 (H2HH

2 − zIN)
−1H1 − zIn1

)−1

11
= τ11

[

−z − zh̃H
1

(

Ũ1ŨH
1 + H2HH

2 − zIN
)−1

h̃1

]−1

→ τ11

[

−z − zc1τ11
1

N
tr R1

(

H1HH
1 + H2HH

2 − zIN
)−1

]−1

with τij the j th diagonal entry of Ti . A similar result holds when changing 1’s in 2’s. Call now

fi =
1

N
tr Ri

(

H1HH
1 + H2HH

2 − zIN
)−1

and

f̄i =
1

ni
tr Ti

(

−zHH
1 (H2HH

2 − zIN)
−1H1 − zIn1

)−1

we have shown

fi = lim
N→∞

1

N
tr Ri

(

−zf̄1R1 − zf̄2R2 − zIN
)−1

f̄i = lim
N→∞

1

ni
tr Ti

(

−zci fi Ti − zIni

)−1
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Kronecker models and Variance Profiles

Deterministic equivalent approach: guess work

We will use here the “guess-work” method to find the deterministic equivalent. Consider the
simpler case K = 1.
Back to the original notations, we seek a matrix D such that

1

N
tr(BN − zIN)

−1 − 1

N
tr D−1 a.s.−→ 0

as N → ∞.

Resolvent lemma

For invertible A, B matrices,

A−1 − B−1 = −A−1(A − B)B−1

Taking the matrix differences,

−D−1 + (BN − zIN)
−1 = D−1(A + R

1
2 XTXHR

1
2 − zIN − D)(BN − zIN)

−1

It seems convenient to take D = A − zIN − zpNR with pN left to be defined
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Kronecker models and Variance Profiles

Deterministic equivalent approach: guess work (2)

“Silverstein’s” lemma

Let A be Hermitian invertible, then for any vector x and scalar τ such that A + τxxH is invertible

xH(A + τxxH)−1 =
xHA−1

1 + τxA−1xH

With D = A − zIN − zpNR,

−D−1 + (BN − zIN)
−1 = D−1(A + R

1
2 XTXHR

1
2 − zIN − D)(BN − zIN)

−1

= D−1R
1
2

(

XTXH
)

R
1
2 (BN − zIN)

−1 + zpND−1R(BN − zIN)
−1

= D−1
n
∑

j=1

τj R
1
2 xj x

H
j R

1
2 (BN − zIN)

−1 + zpND−1R(BN − zIN)
−1

=
n
∑

j=1

τj

D−1R
1
2 xj xH

j R
1
2 (B(j) − zIN)−1

1 + τj xHR
1
2 (B(j) − zIN)−1R

1
2 xj

+ zpND−1R(BN − zIN)
−1

Choice of pN : pN = − 1
z

∑n
j=1

τj

1+τj c
1
N tr R(BN−zIN )−1

1

N
tr(BN−zIN )

−1
−

1

N
tr D−1

=
n
∑

j=1

τj





xH
j R

1
2 (B(j) − zIN )

−1D−1R
1
2 xj

1 + τj xHR
1
2 (B(j) − zIN )−1R

1
2 xj

−

1
N tr R

1
2 (BN − zIN )

−1RD−1R
1
2

1 + cτj
1
N tr R

1
2 (BN − zIN )−1

R
1
2
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Kronecker models and Variance Profiles

Deterministic equivalent approach: guess work (3)

The same can be done for 1
N tr R(BN − zIN)−1 and we get

1

N
tr R(BN − zIN)

−1 − 1

N
tr RD−1 → 0

To show that the convergence is almost sure, we use truncation and centralization.

Truncation and centralization

Replace XN , TN and RN by X̄N , T̄N and R̄N in the following fashion
(

X̄N
)

ij = (XN)ij · I{(XN )ij<gN}

for gN that grows

fast enough to ensure F BN − F B̄N ⇒ 0

slow enough to ensure 1
N tr(B̄N − zIN)−1 − 1

N tr R̄D̄−1 a.s.−→ 0

Showing that some moment of the terms appearing in the difference is summable, applying
Borel-Cantelli lemma, we have almost sure convergence.
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Kronecker models and Variance Profiles

Application of the Borel-Cantelli lemma

To complete the proof of almost sure convergence, denote

wN =
1

N
tr R(BN − zIN)

−1 − 1

N
tr RD−1

We divide wN is 4 successive differences wN = w1
N + . . .+ w4

N . The strategy is as follows:

for all i , show that
E|w i

N |6 < hi
N

where hi
N is summable

for ε > 0, applying Markov’s inequality,

P(|hi
N | > ε) <

1

ε6
E|w i

N |6

which is summable.

from Borel-Cantelli, this implies P(|hi
N | > ε i.o.) = 0

therefore the set {ω : limN mBN (ω)(z)− m◦
N(z) = 0}c =

⋃

ε{|mBN (z) − m◦
N(z)| ≥ ε i.o.} is a

sum of zero probability sets.

the union above can be done on rational ε’s and then the union has probability zero.

for the z in question, there therefore exists Ωz ⊂ Ω for which limN mBN (ω)(z)− m◦
N(z) = 0. It

suffices then to countably sample C+ to generate a dense set of z ’s which satisfy
convergence with probability 1. By local analyticity of m◦

N and mBN
, this is true for all z ∈ C+.
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Kronecker models and Variance Profiles

Deterministic equivalent approach: existence and uniqueness

Fix now N and consider the implicit equation in e

e =
1

N
tr Ri

(

A +

∫

τdF T(τ)

1 + cτe
R − zIN

)−1

Existence: for existence, consider the matrices T[j] = T ⊗ Ij , R[j] = R ⊗ Ij , A[j] = A ⊗ Ij . The
value of

f (e) =
1

N
tr R

(

A[j] +

∫

τdF T[j] (τ)

1 + cτe
R[j] − zIN

)−1

is constant whatever m. Now, take ω ∈ Ω such that wN(ω) → 0. For this ω, write

ẽ(z) =
1

N
tr(BN(ω)− zIN)

−1

Showing that ẽ(z) and τ
1+cτe are uniformly bounded over j , we can take a subsequence of

ẽ(z) that goes to, say e. For this e, wN = 0 and then it’s a solution.

Uniqueness: Uniqueness is shown by taking a second solution e and by proving that

e − e = γ(e − e)

with γ < 1.
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Kronecker models and Variance Profiles

Deterministic equivalent approach: termination of the proof

It then suffices to show that 1
N tr R(BN − zIN)−1 − e

a.s.−→ 0

This exploits the fact that, for some ω in a probability one space, 1
N tr R(BN(ω)− zIN)−1 is

wN away from 1
N D−1R. Using the same argument as for uniqueness, we have

e − 1

N
tr R(BN(ω)− zIN)

−1 = γ(e − 1

N
tr R(BN(ω)− zIN)

−1) + wN

for γ < 1.

The same argument applies to mN(z)− m◦
N(z).
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Kronecker models and Variance Profiles

Result on the Shannon transform of BN

Remember now that
∫

log(1 + xt)dF (t) =
∫ ∞

1/x

(

1

t
− mF (−t)

)

dt

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

Theorem

Under the previous model for BN , as N, nk grow large,

1

N
log det(BN + x IN)−





1

N
log det



IN +

K
∑

k=1

ēk (−1/x)Rk





+
K
∑

k=1

1

N
log det

(

Ink + ck ek (−1/x)Tk
)

− 1

x

K
∑

k=1

ēk (−1/x)ek (−1/x)





a.s.−→ 0
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Kronecker models and Variance Profiles

Variance profile

W. Hachem, Ph. Loubaton, J. Najim, “Deterministic equivalents for certain functionals of large
random matrices,” Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem

Let XN ∈ CN×n have independent entries with (i, j)th entry of zero mean and variance 1
nσ

2
ij . Let

AN ∈ RN×n be deterministic with uniformly bounded column norm. Then

1

N
tr
(

(XN + AN)(XN + AN)
H − zIN

)−1
− 1

N
tr TN(z)

a.s.−→ 0

where TN(z) is the unique function that solves

TN(z) =
(

Ψ−1(z)− zANΨ̃(z)AT
N

)−1
, T̃N(z) =

(

Ψ̃−1(z)− zAT
NΨ(z)AN

)−1

with Ψ(z) = diag(ψi (z)), Ψ̃(z) = diag(ψ̃i (z)), with entries defined as

ψi (z) = −
(

z(1 +
1

n
tr D̃i T̃(z))

)−1

, ψ̃j (z) = −
(

z(1 +
1

n
tr Dj T(z))

)−1

and Dj = diag(σ2
ij , 1 ≤ i ≤ N), D̃i = diag(σ2

ij , 1 ≤ j ≤ n)
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Kronecker models and Variance Profiles

Variance profile

W. Hachem, Ph. Loubaton, J. Najim, “Deterministic equivalents for certain functionals of large
random matrices,” Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem

For the previous model, we also have that

1

N
E log det

(

IN +
1

σ2
(XN + AN)(XN + AN)

H
)

has deterministic equivalent

1

N
log det

[

1

σ2
Ψ(−σ2)−1 + ANΨ̃(−σ2)AT

N

]

+
1

N
log det

1

σ2
Ψ(−σ2)−1− σ2

nN

∑

i,j

σ2
ij Tii (−σ2)T̃jj (−σ2)

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 21 / 57



Kronecker models and Variance Profiles

Alternative strategies

There exists alternative proof strategies for specific models.
The Gaussian method:

this technique is meant for random Gaussian X matrices
based on two ingredients: a Gaussian integration by parts formula, and the Nash-Poincaré inequality.
advantages:

sequential method, easy to use
give results on convergence speed
proves convergence of Gaussian-based models of type N(EmN − m◦

N ) → 0
⇒ very convenient to prove total capacity convergence, instead of average capacity.

drawbacks:
somewhat painful to use, leads to much calculus, less “elegant”
proves convergence of Gaussian-based models of type N(EmN − m◦

N ) → 0
⇒ less powerful than almost sure results
⇒ limited to Gaussian.

Diagrammatic approaches: moment “drawing”-based approach that uses combinatorics to
infer limiting results

Replica methods: physics-based method, non-mathematically accurate, to conjecture limiting
results.
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Capacity expressions, Rate Regions

Outline

1 Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

5 Case study: exchanging relevant data in large self-organized networks
Orthogonal CDMA networks
Spectrum sharing in multiple access channels
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Capacity expressions, Rate Regions

Broadcast channel with Kronecker model

HH
1

HH
2 HH

3

HH
K

User 1

User 2

User 3

User K

Base station

Figure: Downlink scenario in multi-user broadcast channel
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Capacity expressions, Rate Regions

Rate region of MAC and BC

S. Vishwanath, N. Jindal and A. Goldsmith, “Duality, Achievable Rates, and Sum-Rate Capacity of
Gaussian MIMO Broadcast Channels,” IEEE Trans. on Information Theory, vol. 49, no. 10, 2003.

Assume all channels are modeled as Kronecker; for k = 1, . . . ,K

Hk = R
1
2
k Xk T

1
2
k

Rate region of multiple access channel for K users with channels H = [H1, . . . ,HK ],

CMAC(P1, . . . ,PK ;H) =

⋃

tr(Pi )≤Pi
Pi≥0

i=1,...,K







{Ri , 1 ≤ i ≤ K} :
∑

i∈S

Ri ≤
1

N
log

∣

∣

∣

∣

∣

∣

I +
1

σ2

∑

i∈S

Hi Pi H
H
i

∣

∣

∣

∣

∣

∣

, ∀S ⊂ {1, . . . ,K}







Rate region of broadcast channel for HH = [H1, . . . ,HK ]
H with total transmit power P,

CBC(P;HH) =
⋃

∑K
k=1 Pk≤P

CMAC(P1, . . . ,PK ;H)
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Capacity expressions, Rate Regions

Reminder: deterministic equivalent for multi-user channel

Under the previous model for BN , as N, nk grow large,

1

N
log

∣

∣

∣

∣

∣

∣

I +
1

σ2

∑

k∈S

Hk Pk HH
k

∣

∣

∣

∣

∣

∣

−





1

N
log det



IN +
∑

k∈S

ēk (−1/x)Rk





+
∑

k∈S

1

N
log det

(

Ink + ck ek (−1/x)T
1
2
k Pk T

1
2
k

)

− 1

x

K
∑

k=1

ēk (−1/x)ek (−1/x)





a.s.−→ 0

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 26 / 57



Touching the boundary: optimal power allocation

Outline

1 Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

5 Case study: exchanging relevant data in large self-organized networks
Orthogonal CDMA networks
Spectrum sharing in multiple access channels
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Touching the boundary: optimal power allocation

Rate region boundary

it is desirable to determine the boundary of the rate region
for theoretical purposes: to fully determine the rate region and alleviate the

⋃

P1,...,Pk
sign.

for practical purposes: to allow users/the base station to transmit at optimal rate.

it is also desirable to identify the key parameters of the system
in theory: to extract physical meanings
in theory: to identify the minimum feedback requirements
in practice: to minimize information feedback
in practice: to ease power allocation processing
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Touching the boundary: optimal power allocation

Capacity maximizing power allocation

R. Couillet, M. Debbah, J. W. Silverstein, “A deterministic equivalent for the capacity analysis of
correlated multi-user MIMO channels,” submitted to IEEE Trans. on Information Theory.

Consider a subset S = {i1, . . . , i|S|} ⊂ {1, . . . ,K}.

With Tk = Uk Dk UH
k , Dk = diag(τk1, . . . , τknk

) diagonal, the capacity-achieving matrices
P⋆

i1
, . . . ,P⋆

i|S|
satisfy

1 P⋆
k = Uk Q⋆

k UH
k , with Q⋆

k diagonal; i.e. the eigenspace of P⋆
k is the same as the eigenspace of Tk .

2 with ē⋆
k = ēk (−σ2, P⋆

k ), the i th entry q⋆
ki of Q⋆

k satisfies

q⋆
ki =

(

µk −
1

ck e⋆
k τki

)+

where the µk ’s are evaluated such that tr(Qk ) = Pk .

an iterative water-filling method allows to retrieve the q⋆
ki ’s by successively

for a given set Pi1
, . . . , Pi|S|

, evaluating ei1
, . . . , ei|S|

updating the new optimal solution Pi1
, . . . , Pi|S|

for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.
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Touching the boundary: optimal power allocation

Proof of water-filling optimality

Consider the functions

C(Pi1 , . . . ,Pi|S|
) =

∑

k∈S

1

N
log det

(

Ink + ck ek Tk Pk
)

+
1

N
log det



IN +
∑

k∈S

ēk Rk



− σ2
∑

k∈S

ēk (−σ2)ek (−σ2)

where

ei = ei (Pi1 , . . . ,Pi|S|
) =

1

N
tr Ti



σ2



IN +
∑

k∈S

ēk Tk









−1

ēi = ēi (Pi1 , . . . ,Pi|S|
) =

1

ni
tr Ri Pi

(

σ2 [Ini + ci ei (z)Ri Pi
]

)−1

and V : (Pi1 , . . . ,Pi|S|
, ēi1 , . . . , ēi|S|

, ei1 , . . . , ei|S|
) 7→ C(Pi1 , . . . ,Pi|S|

).

From chain rule,
∂

∂Pi
C =

∑

k∈S

∂V

∂ek

∂ek

∂Pi
+
∂V

∂ēk

∂ēk

∂Pi
+
∂V

∂Pi
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where

ei = ei (Pi1 , . . . ,Pi|S|
) =

1

N
tr Ti



σ2



IN +
∑

k∈S

ēk Tk









−1

ēi = ēi (Pi1 , . . . ,Pi|S|
) =

1

ni
tr Ri Pi

(

σ2 [Ini + ci ei (z)Ri Pi
]

)−1

and V : (Pi1 , . . . ,Pi|S|
, ēi1 , . . . , ēi|S|

, ei1 , . . . , ei|S|
) 7→ C(Pi1 , . . . ,Pi|S|

).

From chain rule,
∂

∂Pi
C =

∑

k∈S

∂V

∂ek

∂ek

∂Pi
+
∂V

∂ēk

∂ēk

∂Pi
+
∂V

∂Pi
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Touching the boundary: optimal power allocation

Proof of water-filling optimality (2)

Remark that

∂

∂ēk
V (Pi1 , . . . ,Pi|S|

, ēi1 , . . . , ēi|S|
, ei1 , . . . , ei|S|

) =
1

N
tr









I +
∑

i∈S

ēi Ri





−1

Rk






− σ2ek

∂

∂ek
V (Pi1 , . . . ,Pi|S|

, ēi1 , . . . , ēi|S|
, ei1 , . . . , ei|S|

) = ck
1

N
tr
[

(I + ck ek Ti Pi )
−1 Tk Pk

]

− σ2ēk

both being null whenever, for all k , ek = ek (−σ2,Pi1 , . . . ,Pi|S|
) and

ēk = ēk (−σ2,Pi1 , . . . ,Pi|S|
), which is true in particular for the unique power optimal solution

P⋆
i1
, . . . ,P⋆

i|S|
whenever ek = e⋆

k and ēk = ē⋆
k .

When, for all k , ek = e⋆
k , ēk = ē⋆

k , the maximum of V over the Pk ’s is then obtained by
maximizing the expressions log det(Ink + ck e⋆

k Tk Pk ) over Pk .
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k .

When, for all k , ek = e⋆
k , ēk = ē⋆
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Touching the boundary: optimal power allocation

About this result

Some consequences of the previous results are worth mentioning

deterministic equivalents do not impose any underlying convergence

truncation and centralization lead to stronger convergence results under the form
mN − m◦

N
a.s.−→ 0 instead of EmN − m◦

N → 0

loose hypotheses on the Rk ’s and Tk ’s: strong antenna correlation allowed

the Rk ’s and Tk ’s are general purpose Hermitian nonnegative, no need of a common
eigenspace

no restriction to Gaussian Xk ’s for diagonal Tk ’s

Compact expressions

Only K scalar parameters (the ek ’s) determine the behaviour of the whole system.
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Touching the boundary: optimal power allocation

Performance of the deterministic equivalent
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Figure: (Per-antenna) rate region CBC for K = 2 users, theory against simulation, N = 8, n1 = n2 = 4,
SNR = 20 dB, random transmit-receive solid angle of aperture π/2, dT/λ = 10, dR/λ = 1/4.
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Touching the boundary: optimal power allocation

Performance of the deterministic equivalent (2)
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Figure: (Per-antenna) rate region CBC for K = 2 users, N = 8, n1 = n2 = 4, SNR = −5 dB, random
transmit-receive solid angle of aperture π/2, dT/λ = 10, dR/λ = 1/4. In thick line, capacity limit when
E[ssH] = IN .
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Touching the boundary: optimal power allocation

Other results using deterministic equivalents

R. Couillet, S. Wagner, M. Debbah, D. Slock, “Asymptotic analysis of linear precoding in vector
broadcast channels with limited feedback”

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

accounting for base station antenna correlation, user path losses

assuming limited channel state information

Results:

on optimal number of users to serve

on optimal regularization parameter

eventually, optimal feedback time

close behaviour with respect to finite size systems for N ≥ 4
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Touching the boundary: optimal power allocation

Linearly precoded broadcast channels with imperfect CSI
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Figure: Left: Ergodic sum-rate vs. average SNR with R= IM , L= IK , M =10, β=1, τ2 =0.1. Right: RZF, R= IM ,
L= IK , M =32, β=1, simulation results are indicated by circle marks
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Case study: exchanging relevant data in large self-organized networks

Outline

1 Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

5 Case study: exchanging relevant data in large self-organized networks
Orthogonal CDMA networks
Spectrum sharing in multiple access channels
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Introduction of the self-organized network

Before to apply the previous results, we consider first an alternative, simpler, better adapted
model, which

provides a deterministic equivalent to a model involving Haar (unitary) matrices

uses R-, S- and η-transforms

is a striking example of the feedback minimization discussed before.
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Self-Organized Clustered Networks

λ11

λ21

λ22

λ23

λK 1

λK 2

Figure: Self-organizing CDMA network
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Figure: Self-organizing CDMA network
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Uplink clustered CDMA networks

Consider a set of K clusters, all using independently orthogonal CDMA transmissions. Each
cluster is composed of at most N users. We wish

to obtain a deterministic equivalent for the achievable uplink sum-rate
to provide a cheap feedback solution for the network to organize itself to collectively maximize the
uplink rate.

We denote
Lk = diag(λk1, . . . , λkN ) the diagonal of channel gains (inverse path losses).
Pk = diag(pk1, . . . , pkN ) the diagonal of transmit powers from the users in cell k .
Wk ∈ C

N×N the unitary CDMA code matrix used in cell k .
the received signal y ∈ C

N at the base station reads

y =

K
∑

k=1

Wk L
1
2
k P

1
2
k sk + n

the sum-rate C(σ2) is

C(σ
2
) =

1

N
log det

(

IN +
1

σ2

K
∑

k=1

Wk (Pk Lk )W
H
k

)
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Capacity expression

R. Couillet, M. Debbah, “Uplink capacity of self-organizing clustered orthogonal CDMA networks in
flat fading channels”, ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have
CN(σ

2)− C◦
N(σ

2) → 0

with

C◦
N(σ

2) = log



1 +
1

σ2

K
∑

k=1

βk



+
K
∑

k=1

1

N
log det

(

η

σ2
Pk Lk +

[

1 − ηβk

σ2

]

IN

)

where βk and η are defined as

η =



1 +
1

σ2

K
∑

i=1

βi





−1

and {βk} are solutions of

βk =
1

N
tr Pk Lk

(

η

σ2
Pk Lk +

[

1 − ηβk

σ2

]

IN

)−1
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Proof

Instead of working with the Stieltjes transform, we use the (totally equivalent) η-transform. We
define η1, . . . , ηK as

ηk (x) =
∫

1

1 + xt
µk (dt)

with µk the probability distribution of Pk Lk . We will use the R-transform for further development.
For each k , denote Rk the R-transform of Wk Lk Pk WH

k , defined as

η(− 1

R(x) + 1
x

) = xR(x) + 1

Since the Wk ’s are isometric and independent, they are free random variables. Hence, the
R-transform R(x) of the sum of the individual R-transforms R1(x), . . . ,RK (x) satisfiesi
asymptotically

R(x) =
K
∑

k=1

Rk (x)

The strategy is then to use the R-transform as a “pivot” in the proof,
obtain a relation of Rk as a function of the entries of Pk Lk

obtain an expression of the eigenvalues of
∑K

k=1 Wk Pk Lk WH
k as a function of R

The first relation is obtained by the definition of the η-transform applied in −1/(Rk (x) +
1
x )

xRk + 1 =

∫

1

1 − t
Rk (x)+

1
x

µk (dt)
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Proof (2)

The expression

xRk (x) + 1 =

∫

1

1 − t
Rk (x)+

1
x

µk (dt)

leads to

Rk (x) =
1

x

∫

t

Rk (x) +
1
x − t

µk (dt)

and, in particular, defining βk (x) = Rk (−xη), we have

βk (x) =
∫

t

1 − xηβk + xηt
µk (dt)

Now, since R(x) =
∑K

k=1 Rk (x) asymptotically on N, using the reverse definition of the
R-transform

R(−xη(x)) = − 1

x
(1 − 1

η
(x))

we have

η(x) =



1 + x
K
∑

k=1

Rk (−xη)





−1

=



1 + x
K
∑

k=1

βk





−1

which completes the proof.
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Optimal power allocation

The power allocation policy pkn = p⋆
kn optimizing the deterministic approximation of C(σ2)

satisfies, for all k , n,

p⋆
kn =

(

αk −
σ2 − η⋆β⋆

k

λknη⋆

)+

where η⋆, β⋆
k are the respective values of η and βk when C achieves its maximum, and αk is such

that
∑

k p⋆
kn = Pk .

Lemma (Iterative Water-filling)

Upon convergence, the following algorithm converges to the optimal power allocation policy,

At initialization, for all k , pkn =
Pk
N , η = 1, βk = 1.

while the pkn ’s have not converged do
for k ∈ {1, . . . ,K} do

Solve fixed-point equation for (η, βk ), pkn fixed
for n = 1 . . . ,N do

Set pkn =

(

αk − σ2−ηβk
λknη

)+

, with αk such that
∑

n pkn = Pk .

end for
end for

end while
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Sequential feedback in the network

Local optimization: From the formulas of η and βk , at step (t) of the iterative water-filling, we
can write

η(t)(x) =
(

1
η(t−1)(x)

+ x(β(t)
k − β

(t−1)
k )

)−1

β
(t)
k = f (β(t)

k , η(t))

This is only dependent on k .

⇒ Cluster k does not need to know all λin, i 6= k .
Iterative self-organized process The preceding algorithm can be rewritten such that,

at each time step (t), based on η(t−1), cell k performs self-optimization of Pk and updates η(t−1) to
η(t)

cell k forwards η(t) to next cell (k + 1)
upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)
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Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Self-organization in orthogonal CDMA networks
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Figure: Self-organization in orthogonal CDMA network

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 47 / 57



Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks

Self-organization in orthogonal CDMA networks

λ11

λ21

λ22

λ23

λK 1

λK 2

p11

η

P1(η)

Figure: Self-organization in orthogonal CDMA network
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Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels

Outline

1 Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

5 Case study: exchanging relevant data in large self-organized networks
Orthogonal CDMA networks
Spectrum sharing in multiple access channels
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Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels

Spectrum sharing in MIMO-MAC

Somewhat similarly as η for the clustered CDMA system, user k of a multiple-access channel
can find its optimal transmit covariance matrix from the estimation of ek .

if F frequency bands are shared among the users, the MAC rate region is the set of rates
R1, . . . ,RK such that, for any subset K ⊂ {1, . . . ,K},

∑

k∈K

Rk ≤ 1

N

F
∑

f=1

log det



IN +
1

σ2

∑

k∈K

HH
k,f Pk,f Hk,f





the optimal Pk,f ’s have eigenvectors aligned to the transmit correlation matrix and
eigenvectors qk,f ,1, . . . , qk,f ,nk

given by

qk,f ,i =

(

µk − 1

ck ek,f tk,f ,i

)+

with
{

ek,f = 1
N tr Rk,f

(

σ2
[

IN +
∑

k′∈K δk′,f Rk′,f
])−1

ēk,f = 1
nk

tr Tk,f
(

σ2
[

Ink + ck ek,f Pk,f Tk,f
])−1

.

Iterative water-filling is still optimal in this case.
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Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels

Spectrum sharing, alternative approaches

Classical ways to share spectrum,
via central entity: may be onerous and/or not possible
game theoretical considerations: may fall in bad Nash equilibrium

Through random matrix theory approaches, it seems that the fundamental system
parameters naturally appear. In this case,

for given ek,1, . . . , ek,F , user k can evaluate ēk,1, . . . , ēk,f and optimize Pk,1, . . . , Pk,F
for given ēk,1, . . . , ēk,F , the base station can evaluate ek,1, . . . , ek,f
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Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels

Spectrum access in MIMO-MAC

R. Couillet, H. V. Poor, M. Debbah, “Self-organized spectrum sharing in large MIMO
multiple-access channels”, to be submitted to ISIT 2010.

Depending on the correlation pattern at the base station, we obtain two iterative algorithms,

Base-station aided algorithm, in case of receive correlation
Initialization: for all k , f , ēk,f = 1. Define convergence threshold ε > 0.
while maxk,f ‖Pk,f − P⋆

k,f ‖ > ε do
for k ∈ {1, . . . ,K} do

for f ∈ {1, . . . ,F} do
The base station computes ek,f

end for
The base station transmits (ek,1, . . . , ek,F ) to user k
for f ∈ {1, . . . ,F} do

Based on ek,f , user k computes Pk,f
Based on ek,f and Pk,f , user k computes ēk,f

end for
User k transmits (ēk,1, . . . , ēk,F ) to the base station

end for
end while
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Spectrum access in MIMO-MAC (2)

Self-organized iterative water-filling, if no correlation at the base station

Initialization: for all k , f , ēk,f = 1. Define convergence threshold ε > 0.
while maxk,f ‖Pk,f − P⋆

k,f ‖ > ε, do
for k ∈ {1, . . . ,K} do

for f ∈ {1, . . . ,F} do
Based on ef , user k computes Pk,f
Based on {ef ,Pk,f }, user k computes ēk,f
Based on ēk,f , user k updates ek,f

end for
User k transmits (ek,1, . . . , ek,F ) to user k + 1 (mod K )

end for
end while

however, proposed algorithm is sequential, time harvesting. Next step is to work on
asynchronous schemes using,

gossiping approaches
graph theory
coding theory

transmission bands must be uncorrelated. Currently working on frequency selective channels.
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MIMO multi-band multiple access channel

P1,f1
P1,f2

P1,f3

P2,f1
P2,f2

P2,f3
P3,f1

P3,f2
P3,f3

PK ,f1
PK ,f2

PK ,f3

Frequency 1

Frequency 2

Frequency 3

Figure: MIMO multi-band MAC
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R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 54 / 57



Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels

MIMO multi-band multiple access channel

P1,f1
P1,f2

P1,f3

P2,f1
P2,f2

P2,f3
P3,f1

P3,f2
P3,f3

PK ,f1
PK ,f2

PK ,f3
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Work left to be done

generalize Stieltjes transform approaches to structured matrices
use random matrix theory to solve open issues

optimal Wiener filter in broadcast channels
optimal feedback for communications with imperfect CSI

decentralized network organization using random matrix theory,
propose efficient feedback schemes
prove convergence or quasi-convergence
develop suboptimal schemes
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