Random Matrices in Wireless Communications Course 2: System performance analysis: capacity and rate regions

> Romain Couillet ST-Ericsson, Supélec, FRANCE romain.couillet@supelec.fr

> > Supélec

.

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

Touching the boundary: optimal power allocation

5

Case study: exchanging relevant data in large self-organized networks

- Orthogonal CDMA networks
- Spectrum sharing in multiple access channels

Outline

Stieltjes transform methods for more elaborate models

- 2 Kronecker models and Variance Profiles
- Capacity expressions, Rate Regions
- 4 Touching the boundary: optimal power allocation
- Case study: exchanging relevant data in large self-organized networks
 Orthogonal CDMA networks
 Spectrum sharing in multiple access channels

• • • • • • • • • • • • •

Reminder and scope

- In Part 1 of this course,
 - we defined the Stieltjes transform:

Definition

Let *F* be a distribution function, and $z \in \mathbb{C}^+$. Then the Stieltjes transform $m_F(z)$ of *F* is defined as

$$m_F(z) = \int \frac{1}{\lambda - z} dF(\lambda)$$

For *F* the spectral distribution of an Hermitian matrix $\mathbf{X} \in \mathbb{C}^{N \times N}$,

$$m_F(z) = \frac{1}{N} \operatorname{tr}(\mathbf{X} - z \mathbf{I}_N)^{-1}$$

- We gave limiting distribution results for some matrix models.
- We gave a sketch of the proof of the Marčenko-Pastur law.

In Part 2, we will

- extend the notion of limit distributions to deterministic equivalents
- provide sound mathematical techniques to prove convergence/existence/uniqueness of large N results.
- provide first wireless communication results
- apply the results proven above to self-organized networks

Reminder and scope

- In Part 1 of this course,
 - we defined the Stieltjes transform:

Definition

Let *F* be a distribution function, and $z \in \mathbb{C}^+$. Then the Stieltjes transform $m_F(z)$ of *F* is defined as

$$m_F(z) = \int \frac{1}{\lambda - z} dF(\lambda)$$

For *F* the spectral distribution of an Hermitian matrix $\mathbf{X} \in \mathbb{C}^{N \times N}$,

$$m_F(z) = \frac{1}{N} \operatorname{tr}(\mathbf{X} - z \mathbf{I}_N)^{-1}$$

- We gave limiting distribution results for some matrix models.
- We gave a sketch of the proof of the Marčenko-Pastur law.

In Part 2, we will

- extend the notion of limit distributions to deterministic equivalents
- provide sound mathematical techniques to prove convergence/existence/uniqueness of large N results.
- provide first wireless communication results
- apply the results proven above to self-organized networks

previously, we showed results of the type:

"let \mathbf{X}_N be random, \mathbf{T}_N deterministic with $F^{\mathbf{T}_N} \Rightarrow F^T$, etc. Then, when $N \to \infty$, the e.s.d. of \mathbf{X}_N tends to F such that m_F is solution of a fixed-point equation,

$$m_{\mathbf{X}_N}(z)
ightarrow m_F(z)$$
 "

- this has major drawbacks
 - this assumes **T**_N has a limiting distribution
 - if it does, $m_{X_N X_N^H}$ can at best be approximated by m_F which is a function of the limiting F^T . For finite
 - N, F^{*} may be very different from F^{*} .
 - any sequence T_N with l.s.d. F' engenders the same l.s.d. F_N

instead, we shall use results of the type

"let X_N be random, T_N deterministic with $F^{T_N} \Rightarrow F^{T}$, etc. Then the e.s.d. of X_N tends to Fsuch that m_F is solution of a fixed-point equation has Stieltjes transform m_{X_N} well approximated by the deterministic m_N° , which is the unique solution of a fixed-point equation and such that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$
 "

In this case, m_N° is a function of \mathbf{T}_N , for fixed N and does not require any convergence of $F^{\mathbf{T}_N}$.

・ロ・・ (日・・ ほ・・ (日・)

previously, we showed results of the type:

"let \mathbf{X}_N be random, \mathbf{T}_N deterministic with $F^{\mathbf{T}_N} \Rightarrow F^T$, etc. Then, when $N \to \infty$, the e.s.d. of \mathbf{X}_N tends to F such that m_F is solution of a fixed-point equation,

$$m_{\mathbf{X}_N}(z)
ightarrow m_F(z)$$
 "

- this has major drawbacks
 - this assumes T_N has a limiting distribution
 - if it does, $m_{\mathbf{X}_N \mathbf{X}_N^H}$ can at best be approximated by m_F which is a function of the limiting F^T . For finite $N, F^{\mathbf{T}_N}$ may be very different from F^T .
 - any sequence \mathbf{T}_N with l.s.d. F^T engenders the same l.s.d. F.

instead, we shall use results of the type

"let X_N be random, T_N deterministic with $F^{T_N} \Rightarrow F^{T}$, etc. Then the e.s.d. of X_N tends to F such that m_F is solution of a fixed-point equation has Stieltjes transform m_{X_N} well approximated by the deterministic m_N° , which is the unique solution of a fixed-point equation and such that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$
 "

In this case, m_N° is a function of \mathbf{T}_N , for fixed N and does not require any convergence of $F^{\mathbf{T}_N}$.

・ロト ・回ト ・ヨト ・ヨト

previously, we showed results of the type:

"let \mathbf{X}_N be random, \mathbf{T}_N deterministic with $F^{\mathbf{T}_N} \Rightarrow F^T$, etc. Then, when $N \to \infty$, the e.s.d. of \mathbf{X}_N tends to F such that m_F is solution of a fixed-point equation,

$$m_{\mathbf{X}_N}(z)
ightarrow m_F(z)$$
 "

- this has major drawbacks
 - this assumes T_N has a limiting distribution
 - if it does, $m_{\mathbf{X}_N \mathbf{X}_N^H}$ can at best be approximated by m_F which is a function of the limiting F^T . For finite $N, F^{\mathbf{T}_N}$ may be very different from F^T .
 - any sequence \mathbf{T}_N with l.s.d. F^T engenders the same l.s.d. F.

instead, we shall use results of the type

"let X_N be random, T_N deterministic with $F^{T_N} \Rightarrow F^{\mathcal{I}}$, etc. Then the e.s.d. of X_N tends to Fsuch that m_F is solution of a fixed-point equation has Stieltjes transform m_{X_N} well approximated by the deterministic m_N° , which is the unique solution of a fixed-point equation and such that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$
 "

In this case, m_N° is a function of \mathbf{T}_N , for fixed N and does not require any convergence of $F^{\mathbf{T}_N}$.

Stielties transform methods for more elaborate models Outline of the proofs

It will often be the case that the deterministic equivalent $m_N^{\circ}(z)$ satisfies an implicit equation. The steps are then:

④ find a suitable function *f*, such that the *true* Stieltjes transform m_{X_N}(z) satisfies, for fixed z ∈ C⁺,

$$m_{\mathbf{X}_N}(z) = f(m_{\mathbf{X}_N}(z)) + \varepsilon_N$$

where $\varepsilon_N \xrightarrow{\text{a.s.}} 0$ as $N \to \infty$.

This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.

2 For fixed *N*, prove the existence of a solution to

m = f(m)

This is often based on extracting a converging subsequence of m_N, m_{2N}, \ldots such that m_{jN} "has the same properties as $m_{X_N}(z)$ for all *j*".

- For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
- ④ Calling $m_N^{\circ}(z)$ the solution, prove finally that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$

(日)

Stielties transform methods for more elaborate models Outline of the proofs

It will often be the case that the deterministic equivalent $m_N^{\circ}(z)$ satisfies an implicit equation. The steps are then:

() find a suitable function *f*, such that the *true* Stieltjes transform $m_{\mathbf{X}_N}(z)$ satisfies, for fixed $z \in \mathbb{C}^+$,

$$m_{\mathbf{X}_N}(z) = f(m_{\mathbf{X}_N}(z)) + \varepsilon_N$$

where $\varepsilon_N \xrightarrow{\text{a.s.}} 0$ as $N \to \infty$. This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.

For fixed N, prove the existence of a solution to

$$m = f(m)$$

This is often based on extracting a converging subsequence of m_N, m_{2N}, \ldots such that m_{jN} "has the same properties as $m_{X_N}(z)$ for all *j*".

- For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
- If $M_N^{\circ}(z)$ the solution, prove finally that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$

< ロ > < 回 > < 回 > < 回 > 、

Stielties transform methods for more elaborate models Outline of the proofs

It will often be the case that the deterministic equivalent $m_N^{\circ}(z)$ satisfies an implicit equation. The steps are then:

() find a suitable function *f*, such that the *true* Stieltjes transform $m_{X_N}(z)$ satisfies, for fixed $z \in \mathbb{C}^+$,

$$m_{\mathbf{X}_N}(z) = f(m_{\mathbf{X}_N}(z)) + \varepsilon_N$$

where $\varepsilon_N \xrightarrow{\text{a.s.}} 0$ as $N \to \infty$. This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.

2 For fixed *N*, prove the existence of a solution to

$$m = f(m)$$

This is often based on extracting a converging subsequence of m_N, m_{2N}, \ldots such that m_{jN} "has the same properties as $m_{\mathbf{X}_N}(z)$ for all *j*".

For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.

Or Calling $m_N^{\circ}(z)$ the solution, prove finally that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$

Stielties transform methods for more elaborate models Outline of the proofs

It will often be the case that the deterministic equivalent $m_N^\circ(z)$ satisfies an implicit equation. The steps are then:

() find a suitable function *f*, such that the *true* Stieltjes transform $m_{\mathbf{X}_N}(z)$ satisfies, for fixed $z \in \mathbb{C}^+$,

$$m_{\mathbf{X}_N}(z) = f(m_{\mathbf{X}_N}(z)) + \varepsilon_N$$

where $\varepsilon_N \xrightarrow{\text{a.s.}} 0$ as $N \to \infty$. This can be done

- using Pastur's method (see proof of Marčenko-Pastur law in Part 1)
- using guess-work (see Bai and Silverstein's proofs)

Remark: This is as far as we went in Part 1.

2 For fixed *N*, prove the existence of a solution to

$$m = f(m)$$

This is often based on extracting a converging subsequence of m_N, m_{2N}, \ldots such that m_{jN} "has the same properties as $m_{\mathbf{X}_N}(z)$ for all *j*".

- For this fixed N, prove the uniqueness of the solution. This involves finding a contradiction if two solutions exist.
- **a** Calling $m_N^{\circ}(z)$ the solution, prove finally that

$$m_{\mathbf{X}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$

Outline

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

Touching the boundary: optimal power allocation

Case study: exchanging relevant data in large self-organized networks
 Orthogonal CDMA networks
 Spectrum sharing in multiple access channels

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," *submitted to IEEE Trans. on Information Theory*.

We will give here the method of proof of the following result

Theorem

For $K, N \in \mathbb{N}$, let

$$\mathbf{B}_{N} = \sum_{k=1}^{K} \mathbf{R}_{k}^{\frac{1}{2}} \mathbf{X}_{k} \mathbf{T}_{k} \mathbf{X}_{k}^{\mathsf{H}} \mathbf{R}_{k}^{\frac{1}{2}} + \mathbf{A} \in \mathbb{C}^{N \times N}$$

where $\mathbf{X}_k \in \mathbb{C}^{N \times n_k}$ *i.i.d.* of zero mean, variance $1/n_k$; $\mathbf{R}_k \in \mathbb{C}^{N \times N}$ Hermitian nonnegative definite; $\mathbf{T}_k = \text{diag}(\tau_1, \ldots, \tau_{n_k}) \in \mathbb{R}^{n_k \times n_k}$, diagonal with $\tau_i \geq 0$; the sequences $\{F^{\mathbf{T}_k}\}_{n_k \geq 1}$ and $\{F^{\mathbf{R}_k}\}_{N \geq 1}$ are tight; $\mathbf{A} \in \mathbb{C}^{N \times N}$ Hermitian positive definite; $0 < a \leq \liminf_N c_k \leq \limsup_N c_N \leq b < \infty$ with $c_k = N/n_k$. Then

$$m_{\mathbf{B}_N}(z) - m_N^{\circ}(z) \xrightarrow{\text{a.s.}} 0$$

where

$$m_{N}^{\circ}(z) = \frac{1}{N} \operatorname{tr} \left(\mathbf{A} + \sum_{k=1}^{K} \int \frac{\tau_{k} dF^{\mathbf{T}_{k}}(\tau_{k})}{1 + c_{k} \tau_{k} e_{k}(z)} \mathbf{R}_{k} - z \mathbf{I}_{N} \right)^{-1}$$

and the scalars $\{e_i(z)\}, i \in \{1, \ldots, K\}$, form the unique solution to

$$\mathbf{e}_{i}(\mathbf{z}) = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{A} + \sum_{k=1}^{K} \int \frac{\tau_{k} dF^{\mathsf{T}_{k}}(\tau_{k})}{1 + c_{k} \tau_{k} \mathbf{e}_{k}(\mathbf{z})} \mathbf{R}_{k} - \mathbf{z} \mathbf{I}_{N} \right)^{-1}$$

such that $sgn(\Im[e_i(z)]) = sgn(\Im[z])$.

A "telecom-oriented" version of the same result

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," *submitted to IEEE Trans. on Information Theory.*

$$\mathbf{B}_N = \sum_{k=1}^{K} \mathbf{H}_k \mathbf{H}_k^{\mathsf{H}}, \text{ with } \mathbf{H}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{X}_k \mathbf{T}_k^{\frac{1}{2}}$$

with $\mathbf{X}_k \in \mathbb{C}^{N \times n_k}$ with i.i.d. entries of zero mean, variance $1/n_k$, \mathbf{R}_k Hermitian nonnegative definite, \mathbf{T}_k diagonal. Denote $c_k = N/n_k$. Then, as all N and n_k grow large, with ratio c_k ,

$$m_{F^{\mathbf{B}_{N}}}(z) - m_{N}^{\circ}(z) \xrightarrow{\mathrm{a.s.}} 0$$

where

$$m_N^{\circ}(z) = \frac{1}{N} \operatorname{tr} \left(-z \left[\mathbf{I}_N + \sum_{k=1}^K \bar{\mathbf{e}}_k(z) \mathbf{R}_k \right] \right)^{-1}$$

and the set of functions $\{e_i(z)\}$ form the unique solution to the K equations

$$e_{i}(z) = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(-z \left[\mathbf{I}_{N} + \sum_{k=1}^{K} \bar{e}_{k}(z) \mathbf{R}_{k} \right] \right)^{-1}$$
$$\bar{e}_{i}(z) = \frac{1}{n_{i}} \operatorname{tr} \mathbf{T}_{i} \left(-z \left[\mathbf{I}_{n_{i}} + c_{i} e_{i}(z) \mathbf{T}_{i} \right] \right)^{-1}$$

R. Couillet (Supélec)

Pastur's method

Pastur's method is *not* applicable here, unless all \mathbf{R}_k 's are diagonal.

Consider K = 2, $\mathbf{A} = 0$ and denote $\mathbf{H}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{X}_k \mathbf{T}_k^{\frac{1}{2}}$, with diagonal \mathbf{R}_k . By block-matrix inversion, we have

$$\begin{pmatrix} \mathbf{H}_{1}\mathbf{H}_{1}^{H} + \mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N} \end{pmatrix}_{11}^{-1} = \left(\begin{bmatrix} \mathbf{h}_{1}^{H} \mathbf{h}_{2}^{H} \\ \mathbf{U}_{1} \mathbf{U}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{h}_{1} \mathbf{U}_{1}^{H} \\ \mathbf{h}_{2} \mathbf{U}_{2}^{H} \end{bmatrix} - z\mathbf{I}_{N} \right)_{11}^{-1}$$
$$= \left[-z - z[\mathbf{h}_{1}^{H}\mathbf{h}_{2}^{H}] \left(\begin{bmatrix} \mathbf{U}_{1}^{H} \\ \mathbf{U}_{2}^{H} \end{bmatrix} [\mathbf{U}_{1}\mathbf{U}_{2}] - z\mathbf{I}_{n_{1}+n_{2}} \right)^{-1} \begin{bmatrix} \mathbf{h}_{1} \\ \mathbf{h}_{2} \end{bmatrix} \right]^{-1}$$

with the definition $\mathbf{H}_{i}^{H} = [\mathbf{h}_{i}\mathbf{U}_{i}^{H}]$. The inner inverse matrix is

$$\begin{pmatrix} \begin{bmatrix} \mathbf{U}_1^H \\ \mathbf{U}_2^H \end{bmatrix} \begin{bmatrix} \mathbf{U}_1 \mathbf{U}_2 \end{bmatrix} - z\mathbf{I}_{n_1+n_2} \end{pmatrix}^{-1} = \begin{bmatrix} \mathbf{U}_1^H \mathbf{U}_1 - z\mathbf{I}_{n_1} & \mathbf{U}_1^H \mathbf{U}_2 \\ \mathbf{U}_2^H \mathbf{U}_1 & \mathbf{U}_2^H \mathbf{U}_2 - z\mathbf{I}_{n_2} \end{bmatrix}^{-1}$$

on which we apply another block matrix inverse lemma. The upper-left ($n_1 \times n_1$) entry equals

$$\left(-z\mathbf{U}_{1}^{\mathsf{H}}(\mathbf{U}_{2}\mathbf{U}_{2}^{\mathsf{H}}-z\mathbf{I}_{N-1})^{-1}\mathbf{U}_{1}-z\mathbf{I}_{n_{1}}\right)^{-1}$$

For the second block diagonal entry, it suffices to revert all 1's in 2's and vice-versa.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Pastur's method

Pastur's method is *not* applicable here, unless all \mathbf{R}_k 's are diagonal.

Consider K = 2, $\mathbf{A} = 0$ and denote $\mathbf{H}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{X}_k \mathbf{T}_k^{\frac{1}{2}}$, with diagonal \mathbf{R}_k . By block-matrix inversion, we have

$$\begin{aligned} \left(\mathbf{H}_{1}\mathbf{H}_{1}^{H} + \mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N}\right)_{11}^{-1} &= \left(\begin{bmatrix}\mathbf{h}_{1}^{H}\mathbf{h}_{2}^{H}\\\mathbf{U}_{1}\mathbf{U}_{2}\end{bmatrix}\begin{bmatrix}\mathbf{h}_{1}\mathbf{U}_{1}^{H}\\\mathbf{h}_{2}\mathbf{U}_{2}^{H}\end{bmatrix} - z\mathbf{I}_{N}\right)_{11}^{-1} \\ &= \begin{bmatrix}-z - z[\mathbf{h}_{1}^{H}\mathbf{h}_{2}^{H}]\left(\begin{bmatrix}\mathbf{U}_{1}^{H}\\\mathbf{U}_{2}^{H}\end{bmatrix}[\mathbf{U}_{1}\mathbf{U}_{2}] - z\mathbf{I}_{n_{1}+n_{2}}\right)^{-1}\begin{bmatrix}\mathbf{h}_{1}\\\mathbf{h}_{2}\end{bmatrix}\right]^{-1} \end{aligned}$$

with the definition $\mathbf{H}_{i}^{H} = [\mathbf{h}_{i}\mathbf{U}_{i}^{H}]$. The inner inverse matrix is

$$\left(\begin{bmatrix} \mathbf{U}_1^H\\ \mathbf{U}_2^H \end{bmatrix} \begin{bmatrix} \mathbf{U}_1\mathbf{U}_2 \end{bmatrix} - z\mathbf{I}_{n_1+n_2} \right)^{-1} = \begin{bmatrix} \mathbf{U}_1^H\mathbf{U}_1 - z\mathbf{I}_{n_1} & \mathbf{U}_1^H\mathbf{U}_2 \\ \mathbf{U}_2^H\mathbf{U}_1 & \mathbf{U}_2^H\mathbf{U}_2 - z\mathbf{I}_{n_2} \end{bmatrix}^{-1}$$

on which we apply another block matrix inverse lemma. The upper-left ($n_1 \times n_1$) entry equals

$$\left(-z\mathbf{U}_{1}^{\mathsf{H}}(\mathbf{U}_{2}\mathbf{U}_{2}^{\mathsf{H}}-z\mathbf{I}_{N-1})^{-1}\mathbf{U}_{1}-z\mathbf{I}_{n_{1}}\right)^{-1}$$

For the second block diagonal entry, it suffices to revert all 1's in 2's and vice-versa.

R. Couillet (Supélec)

・ロン ・四 ・ ・ ヨン ・ ヨン

Pastur's method (2)

The other two terms do not depend on h_1 , h_2 . We now use both results,

For $\mathbf{x} \in \mathbb{C}^N$, $\mathbf{y} \in \mathbb{C}^N$ i.i.d. with zero mean, variance 1/N, $\mathbf{A} \in \mathbb{C}^{N \times N}$ Hermitian with bounded spectral norm,

$$\mathbf{x}^{\mathsf{H}}\mathbf{A}\mathbf{x} - \frac{1}{N} \operatorname{tr} \mathbf{A} \stackrel{\text{a.s.}}{\longrightarrow} \mathbf{0}$$

 $\mathbf{x}^{\mathsf{H}}\mathbf{A}\mathbf{y} \stackrel{\text{a.s.}}{\longrightarrow} \mathbf{0}$

Since \mathbf{R}_1 , \mathbf{R}_2 are diagonal, $\mathbf{h}_i = \sqrt{r_{i1} \mathbf{T}_i^2} \mathbf{x}_i$, with the notation $\mathbf{R}_i = \text{diag}(r_{i1}, \dots, r_{iN})$. Therefore, using the trace and rank-1 perturbation lemma,

$$\left(\mathbf{H}_{1}\mathbf{H}_{1}^{H} + \mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N} \right)_{11}^{-1} \rightarrow \left[-z - zr_{11}\frac{1}{n_{1}} \operatorname{tr} \mathbf{T}_{1} \left(-z\mathbf{H}_{1}^{H}(\mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N})^{-1}\mathbf{H}_{1} - z\mathbf{I}_{n_{1}} \right)^{-1} - zr_{21}\frac{1}{n_{2}} \operatorname{tr} \mathbf{T}_{2} \left(-z\mathbf{H}_{2}^{H}(\mathbf{H}_{1}\mathbf{H}_{1}^{H} - z\mathbf{I}_{N})^{-1}\mathbf{H}_{1} - z\mathbf{I}_{n_{2}} \right)^{-1} \right]$$

ecker models and Variance Profiles

Pastur's method (3)

Now, denoting $\mathbf{H}_i = [\tilde{\mathbf{h}}_i \tilde{\mathbf{U}}_i]$ (column selection instead of row),

$$\mathbf{T}_{1} \left(-z\mathbf{H}_{1}^{H}(\mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N})^{-1}\mathbf{H}_{1} - z\mathbf{I}_{n_{1}} \right)_{11}^{-1} = \tau_{11} \left[-z - z\tilde{\mathbf{h}}_{1}^{H} \left(\tilde{\mathbf{U}}_{1}\tilde{\mathbf{U}}_{1}^{H} + \mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N} \right)^{-1} \tilde{\mathbf{h}}_{1} \right]^{-1} \\ \rightarrow \tau_{11} \left[-z - zc_{1}\tau_{11}\frac{1}{N} \operatorname{tr} \mathbf{R}_{1} \left(\mathbf{H}_{1}\mathbf{H}_{1}^{H} + \mathbf{H}_{2}\mathbf{H}_{2}^{H} - z\mathbf{I}_{N} \right)^{-1} \right]^{-1}$$

with τ_{ij} the jth diagonal entry of \mathbf{T}_i . A similar result holds when changing 1's in 2's. Call now

$$f_i = \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(\mathbf{H}_1 \mathbf{H}_1^{\mathsf{H}} + \mathbf{H}_2 \mathbf{H}_2^{\mathsf{H}} - z \mathbf{I}_N \right)^{-2}$$

and

$$\bar{f}_i = \frac{1}{n_i} \operatorname{tr} \mathbf{T}_i \left(-z \mathbf{H}_1^{\mathsf{H}} (\mathbf{H}_2 \mathbf{H}_2^{\mathsf{H}} - z \mathbf{I}_N)^{-1} \mathbf{H}_1 - z \mathbf{I}_{n_1} \right)^{-1}$$

we have shown

$$f_i = \lim_{N \to \infty} \frac{1}{N} \operatorname{tr} \mathbf{R}_i \left(-z \overline{f}_1 \mathbf{R}_1 - z \overline{f}_2 \mathbf{R}_2 - z \mathbf{I}_N \right)^{-1}$$

$$\overline{f}_i = \lim_{N \to \infty} \frac{1}{n_i} \operatorname{tr} \mathbf{T}_i \left(-z c_i f_i \mathbf{T}_i - z \mathbf{I}_{n_i} \right)^{-1}$$

We will use here the "guess-work" method to find the deterministic equivalent. Consider the simpler case K = 1.

Back to the original notations, we seek a matrix **D** such that

$$\frac{1}{N}\operatorname{tr}(\mathbf{B}_N - z\mathbf{I}_N)^{-1} - \frac{1}{N}\operatorname{tr}\mathbf{D}^{-1} \xrightarrow{\text{a.s.}} 0$$

as $N \to \infty$.

Resolvent lemma

For invertible A, B matrices,

$$A^{-1} - B^{-1} = -A^{-1}(A - B)B^{-1}$$

Taking the matrix differences,

$$-\mathbf{D}^{-1} + (\mathbf{B}_N - z\mathbf{I}_N)^{-1} = \mathbf{D}^{-1}(\mathbf{A} + \mathbf{R}^{\frac{1}{2}}\mathbf{X}\mathbf{T}\mathbf{X}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}} - z\mathbf{I}_N - \mathbf{D})(\mathbf{B}_N - z\mathbf{I}_N)^{-1}$$

It seems convenient to take $\mathbf{D} = \mathbf{A} - z\mathbf{I}_N - zp_N \mathbf{R}$ with p_N left to be defined

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

"Silverstein's" lemma

Let A be Hermitian invertible, then for any vector x and scalar τ such that $\mathbf{A} + \tau \mathbf{x} \mathbf{x}^{H}$ is invertible

$$\mathbf{x}^{\mathsf{H}}(\mathbf{A} + au \mathbf{x} \mathbf{x}^{\mathsf{H}})^{-1} = rac{\mathbf{x}^{\mathsf{H}} \mathbf{A}^{-1}}{1 + au \mathbf{x} \mathbf{A}^{-1} \mathbf{x}^{\mathsf{H}}}$$

With $\mathbf{D} = \mathbf{A} - z\mathbf{I}_N - zp_N\mathbf{R}$,

$$-\mathbf{D}^{-1} + (\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} = \mathbf{D}^{-1}(\mathbf{A} + \mathbf{R}^{\frac{1}{2}}\mathbf{X}\mathbf{T}\mathbf{X}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}} - z\mathbf{I}_{N} - \mathbf{D})(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

$$= \mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\left(\mathbf{X}\mathbf{T}\mathbf{X}^{\mathsf{H}}\right)\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} + zp_{N}\mathbf{D}^{-1}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

$$= \mathbf{D}^{-1}\sum_{j=1}^{n}\tau_{j}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}\mathbf{x}_{j}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} + zp_{N}\mathbf{D}^{-1}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

$$= \sum_{j=1}^{n}\tau_{j}\frac{\mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}\mathbf{x}_{j}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)} - z\mathbf{I}_{N})^{-1}}{1 + \tau_{j}\mathbf{x}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)} - z\mathbf{I}_{N})^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}} + zp_{N}\mathbf{D}^{-1}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

poice of p_{N} : $p_{N} = -\frac{1}{2}\sum_{j=1}^{n}\sqrt{\frac{\tau_{j}}{1 + \tau_{j}\mathbf{x}^{\mathsf{H}}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)} - z\mathbf{I}_{N})^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}}$

$$\frac{1}{N}\operatorname{tr}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1} - \frac{1}{N}\operatorname{tr}\mathbf{D}^{-1} = \sum_{j=1}^{n} \tau_{j} \left[\frac{\mathbf{x}_{j}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)}-z\mathbf{I}_{N})^{-1}\mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}}{1 + \tau_{j}\mathbf{x}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)}-z\mathbf{I}_{N})^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}} - \frac{\frac{1}{N}\operatorname{tr}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\mathbf{R}\mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}}{1 + c\tau_{j}\frac{1}{N}\operatorname{tr}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}}\mathbf{R}^{\frac{1}{2}}\mathbf{R}^{\frac{1}{2}}\right]$$

"Silverstein's" lemma

Let A be Hermitian invertible, then for any vector x and scalar τ such that $\mathbf{A} + \tau \mathbf{x} \mathbf{x}^{H}$ is invertible

$$\mathbf{x}^{\mathsf{H}}(\mathbf{A} + au\mathbf{x}\mathbf{x}^{\mathsf{H}})^{-1} = rac{\mathbf{x}^{\mathsf{H}}\mathbf{A}^{-1}}{1 + au\mathbf{x}\mathbf{A}^{-1}\mathbf{x}^{\mathsf{H}}}$$

With $\mathbf{D} = \mathbf{A} - z\mathbf{I}_N - zp_N\mathbf{R}$,

$$-\mathbf{D}^{-1} + (\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} = \mathbf{D}^{-1}(\mathbf{A} + \mathbf{R}^{\frac{1}{2}}\mathbf{X}\mathbf{T}\mathbf{X}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}} - z\mathbf{I}_{N} - \mathbf{D})(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

$$= \mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\left(\mathbf{X}\mathbf{T}\mathbf{X}^{\mathsf{H}}\right)\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} + zp_{N}\mathbf{D}^{-1}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

$$= \mathbf{D}^{-1}\sum_{j=1}^{n}\tau_{j}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}\mathbf{x}_{j}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1} + zp_{N}\mathbf{D}^{-1}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$

$$= \sum_{j=1}^{n}\tau_{j}\frac{\mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}\mathbf{x}_{j}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)} - z\mathbf{I}_{N})^{-1}}{1 + \tau_{j}\mathbf{x}^{\mathsf{H}}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)} - z\mathbf{I}_{N})^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}} + zp_{N}\mathbf{D}^{-1}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$$
Choice of p_{N} : $p_{N} = -\frac{1}{z}\sum_{j=1}^{n}\frac{\tau_{j}}{1 + \tau_{j}c\frac{\pi}{N}}\mathbf{t}\mathbf{R}(\mathbf{B}_{N} - z\mathbf{I}_{N})^{-1}$

$$\frac{1}{N}\operatorname{tr}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1} - \frac{1}{N}\operatorname{tr}\mathbf{D}^{-1} = \sum_{j=1}^{n} \tau_{j} \left[\frac{\mathbf{x}_{j}^{H}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)}-z\mathbf{I}_{N})^{-1}\mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}}{1 + \tau_{j}\mathbf{x}^{H}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{(j)}-z\mathbf{I}_{N})^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{x}_{j}} - \frac{\frac{1}{N}\operatorname{tr}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\mathbf{R}\mathbf{D}^{-1}\mathbf{R}^{\frac{1}{2}}\mathbf{R}}{1 + c\tau_{j}\frac{1}{N}\operatorname{tr}\mathbf{R}^{\frac{1}{2}}(\mathbf{B}_{N}-z\mathbf{I}_{N})^{-1}\mathbf{R}} \right]$$

R. Couillet (Supélec

The same can be done for $\frac{1}{N}$ tr $\mathbf{R}(\mathbf{B}_N - z\mathbf{I}_N)^{-1}$ and we get

$$\frac{1}{N}\operatorname{tr} \mathbf{R}(\mathbf{B}_N - z\mathbf{I}_N)^{-1} - \frac{1}{N}\operatorname{tr} \mathbf{R}\mathbf{D}^{-1} \to 0$$

To show that the convergence is almost sure, we use truncation and centralization.

Truncation and centralization

Replace \mathbf{X}_N , \mathbf{T}_N and \mathbf{R}_N by $\overline{\mathbf{X}}_N$, $\overline{\mathbf{T}}_N$ and $\overline{\mathbf{R}}_N$ in the following fashion

$$\left(\mathbf{\bar{X}}_{N}\right)_{ij} = (\mathbf{X}_{N})_{ij} \cdot I_{\{(\mathbf{X}_{N})_{ij} < g_{N}\}}$$

for g_N that grows

- fast enough to ensure $F^{\mathbf{B}_N} F^{\mathbf{\overline{B}}_N} \Rightarrow 0$
- slow enough to ensure $\frac{1}{N} \operatorname{tr}(\bar{\mathbf{B}}_N z\mathbf{I}_N)^{-1} \frac{1}{N} \operatorname{tr} \bar{\mathbf{R}} \bar{\mathbf{D}}^{-1} \xrightarrow{\text{a.s.}} 0$

Showing that some moment of the terms appearing in the difference is summable, applying Borel-Cantelli lemma, we have almost sure convergence.

DQA

Kronecker models and Variance Profiles Application of the Borel-Cantelli lemma

To complete the proof of almost sure convergence, denote

$$w_N = rac{1}{N} \operatorname{tr} \mathbf{R} (\mathbf{B}_N - z \mathbf{I}_N)^{-1} - rac{1}{N} \operatorname{tr} \mathbf{R} \mathbf{D}^{-1}$$

We divide w_N is 4 successive differences $w_N = w_N^1 + \ldots + w_N^4$. The strategy is as follows:

for all i, show that

$$\mathrm{E}|w_N^i|^6 < h_N^i$$

where h_N^i is summable

• for $\varepsilon > 0$, applying Markov's inequality,

$$P(|h_N^i| > arepsilon) < rac{1}{arepsilon^6} \mathrm{E} |w_N^i|^6$$

which is summable.

- from Borel-Cantelli, this implies $P(|h_N^i| > \varepsilon \text{ i.o.}) = 0$
- therefore the set {ω : lim_N m_{B_N(ω)}(z) − m^o_N(z) = 0}^c = ∪_ε {|m_{B_N(z)} − m^o_N(z)| ≥ ε i.o.} is a sum of zero probability sets.
- the union above can be done on rational ε's and then the union has probability zero.
- for the z in question, there therefore exists Ω_z ⊂ Ω for which lim_N m_{B_N(ω)}(z) − m^c_N(z) = 0. It suffices then to countably sample C⁺ to generate a dense set of z's which satisfy convergence with probability 1. By local analyticity of m^c_N and m_{B_N}, this is true for all z ∈ C⁺.

Image: A matrix

Fix now N and consider the implicit equation in e

$$\mathbf{e} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{A} + \int \frac{\tau d F^{\mathsf{T}}(\tau)}{1 + c \tau \mathbf{e}} \mathbf{R} - z \mathbf{I}_{N} \right)^{-1}$$

• Existence: for existence, consider the matrices $T_{[j]} = T \otimes I_j$, $R_{[j]} = R \otimes I_j$, $A_{[j]} = A \otimes I_j$. The value of

$$f(\mathbf{e}) = \frac{1}{N} \operatorname{tr} \mathbf{R} \left(\mathbf{A}_{[j]} + \int \frac{\tau d F^{\mathsf{T}_{[j]}}(\tau)}{1 + c\tau e} \mathbf{R}_{[j]} - z \mathbf{I}_{N} \right)^{-1}$$

is constant whatever *m*. Now, take $\omega \in \Omega$ such that $w_N(\omega) \to 0$. For this ω , write

$$\tilde{e}(z) = \frac{1}{N} \operatorname{tr}(\mathbf{B}_N(\omega) - z \mathbf{I}_N)^{-1}$$

Showing that $\tilde{e}(z)$ and $\frac{\tau}{1+c\tau e}$ are uniformly bounded over *j*, we can take a subsequence of $\tilde{e}(z)$ that goes to, say e. For this e, $w_N = 0$ and then it's a solution.

• Uniqueness: Uniqueness is shown by taking a second solution <u>e</u> and by proving that

$$\mathbf{e} - \underline{\mathbf{e}} = \gamma(\mathbf{e} - \underline{\mathbf{e}})$$

with $\gamma < 1$.

・ロン ・日ン・ ・日ン・

Deterministic equivalent approach: existence and uniqueness

Fix now N and consider the implicit equation in e

$$\mathbf{e} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{A} + \int \frac{\tau d \mathbf{F}^{\mathsf{T}}(\tau)}{1 + c \tau \mathbf{e}} \mathbf{R} - z \mathbf{I}_{N} \right)^{-1}$$

• Existence: for existence, consider the matrices $\mathbf{T}_{[j]} = \mathbf{T} \otimes \mathbf{I}_j$, $\mathbf{R}_{[j]} = \mathbf{R} \otimes \mathbf{I}_j$, $\mathbf{A}_{[j]} = \mathbf{A} \otimes \mathbf{I}_j$. The value of

$$f(e) = \frac{1}{N} \operatorname{tr} \mathbf{R} \left(\mathbf{A}_{[j]} + \int \frac{\tau dF^{\mathsf{T}_{[j]}}(\tau)}{1 + c\tau e} \mathbf{R}_{[j]} - z \mathbf{I}_N \right)^{-1}$$

is constant whatever *m*. Now, take $\omega \in \Omega$ such that $w_N(\omega) \to 0$. For this ω , write

$$\tilde{\mathbf{e}}(z) = \frac{1}{N} \operatorname{tr}(\mathbf{B}_N(\omega) - z \mathbf{I}_N)^{-1}$$

Showing that $\tilde{e}(z)$ and $\frac{\tau}{1+c\tau e}$ are uniformly bounded over *j*, we can take a subsequence of $\tilde{e}(z)$ that goes to, say *e*. For this *e*, $w_N = 0$ and then it's a solution.

• Uniqueness: Uniqueness is shown by taking a second solution e and by proving that

$$\mathbf{e} - \underline{\mathbf{e}} = \gamma(\mathbf{e} - \underline{\mathbf{e}})$$

with $\gamma < 1$.

Deterministic equivalent approach: existence and uniqueness

Fix now N and consider the implicit equation in e

$$\mathbf{e} = \frac{1}{N} \operatorname{tr} \mathbf{R}_{i} \left(\mathbf{A} + \int \frac{\tau d \mathbf{F}^{\mathsf{T}}(\tau)}{1 + c \tau \mathbf{e}} \mathbf{R} - z \mathbf{I}_{N} \right)^{-1}$$

• Existence: for existence, consider the matrices $T_{[j]} = T \otimes I_j$, $R_{[j]} = R \otimes I_j$, $A_{[j]} = A \otimes I_j$. The value of

$$f(e) = \frac{1}{N} \operatorname{tr} \mathbf{R} \left(\mathbf{A}_{[j]} + \int \frac{\tau d F^{\mathsf{T}_{[j]}}(\tau)}{1 + c \tau e} \mathbf{R}_{[j]} - z \mathbf{I}_N \right)^{-1}$$

is constant whatever *m*. Now, take $\omega \in \Omega$ such that $w_N(\omega) \to 0$. For this ω , write

$$\tilde{\mathbf{e}}(z) = \frac{1}{N} \operatorname{tr}(\mathbf{B}_N(\omega) - z \mathbf{I}_N)^{-1}$$

Showing that $\tilde{e}(z)$ and $\frac{\tau}{1+c\tau e}$ are uniformly bounded over *j*, we can take a subsequence of $\tilde{e}(z)$ that goes to, say *e*. For this *e*, $w_N = 0$ and then it's a solution.

• Uniqueness: Uniqueness is shown by taking a second solution <u>e</u> and by proving that

$$\mathbf{e} - \underline{\mathbf{e}} = \gamma(\mathbf{e} - \underline{\mathbf{e}})$$

with $\gamma < 1$.

• It then suffices to show that $\frac{1}{N}$ tr $\mathbf{R}(\mathbf{B}_N - z\mathbf{I}_N)^{-1} - e \xrightarrow{\text{a.s.}} 0$

This exploits the fact that, for some ω in a probability one space, $\frac{1}{N}$ tr $\mathbf{R}(\mathbf{B}_N(\omega) - z\mathbf{I}_N)^{-1}$ is w_N away from $\frac{1}{N}\mathbf{D}^{-1}\mathbf{R}$. Using the same argument as for uniqueness, we have

$$\mathbf{e} - \frac{1}{N} \operatorname{tr} \mathbf{R} (\mathbf{B}_N(\omega) - z \mathbf{I}_N)^{-1} = \gamma (\mathbf{e} - \frac{1}{N} \operatorname{tr} \mathbf{R} (\mathbf{B}_N(\omega) - z \mathbf{I}_N)^{-1}) + w_N$$

for $\gamma < 1$.

• The same argument applies to $m_N(z) - m_N^{\circ}(z)$.

イロト イヨト イヨト イヨト

Remember now that

$$\int \log(1+xt)dF(t) = \int_{1/x}^{\infty} \left(\frac{1}{t} - m_F(-t)\right)dt$$

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," *submitted to IEEE Trans. on Information Theory.*

Theorem

Under the previous model for \mathbf{B}_N , as N, n_k grow large,

$$\frac{1}{N}\log\det(\mathbf{B}_N + x\mathbf{I}_N) - \left[\frac{1}{N}\log\det\left(\mathbf{I}_N + \sum_{k=1}^{K}\bar{\mathbf{e}}_k(-1/x)\mathbf{R}_k\right) + \sum_{k=1}^{K}\frac{1}{N}\log\det\left(\mathbf{I}_{n_k} + c_k\mathbf{e}_k(-1/x)\mathbf{T}_k\right) - \frac{1}{x}\sum_{k=1}^{K}\bar{\mathbf{e}}_k(-1/x)\mathbf{e}_k(-1/x)\right] \xrightarrow{\text{a.s.}} 0$$

(ロ) (同) (E) (E)

Remember now that

$$\int \log(1+xt)dF(t) = \int_{1/x}^{\infty} \left(\frac{1}{t} - m_F(-t)\right)dt$$

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," *submitted to IEEE Trans. on Information Theory.*

Theorem

Under the previous model for \mathbf{B}_N , as N, n_k grow large,

$$\frac{1}{N}\log\det(\mathbf{B}_N + x\mathbf{I}_N) - \left[\frac{1}{N}\log\det\left(\mathbf{I}_N + \sum_{k=1}^{K}\bar{\mathbf{e}}_k(-1/x)\mathbf{R}_k\right) + \sum_{k=1}^{K}\frac{1}{N}\log\det\left(\mathbf{I}_{n_k} + c_k\mathbf{e}_k(-1/x)\mathbf{T}_k\right) - \frac{1}{x}\sum_{k=1}^{K}\bar{\mathbf{e}}_k(-1/x)\mathbf{e}_k(-1/x)\right] \xrightarrow{\text{a.s.}} 0$$

(a)

Remember now that

$$\int \log(1+xt)dF(t) = \int_{1/x}^{\infty} \left(\frac{1}{t} - m_F(-t)\right)dt$$

R. Couillet, M. Debbah, J. W. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," *submitted to IEEE Trans. on Information Theory.*

Theorem

Under the previous model for \mathbf{B}_N , as N, n_k grow large,

$$\frac{1}{N}\log\det(\mathbf{B}_N + x\mathbf{I}_N) - \left[\frac{1}{N}\log\det\left(\mathbf{I}_N + \sum_{k=1}^{K}\bar{\mathbf{e}}_k(-1/x)\mathbf{R}_k\right) + \sum_{k=1}^{K}\frac{1}{N}\log\det\left(\mathbf{I}_{n_k} + c_k\mathbf{e}_k(-1/x)\mathbf{T}_k^{\frac{1}{2}}\mathbf{P}_k\mathbf{T}_k^{\frac{1}{2}}\right) - \frac{1}{x}\sum_{k=1}^{K}\bar{\mathbf{e}}_k(-1/x)\mathbf{e}_k(-1/x)\right] \xrightarrow{\text{a.s.}} 0$$

(ロ) (同) (E) (E)

Variance profile

W. Hachem, Ph. Loubaton, J. Najim, "Deterministic equivalents for certain functionals of large random matrices," Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem

Let $\mathbf{X}_N \in \mathbb{C}^{N \times n}$ have independent entries with $(i, j)^{th}$ entry of zero mean and variance $\frac{1}{n}\sigma_{ij}^2$. Let $\mathbf{A}_N \in \mathbb{R}^{N \times n}$ be deterministic with uniformly bounded column norm. Then

$$\frac{1}{N}\operatorname{tr}\left((\mathbf{X}_N+\mathbf{A}_N)(\mathbf{X}_N+\mathbf{A}_N)^{\mathsf{H}}-z\mathbf{I}_N\right)^{-1}-\frac{1}{N}\operatorname{tr}\mathbf{T}_N(z)\xrightarrow{\mathrm{a.s.}}0$$

where $\mathbf{T}_N(z)$ is the unique function that solves

$$\mathbf{T}_N(z) = \left(\Psi^{-1}(z) - z\mathbf{A}_N\tilde{\Psi}(z)\mathbf{A}_N^{\mathsf{T}}\right)^{-1}, \quad \tilde{\mathbf{T}}_N(z) = \left(\tilde{\Psi}^{-1}(z) - z\mathbf{A}_N^{\mathsf{T}}\Psi(z)\mathbf{A}_N\right)^{-1}$$

with $\Psi(z) = \text{diag}(\psi_i(z)), \tilde{\Psi}(z) = \text{diag}(\tilde{\psi}_i(z))$, with entries defined as

$$\psi_i(z) = -\left(z(1+\frac{1}{n}\operatorname{tr} \tilde{\mathbf{D}}_i \tilde{\mathbf{T}}(z))\right)^{-1}, \quad \tilde{\psi}_j(z) = -\left(z(1+\frac{1}{n}\operatorname{tr} \mathbf{D}_j \mathbf{T}(z))\right)^{-1}$$

and $\mathbf{D}_j = \text{diag}(\sigma_{ij}^2, 1 \le i \le N), \, \tilde{\mathbf{D}}_i = \text{diag}(\sigma_{ij}^2, 1 \le j \le n)$

W. Hachem, Ph. Loubaton, J. Najim, "Deterministic equivalents for certain functionals of large random matrices," Annals of Applied Probability, vol. 17, no. 3, pp. 875-930, 2007.

Theorem

For the previous model, we also have that

$$\frac{1}{N} \operatorname{E} \log \det \left(\mathbf{I}_{N} + \frac{1}{\sigma^{2}} (\mathbf{X}_{N} + \mathbf{A}_{N}) (\mathbf{X}_{N} + \mathbf{A}_{N})^{\mathsf{H}} \right)$$

has deterministic equivalent

$$\frac{1}{N}\log\det\left[\frac{1}{\sigma^2}\Psi(-\sigma^2)^{-1} + \mathbf{A}_N\tilde{\Psi}(-\sigma^2)\mathbf{A}_N^{\mathsf{T}}\right] + \frac{1}{N}\log\det\frac{1}{\sigma^2}\Psi(-\sigma^2)^{-1} - \frac{\sigma^2}{nN}\sum_{i,j}\sigma_{ij}^2\mathbf{T}_{ii}(-\sigma^2)\tilde{\mathbf{T}}_{jj}(-\sigma^2)$$

necker models and Variance Profiles

Alternative strategies

There exists alternative proof strategies for specific models.

- The Gaussian method:
 - this technique is meant for random Gaussian X matrices
 - based on two ingredients: a Gaussian integration by parts formula, and the Nash-Poincaré inequality.
 - advantages:
 - sequential method, easy to use
 - give results on convergence speed
 - proves convergence of Gaussian-based models of type $N(Em_N m_N^{\circ}) \rightarrow 0$
 - ⇒ very convenient to prove total capacity convergence, instead of average capacity.
 - orawbacks:
 - somewhat painful to use, leads to much calculus, less "elegant"
 - proves convergence of Gaussian-based models of type $N(Em_N m_N^{\circ}) \rightarrow 0$
 - ightarrow ightarrow less powerful than almost sure results
 - → limited to Gaussian.
- Diagrammatic approaches: moment "drawing"-based approach that uses combinatorics to infer limiting results
- Replica methods: physics-based method, non-mathematically accurate, to conjecture limiting results.

Alternative strategies

There exists alternative proof strategies for specific models.

- The Gaussian method:
 - this technique is meant for random Gaussian X matrices
 - based on two ingredients: a Gaussian integration by parts formula, and the Nash-Poincaré inequality.
 - advantages:
 - sequential method, easy to use
 - give results on convergence speed
 - proves convergence of Gaussian-based models of type $N(Em_N m_N^\circ) \rightarrow 0$
 - ⇒ very convenient to prove total capacity convergence, instead of average capacity.
 - or drawbacks:
 - somewhat painful to use, leads to much calculus, less "elegant"
 - proves convergence of Gaussian-based models of type $N(Em_N m_N^{\circ}) \rightarrow 0$
 - ightarrow ightarrow less powerful than almost sure results
 - → limited to Gaussian.
- Diagrammatic approaches: moment "drawing"-based approach that uses combinatorics to infer limiting results
- Replica methods: physics-based method, non-mathematically accurate, to conjecture limiting results.

Outline

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

Touching the boundary: optimal power allocation

Case study: exchanging relevant data in large self-organized networks
 Orthogonal CDMA networks

Spectrum sharing in multiple access channels

() < </p>
Capacity expressions. Rate Regions Broadcast channel with Kronecker model

Figure: Downlink scenario in multi-user broadcast channel

≣ ▶ ≣ •⁄२.० 29/10/2009 24/57

S. Vishwanath, N. Jindal and A. Goldsmith, "Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels," IEEE Trans. on Information Theory, vol. 49, no. 10, 2003.

Assume all channels are modeled as Kronecker; for k = 1, ..., K

$$\mathbf{H}_k = \mathbf{R}_k^{\frac{1}{2}} \mathbf{X}_k \mathbf{T}_k^{\frac{1}{2}}$$

• Rate region of multiple access channel for K users with channels $\mathbf{H} = [\mathbf{H}_1, \dots, \mathbf{H}_K]$,

$$\begin{aligned} \mathbf{C}_{\mathrm{MAC}}(P_{1},\ldots,P_{K};\mathbf{H}) &= \\ & \bigcup_{\substack{\mathrm{tr}(\mathbf{P}_{i}) \leq P_{i} \\ \mathbf{P}_{i} \geq 0 \\ i=1,\ldots,K}} \left\{ \{R_{i},1 \leq i \leq K\} : \sum_{i \in \mathcal{S}} R_{i} \leq \frac{1}{N} \log \left| \mathbf{I} + \frac{1}{\sigma^{2}} \sum_{i \in \mathcal{S}} \mathbf{H}_{i} \mathbf{P}_{i} \mathbf{H}_{i}^{\mathsf{H}} \right|, \forall \mathcal{S} \subset \{1,\ldots,K\} \right\} \end{aligned}$$

• Rate region of broadcast channel for $\mathbf{H}^{H} = [\mathbf{H}_{1}, \dots, \mathbf{H}_{K}]^{H}$ with total transmit power P,

$$\mathbf{C}_{\mathrm{BC}}(P;\mathbf{H}^{\mathrm{H}}) = \bigcup_{\sum_{k=1}^{K} P_k \leq P} \mathbf{C}_{\mathrm{MAC}}(P_1,\ldots,P_K;\mathbf{H})$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Under the previous model for \mathbf{B}_N , as N, n_k grow large,

$$\begin{aligned} \frac{1}{N} \log \left| \mathbf{I} + \frac{1}{\sigma^2} \sum_{k \in \mathcal{S}} \mathbf{H}_k \mathbf{P}_k \mathbf{H}_k^{\mathsf{H}} \right| &- \left[\frac{1}{N} \log \det \left(\mathbf{I}_N + \sum_{k \in \mathcal{S}} \bar{\mathbf{e}}_k (-1/x) \mathbf{R}_k \right) \right. \\ &+ \sum_{k \in \mathcal{S}} \frac{1}{N} \log \det \left(\mathbf{I}_{n_k} + c_k e_k (-1/x) \mathbf{T}_k^{\frac{1}{2}} \mathbf{P}_k \mathbf{T}_k^{\frac{1}{2}} \right) \\ &- \frac{1}{x} \sum_{k=1}^K \bar{\mathbf{e}}_k (-1/x) e_k (-1/x) \right] \xrightarrow{\text{a.s.}} 0 \end{aligned}$$

(ロ) (同) (E) (E)

Outline

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

Touching the boundary: optimal power allocation

Case study: exchanging relevant data in large self-organized networks
 Orthogonal CDMA networks

() < </p>

Rate region boundary

• it is desirable to determine the boundary of the rate region

- for *theoretical purposes*: to fully determine the rate region and alleviate the \bigcup_{P_4,\ldots,P_k} sign.
- for practical purposes: to allow users/the base station to transmit at optimal rate.
- it is also desirable to identify the key parameters of the system
 - in theory: to extract physical meanings
 - in theory: to identify the minimum feedback requirements
 - in practice: to minimize information feedback
 - in practice: to ease power allocation processing

Rate region boundary

- it is desirable to determine the boundary of the rate region
 - for *theoretical purposes*: to fully determine the rate region and alleviate the \bigcup_{P_1,\ldots,P_k} sign.
 - for practical purposes: to allow users/the base station to transmit at optimal rate.
- it is also desirable to identify the key parameters of the system
 - in theory: to extract physical meanings
 - in theory: to identify the minimum feedback requirements
 - in practice: to minimize information feedback
 - in practice: to ease power allocation processing

Consider a subset $S = \{i_1, \ldots, i_{|S|}\} \subset \{1, \ldots, K\}.$

• With $\mathbf{T}_k = \mathbf{U}_k \mathbf{D}_k \mathbf{U}_k^H$, $\mathbf{D}_k = \text{diag}(\tau_{k1}, \dots, \tau_{kn_k})$ diagonal, the capacity-achieving matrices $\mathbf{P}_{i_1}^{\star}, \dots, \mathbf{P}_{i_{|S|}}^{\star}$ satisfy

(1) $\mathbf{P}_{k}^{*} = \mathbf{U}_{k} \mathbf{Q}_{k}^{*} \mathbf{U}_{k}^{\mathsf{H}}$, with \mathbf{Q}_{k}^{*} diagonal; i.e. the eigenspace of \mathbf{P}_{k}^{*} is the same as the eigenspace of \mathbf{T}_{k} . **(2)** with $\bar{\mathbf{e}}_{k}^{*} = \bar{\mathbf{e}}_{k}(-\sigma^{2}, \mathbf{P}_{k}^{*})$, the *i*th entry q_{ki}^{*} of \mathbf{Q}_{k}^{*} satisfies

$$q_{ki}^{\star} = \left(\mu_{k} - \frac{1}{c_{k}e_{k}^{\star}\tau_{ki}}\right)^{+}$$

where the μ_k 's are evaluated such that tr $(\mathbf{Q}_k) = P_k$.

- an iterative water-filling method allows to retrieve the q^{*}_{ki}'s by successively
 - for a given set $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{|S|}}$, evaluating $e_{i_1}, \ldots, e_{i_{|S|}}$
 - updating the new optimal solution $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{1,S_1}}$ for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

ヘロン ヘロン ヘビン ヘビン

Consider a subset $S = \{i_1, \ldots, i_{|S|}\} \subset \{1, \ldots, K\}.$

With T_k = U_kD_kU^H_k, D_k = diag(τ_{k1},...,τ_{kn_k}) diagonal, the capacity-achieving matrices P^{*}_{i1},..., P^{*}_{i|S1} satisfy
 P^{*}_k = U_kQ^{*}_kU^H_k, with Q^{*}_k diagonal; i.e. the eigenspace of P^{*}_k is the same as the eigenspace of T_k.
 with θ^{*}_k = θ_k(-σ², P^{*}_k), the ith entry q^{*}_{k1} of Q^{*}_k satisfies

$$q_{ki}^{\star} = \left(\mu_k - \frac{1}{c_k e_k^{\star} \tau_{ki}}\right)^{+}$$

where the μ_k 's are evaluated such that tr(\mathbf{Q}_k) = P_k .

- an iterative water-filling method allows to retrieve the q^{*}_{ki}'s by successively
 - for a given set $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{|S|}}$, evaluating $e_{i_1}, \ldots, e_{i_{|S|}}$
 - updating the new optimal solution $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{1,S1}}$ for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

・ロ・・ (日・・ (日・・ 日・)

Consider a subset $S = \{i_1, \ldots, i_{|S|}\} \subset \{1, \ldots, K\}.$

With T_k = U_kD_kU^H_k, D_k = diag(τ_{k1},...,τ_{knk}) diagonal, the capacity-achieving matrices P^{*}_{i1},..., P^{*}_{i|S|} satisfy
 P^{*}_k = U_kQ^{*}_kU^H_k, with Q^{*}_k diagonal; i.e. the eigenspace of P^{*}_k is the same as the eigenspace of T_k.
 with ē^{*}_k = ē_k(-σ², P^{*}_k), the *i*th entry q^{*}_{ki} of Q^{*}_k satisfies

$$\mathbf{q}_{ki}^{\star} = \left(\mu_{k} - \frac{1}{\mathbf{c}_{k}\mathbf{e}_{k}^{\star}\tau_{ki}}\right)^{\dagger}$$

where the μ_k 's are evaluated such that $tr(\mathbf{Q}_k) = P_k$.

- an iterative water-filling method allows to retrieve the q^{*}_{ki}'s by successively
 - for a given set $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{LSI}}$, evaluating $e_{i_1}, \ldots, e_{i_{LSI}}$
 - updating the new optimal solution $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{1,S_1}}$ for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Consider a subset $S = \{i_1, \ldots, i_{|S|}\} \subset \{1, \ldots, K\}.$

With T_k = U_kD_kU^H_k, D_k = diag(τ_{k1},...,τ_{knk}) diagonal, the capacity-achieving matrices P^{*}_{i1},..., P^{*}_{i1S1} satisfy
 P^{*}_k = U_kQ^{*}_kU^H_k, with Q^{*}_k diagonal; i.e. the eigenspace of P^{*}_k is the same as the eigenspace of T_k.
 with ē^{*}_k = ē_k(-σ², P^{*}_k), the *i*th entry q^{*}_{ki} of Q^{*}_k satisfies

$$q_{ki}^{\star} = \left(\mu_{k} - \frac{1}{C_{k} e_{k}^{\star} \tau_{ki}}\right)^{+}$$

where the μ_k 's are evaluated such that $tr(\mathbf{Q}_k) = P_k$.

- an iterative water-filling method allows to retrieve the q_{ki}^{\star} 's by successively
 - for a given set $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{|S|}}$, evaluating $e_{i_1}, \ldots, e_{i_{|S|}}$
 - updating the new optimal solution $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{|S|}}$ for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Consider a subset $S = \{i_1, \ldots, i_{|S|}\} \subset \{1, \ldots, K\}.$

With T_k = U_kD_kU^H_k, D_k = diag(τ_{k1},...,τ_{knk}) diagonal, the capacity-achieving matrices P^{*}_{i1},..., P^{*}_{i1S1} satisfy
 P^{*}_k = U_kQ^{*}_kU^H_k, with Q^{*}_k diagonal; i.e. the eigenspace of P^{*}_k is the same as the eigenspace of T_k.
 with ē^{*}_k = ē_k(-σ², P^{*}_k), the *i*th entry q^{*}_{ki} of Q^{*}_k satisfies

$$q_{ki}^{\star} = \left(\mu_k - \frac{1}{C_k e_k^{\star} \tau_{ki}}\right)^+$$

where the μ_k 's are evaluated such that $tr(\mathbf{Q}_k) = P_k$.

- an iterative water-filling method allows to retrieve the q_{ki}^{\star} 's by successively
 - for a given set $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{|S|}}$, evaluating $e_{i_1}, \ldots, e_{i_{|S|}}$
 - updating the new optimal solution $\mathbf{P}_{i_1}, \ldots, \mathbf{P}_{i_{\lfloor S \rfloor}}$ for this system

Iterative water-filling

Upon convergence, the iterative water-filling algorithm leads to the optimal solution.

R. Couillet (Supélec)

29/10/2009 29 / 57

Consider the functions

$$C(\mathbf{P}_{i_{1}},\ldots,\mathbf{P}_{i_{|\mathcal{S}|}}) = \sum_{k\in\mathcal{S}}\frac{1}{N}\log\det\left(\mathbf{I}_{n_{k}}+c_{k}e_{k}\mathbf{T}_{k}\mathbf{P}_{k}\right) + \frac{1}{N}\log\det\left(\mathbf{I}_{N}+\sum_{k\in\mathcal{S}}\bar{\mathbf{e}}_{k}\mathbf{R}_{k}\right) - \sigma^{2}\sum_{k\in\mathcal{S}}\bar{\mathbf{e}}_{k}(-\sigma^{2})e_{k}(-\sigma^{2})$$

where

$$\mathbf{e}_{i} = \mathbf{e}_{i}(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}) = \frac{1}{N} \operatorname{tr} \mathbf{T}_{i} \left(\sigma^{2} \left[\mathbf{I}_{N} + \sum_{k \in S} \bar{\mathbf{e}}_{k} \mathbf{T}_{k} \right] \right)^{-1}$$
$$\bar{\mathbf{e}}_{i} = \bar{\mathbf{e}}_{i}(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}) = \frac{1}{n_{i}} \operatorname{tr} \mathbf{R}_{i} \mathbf{P}_{i} \left(\sigma^{2} \left[\mathbf{I}_{n_{i}} + c_{i} \mathbf{e}_{i}(z) \mathbf{R}_{i} \mathbf{P}_{i} \right] \right)^{-1}$$

and $V : (\mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}}, \bar{\mathbf{e}}_{i_1}, \dots, \bar{\mathbf{e}}_{i_{|S|}}, \mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_{|S|}}) \mapsto C(\mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}}).$

$$\frac{\partial}{\partial \mathbf{P}_{i}}\mathbf{C} = \sum_{k \in S} \frac{\partial V}{\partial \mathbf{e}_{k}} \frac{\partial \mathbf{e}_{k}}{\partial \mathbf{P}_{i}} + \frac{\partial V}{\partial \bar{\mathbf{e}}_{k}} \frac{\partial \bar{\mathbf{e}}_{k}}{\partial \mathbf{P}_{i}} + \frac{\partial V}{\partial \mathbf{P}_{i}}$$

(日)

Consider the functions

$$C(\mathbf{P}_{i_{1}},\ldots,\mathbf{P}_{i_{|\mathcal{S}|}}) = \sum_{k\in\mathcal{S}}\frac{1}{N}\log\det\left(\mathbf{I}_{n_{k}}+c_{k}e_{k}\mathbf{T}_{k}\mathbf{P}_{k}\right) + \frac{1}{N}\log\det\left(\mathbf{I}_{N}+\sum_{k\in\mathcal{S}}\bar{\mathbf{e}}_{k}\mathbf{R}_{k}\right) - \sigma^{2}\sum_{k\in\mathcal{S}}\bar{\mathbf{e}}_{k}(-\sigma^{2})e_{k}(-\sigma^{2})$$

where

$$\mathbf{e}_{i} = \mathbf{e}_{i}(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}) = \frac{1}{N} \operatorname{tr} \mathbf{T}_{i} \left(\sigma^{2} \left[\mathbf{I}_{N} + \sum_{k \in S} \bar{\mathbf{e}}_{k} \mathbf{T}_{k} \right] \right)^{-1}$$
$$\bar{\mathbf{e}}_{i} = \bar{\mathbf{e}}_{i}(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}) = \frac{1}{n_{i}} \operatorname{tr} \mathbf{R}_{i} \mathbf{P}_{i} \left(\sigma^{2} \left[\mathbf{I}_{n_{i}} + c_{i} \mathbf{e}_{i}(z) \mathbf{R}_{i} \mathbf{P}_{i} \right] \right)^{-1}$$

and $V : (\mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}}, \bar{\mathbf{e}}_{i_1}, \dots, \bar{\mathbf{e}}_{i_{|S|}}, \mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_{|S|}}) \mapsto C(\mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}}).$ • From chain rule,

$$\frac{\partial}{\partial \mathbf{P}_{i}}\mathbf{C} = \sum_{k \in \mathcal{S}} \frac{\partial V}{\partial \mathbf{e}_{k}} \frac{\partial \mathbf{e}_{k}}{\partial \mathbf{P}_{i}} + \frac{\partial V}{\partial \bar{\mathbf{e}}_{k}} \frac{\partial \bar{\mathbf{e}}_{k}}{\partial \mathbf{P}_{i}} + \frac{\partial V}{\partial \mathbf{P}_{i}}$$

(日)

Proof of water-filling optimality (2)

Remark that

$$\frac{\partial}{\partial \bar{\mathbf{e}}_{k}} V(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}, \bar{\mathbf{e}}_{i_{1}}, \dots, \bar{\mathbf{e}}_{i_{|S|}}, \mathbf{e}_{i_{1}}, \dots, \mathbf{e}_{i_{|S|}}) = \frac{1}{N} \operatorname{tr} \left[\left(\mathbf{I} + \sum_{i \in S} \bar{\mathbf{e}}_{i} \mathbf{R}_{i} \right)^{-1} \mathbf{R}_{k} \right] - \sigma^{2} \mathbf{e}_{k}$$
$$\frac{\partial}{\partial \mathbf{e}_{k}} V(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}, \bar{\mathbf{e}}_{i_{1}}, \dots, \bar{\mathbf{e}}_{i_{|S|}}, \mathbf{e}_{i_{1}}, \dots, \mathbf{e}_{i_{|S|}}) = c_{k} \frac{1}{N} \operatorname{tr} \left[(\mathbf{I} + c_{k} \mathbf{e}_{k} \mathbf{T}_{i} \mathbf{P}_{i})^{-1} \mathbf{T}_{k} \mathbf{P}_{k} \right] - \sigma^{2} \bar{\mathbf{e}}_{k}$$

both being null whenever, for all k, $\mathbf{e}_k = \mathbf{e}_k(-\sigma^2, \mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}})$ and

 $\bar{\mathbf{e}}_k = \bar{\mathbf{e}}_k(-\sigma^2, \mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}})$, which is true in particular for the unique power optimal solution $\mathbf{P}_{i_1}^\star, \dots, \mathbf{P}_{i_{|S|}}^\star$ whenever $\mathbf{e}_k = \mathbf{e}_k^\star$ and $\bar{\mathbf{e}}_k = \bar{\mathbf{e}}_k^\star$.

• When, for all k, $e_k = e_k^*$, $\bar{e}_k = \bar{e}_k^*$, the maximum of V over the \mathbf{P}_k 's is then obtained by maximizing the expressions log det $(\mathbf{I}_{n_k} + c_k e_k^* \mathbf{T}_k \mathbf{P}_k)$ over \mathbf{P}_k .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of water-filling optimality (2)

Remark that

$$\frac{\partial}{\partial \bar{\mathbf{e}}_{k}} V(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}, \bar{\mathbf{e}}_{i_{1}}, \dots, \bar{\mathbf{e}}_{i_{|S|}}, \mathbf{e}_{i_{1}}, \dots, \mathbf{e}_{i_{|S|}}) = \frac{1}{N} \operatorname{tr} \left[\left(\mathbf{I} + \sum_{i \in S} \bar{\mathbf{e}}_{i} \mathbf{R}_{i} \right)^{-1} \mathbf{R}_{k} \right] - \sigma^{2} \mathbf{e}_{k}$$
$$\frac{\partial}{\partial \mathbf{e}_{k}} V(\mathbf{P}_{i_{1}}, \dots, \mathbf{P}_{i_{|S|}}, \bar{\mathbf{e}}_{i_{1}}, \dots, \bar{\mathbf{e}}_{i_{|S|}}, \mathbf{e}_{i_{1}}, \dots, \mathbf{e}_{i_{|S|}}) = c_{k} \frac{1}{N} \operatorname{tr} \left[(\mathbf{I} + c_{k} \mathbf{e}_{k} \mathbf{T}_{i} \mathbf{P}_{i})^{-1} \mathbf{T}_{k} \mathbf{P}_{k} \right] - \sigma^{2} \bar{\mathbf{e}}_{k}$$

both being null whenever, for all k, $e_k = e_k(-\sigma^2, \mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}})$ and

 $\bar{\mathbf{e}}_k = \bar{\mathbf{e}}_k(-\sigma^2, \mathbf{P}_{i_1}, \dots, \mathbf{P}_{i_{|S|}})$, which is true in particular for the unique power optimal solution $\mathbf{P}_{i_1}^{\star}, \dots, \mathbf{P}_{i_{|S|}}^{\star}$ whenever $\mathbf{e}_k = \mathbf{e}_k^{\star}$ and $\bar{\mathbf{e}}_k = \bar{\mathbf{e}}_k^{\star}$.

When, for all k, e_k = e^{*}_k, ē_k = ē^{*}_k, the maximum of V over the P_k's is then obtained by maximizing the expressions log det(I_{nk} + c_ke^{*}_kT_kP_k) over P_k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{\text{a.s.}} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- loose hypotheses on the R_k 's and T_k 's: strong antenna correlation allowed
- the **R**_k's and **T**_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k 's for diagonal T_k 's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

deterministic equivalents do not impose any underlying convergence

- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{\text{a.s.}} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- loose hypotheses on the R_k 's and T_k 's: strong antenna correlation allowed
- the **R**_k's and **T**_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k 's for diagonal T_k 's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{\text{a.s.}} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- Ioose hypotheses on the R_k's and T_k's: strong antenna correlation allowed
- the **R**_k's and **T**_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k 's for diagonal T_k 's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{a.s.} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- loose hypotheses on the R_k's and T_k's: strong antenna correlation allowed
- the **R**_k's and **T**_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k 's for diagonal T_k 's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{\text{a.s.}} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- loose hypotheses on the R_k's and T_k's: strong antenna correlation allowed
- the R_k's and T_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k's for diagonal T_k's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{\text{a.s.}} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- loose hypotheses on the R_k's and T_k's: strong antenna correlation allowed
- the R_k's and T_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k 's for diagonal T_k 's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- deterministic equivalents do not impose any underlying convergence
- truncation and centralization lead to stronger convergence results under the form $m_N m_N^{\circ} \xrightarrow{\text{a.s.}} 0$ instead of $Em_N m_N^{\circ} \rightarrow 0$
- loose hypotheses on the R_k's and T_k's: strong antenna correlation allowed
- the R_k's and T_k's are general purpose Hermitian nonnegative, no need of a common eigenspace
- no restriction to Gaussian X_k 's for diagonal T_k 's

Compact expressions

Only K scalar parameters (the e_k 's) determine the behaviour of the whole system.

Performance of the deterministic equivalent

Figure: (Per-antenna) rate region C_{BC} for K = 2 users, theory against simulation, N = 8, $n_1 = n_2 = 4$, SNR = 20 dB, random transmit-receive solid angle of aperture $\pi/2$, $d_T/\lambda = 10$, $d_R/\lambda = 1/4$.

Performance of the deterministic equivalent (2)

Figure: (Per-antenna) rate region C_{BC} for K = 2 users, N = 8, $n_1 = n_2 = 4$, SNR = -5 dB, random transmit-receive solid angle of aperture $\pi/2$, $d_T/\lambda = 10$, $d_R/\lambda = 1/4$. In thick line, capacity limit when $E[ss^H] = I_N$.

29/10/2009 34 / 57

R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback"

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

- accounting for base station antenna correlation, user path losses
- assuming limited channel state information

Results:

- on optimal number of users to serve
- on optimal regularization parameter
- eventually, optimal feedback time
- close behaviour with respect to finite size systems for $N \ge 4$

R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback"

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

- accounting for base station antenna correlation, user path losses
- assuming limited channel state information

Results:

- on optimal number of users to serve
- on optimal regularization parameter
- eventually, optimal feedback time
- Iclose behaviour with respect to finite size systems for $N \ge 4$

R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback"

Deterministic equivalents of sum-rate capacity for linearly precoded broadcast channels,

- accounting for base station antenna correlation, user path losses
- assuming limited channel state information

Results:

- on optimal number of users to serve
- on optimal regularization parameter
- eventually, optimal feedback time
- close behaviour with respect to finite size systems for N ≥ 4

Figure: Left: Ergodic sum-rate vs. average SNR with $\mathbf{R} = \mathbf{I}_{K}$, M = 10, $\beta = 1$, $\tau^{2} = 0.1$. Right: RZF, $\mathbf{R} = \mathbf{I}_{M}$, $\mathbf{L} = \mathbf{I}_{K}$, M = 32, $\beta = 1$, simulation results are indicated by circle marks

A D A A B A A B A A B

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

Case study: exchanging relevant data in large self-organized networks
 Orthogonal CDMA networks
 Spectrum sharing in multiple access channels

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

Case study: exchanging relevant data in large self-organized networks • Orthogonal CDMA networks

Spectrum sharing in multiple access channels

Before to apply the previous results, we consider first an alternative, simpler, better adapted model, which

- provides a deterministic equivalent to a model involving Haar (unitary) matrices
- uses R-, S- and η -transforms
- is a striking example of the feedback minimization discussed before.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Before to apply the previous results, we consider first an alternative, simpler, better adapted model, which

- provides a deterministic equivalent to a model involving Haar (unitary) matrices
- uses *R*-, *S* and η -transforms
- is a striking example of the feedback minimization discussed before.

Case study: exchanging relevant data in large self-organized networks Self-Organized Clustered Networks

Figure: Self-organizing CDMA network

<ロ> <同> <同> < 同> < 同>

Case study: exchanging relevant data in large self-organized networks Self-Organized Clustered Networks

Figure: Self-organizing CDMA network

(a)

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks
Uplink clustered CDMA networks

- Consider a set of *K* clusters, all using independently orthogonal CDMA transmissions. Each cluster is composed of *at most N* users. We wish
 - to obtain a deterministic equivalent for the achievable uplink sum-rate
 - to provide a cheap feedback solution for the network to organize itself to collectively maximize the uplink rate.
- We denote
 - $L_k = \text{diag}(\lambda_{k1}, \dots, \lambda_{kN})$ the diagonal of channel gains (inverse path losses).
 - $\mathbf{P}_k = \text{diag}(p_{k1}, \dots, p_{kN})$ the diagonal of transmit powers from the users in cell k.
 - $\mathbf{W}_k \in \mathbb{C}^{N \times N}$ the unitary CDMA code matrix used in cell *k*.
 - the received signal $\mathbf{y} \in \mathbb{C}^N$ at the base station reads

$$\mathbf{y} = \sum_{k=1}^{K} \mathbf{W}_k \mathbf{L}_k^{\frac{1}{2}} \mathbf{P}_k^{\frac{1}{2}} \mathbf{s}_k + \mathbf{n}$$

• the sum-rate $C(\sigma^2)$ is

$$C(\sigma^{2}) = \frac{1}{N} \log \det \left(\mathbf{I}_{N} + \frac{1}{\sigma^{2}} \sum_{k=1}^{K} \mathbf{W}_{k}(\mathbf{P}_{k}\mathbf{L}_{k})\mathbf{W}_{k}^{\mathrm{H}} \right)$$

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks
Uplink clustered CDMA networks

- Consider a set of *K* clusters, all using independently orthogonal CDMA transmissions. Each cluster is composed of *at most N* users. We wish
 - to obtain a deterministic equivalent for the achievable uplink sum-rate
 - to provide a cheap feedback solution for the network to organize itself to collectively maximize the uplink rate.
- We denote
 - $L_k = \text{diag}(\lambda_{k1}, \dots, \lambda_{kN})$ the diagonal of channel gains (inverse path losses).
 - $\mathbf{P}_k = \text{diag}(p_{k1}, \dots, p_{kN})$ the diagonal of transmit powers from the users in cell k.
 - $\mathbf{W}_k \in \mathbb{C}^{N \times N}$ the unitary CDMA code matrix used in cell *k*.
 - the received signal $\mathbf{y} \in \mathbb{C}^N$ at the base station reads

$$\mathbf{y} = \sum_{k=1}^{K} \mathbf{W}_k \mathbf{L}_k^{\frac{1}{2}} \mathbf{P}_k^{\frac{1}{2}} \mathbf{s}_k + \mathbf{n}$$

the sum-rate C(σ²) is

$$C(\sigma^2) = \frac{1}{N} \log \det \left(\mathbf{I}_N + \frac{1}{\sigma^2} \sum_{k=1}^{K} \mathbf{W}_k(\mathbf{P}_k \mathbf{L}_k) \mathbf{W}_k^{\mathsf{H}} \right)$$
R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have

$$C_N(\sigma^2) - C_N^{\circ}(\sigma^2) \to 0$$

with

$$C_{N}^{\circ}(\sigma^{2}) = \log\left(1 + \frac{1}{\sigma^{2}}\sum_{k=1}^{K}\beta_{k}\right) + \sum_{k=1}^{K}\frac{1}{N}\log\det\left(\frac{\eta}{\sigma^{2}}\mathbf{P}_{k}\mathbf{L}_{k} + \left[1 - \frac{\eta\beta_{k}}{\sigma^{2}}\right]\mathbf{I}_{N}\right)$$

where β_k and η are defined as

$$\eta = \left(1 + \frac{1}{\sigma^2} \sum_{i=1}^{K} \beta_i\right)^{-1}$$

and $\{\beta_k\}$ are solutions of

$$\beta_k = \frac{1}{N} \operatorname{tr} \mathbf{P}_k \mathbf{L}_k \left(\frac{\eta}{\sigma^2} \mathbf{P}_k \mathbf{L}_k + \left[1 - \frac{\eta \beta_k}{\sigma^2} \right] \mathbf{I}_N \right)^{-1}$$

R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have

$$C_N(\sigma^2) - C_N^{\circ}(\sigma^2) \to 0$$

with

$$C_{N}^{\circ}(\sigma^{2}) = \log\left(1 + \frac{1}{\sigma^{2}}\sum_{k=1}^{K}\beta_{k}\right) + \sum_{k=1}^{K}\frac{1}{N}\log\det\left(\frac{\eta}{\sigma^{2}}\mathbf{P}_{k}\mathbf{L}_{k} + \left[1 - \frac{\eta\beta_{k}}{\sigma^{2}}\right]\mathbf{I}_{N}\right)$$

where β_k and η are defined as

$$\eta = \left(1 + \frac{1}{\sigma^2} \sum_{i=1}^{K} \beta_i\right)^{-1}$$

and $\{\beta_k\}$ are solutions of

$$\beta_{k} = \frac{1}{N} \operatorname{tr} \mathbf{P}_{k} \mathbf{L}_{k} \left(\frac{\eta}{\sigma^{2}} \mathbf{P}_{k} \mathbf{L}_{k} + \left[1 - \frac{\eta \beta_{k}}{\sigma^{2}} \right] \mathbf{I}_{N} \right)^{-1}$$

R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.

Theorem

For large N, we have

$$C_N(\sigma^2) - C_N^{\circ}(\sigma^2) \to 0$$

with

$$C_{N}^{\circ}(\sigma^{2}) = \log\left(1 + \frac{1}{\sigma^{2}}\sum_{k=1}^{K}\beta_{k}\right) + \sum_{k=1}^{K}\frac{1}{N}\log\det\left(\frac{\eta}{\sigma^{2}}\mathbf{P}_{k}\mathbf{L}_{k} + \left[1 - \frac{\eta\beta_{k}}{\sigma^{2}}\right]\mathbf{I}_{N}\right)$$

where β_k and η are defined as

$$\eta = \left(1 + \frac{1}{\sigma^2} \sum_{i=1}^{K} \beta_i\right)^{-1}$$

and $\{\beta_k\}$ are solutions of

$$\beta_k = \frac{1}{N} \operatorname{tr} \mathbf{P}_k \mathbf{L}_k \left(\frac{\eta}{\sigma^2} \mathbf{P}_k \mathbf{L}_k + \left[1 - \frac{\eta \beta_k}{\sigma^2} \right] \mathbf{I}_N \right)^{-1}$$

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA network
Proof

Instead of working with the Stieltjes transform, we use the (totally equivalent) η -transform. We define η_1, \ldots, η_K as

$$\eta_k(\mathbf{x}) = \int \frac{1}{1+\mathbf{x}t} \mu_k(\mathbf{d}t)$$

with μ_k the probability distribution of $\mathbf{P}_k \mathbf{L}_k$. We will use the *R*-transform for further development. For each *k*, denote R_k the *R*-transform of $\mathbf{W}_k \mathbf{L}_k \mathbf{P}_k \mathbf{W}_k^H$, defined as

$$\eta(-\frac{1}{R(x)+\frac{1}{x}})=xR(x)+1$$

Since the \mathbf{W}_k 's are isometric and independent, they are free random variables. Hence, the *R*-transform R(x) of the sum of the individual *R*-transforms $R_1(x), \ldots, R_K(x)$ satisfies asymptotically

$$R(x) = \sum_{k=1}^{K} R_k(x)$$

The strategy is then to use the *R*-transform as a "pivot" in the proof,

- obtain a relation of R_k as a function of the entries of $\mathbf{P}_k \mathbf{L}_k$
- obtain an expression of the eigenvalues of $\sum_{k=1}^{K} W_k P_k L_k W_k^H$ as a function of R

The first relation is obtained by the definition of the η -transform applied in $-1/(R_k(x)+rac{1}{x})$

$$xR_k + 1 = \int \frac{1}{1 - \frac{t}{R_k(x) + \frac{1}{x}}} \mu_k(dt)$$

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA network Proof

Instead of working with the Stieltjes transform, we use the (totally equivalent) η -transform. We define η_1, \ldots, η_K as

$$\eta_k(\mathbf{x}) = \int \frac{1}{1+\mathbf{x}t} \mu_k(\mathbf{d}t)$$

with μ_k the probability distribution of $\mathbf{P}_k \mathbf{L}_k$. We will use the *R*-transform for further development. For each *k*, denote R_k the *R*-transform of $\mathbf{W}_k \mathbf{L}_k \mathbf{P}_k \mathbf{W}_k^H$, defined as

$$\eta(-\frac{1}{R(x)+\frac{1}{x}})=xR(x)+1$$

Since the \mathbf{W}_k 's are isometric and independent, they are free random variables. Hence, the *R*-transform R(x) of the sum of the individual *R*-transforms $R_1(x), \ldots, R_K(x)$ satisfies asymptotically

$$R(x) = \sum_{k=1}^{K} R_k(x)$$

The strategy is then to use the *R*-transform as a "pivot" in the proof,

- obtain a relation of R_k as a function of the entries of $\mathbf{P}_k \mathbf{L}_k$
- obtain an expression of the eigenvalues of $\sum_{k=1}^{K} \mathbf{W}_k \mathbf{P}_k \mathbf{L}_k \mathbf{W}_k^{\mathsf{H}}$ as a function of R

The first relation is obtained by the definition of the η -transform applied in $-1/(R_k(x)+\frac{1}{x})$

$$xR_k + 1 = \int \frac{1}{1 - \frac{t}{R_k(x) + \frac{1}{x}}} \mu_k(dt)$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA network
Proof

Instead of working with the Stieltjes transform, we use the (totally equivalent) η -transform. We define η_1, \ldots, η_K as

$$\eta_k(\mathbf{x}) = \int \frac{1}{1+\mathbf{x}t} \mu_k(\mathbf{d}t)$$

with μ_k the probability distribution of $\mathbf{P}_k \mathbf{L}_k$. We will use the *R*-transform for further development. For each *k*, denote R_k the *R*-transform of $\mathbf{W}_k \mathbf{L}_k \mathbf{P}_k \mathbf{W}_k^H$, defined as

$$\eta(-\frac{1}{R(x)+\frac{1}{x}})=xR(x)+1$$

Since the \mathbf{W}_k 's are isometric and independent, they are free random variables. Hence, the *R*-transform R(x) of the sum of the individual *R*-transforms $R_1(x), \ldots, R_K(x)$ satisfies asymptotically

$$R(x) = \sum_{k=1}^{K} R_k(x)$$

The strategy is then to use the *R*-transform as a "pivot" in the proof,

- obtain a relation of R_k as a function of the entries of $\mathbf{P}_k \mathbf{L}_k$
- obtain an expression of the eigenvalues of $\sum_{k=1}^{K} \mathbf{W}_k \mathbf{P}_k \mathbf{L}_k \mathbf{W}_k^{\mathsf{H}}$ as a function of R

The first relation is obtained by the definition of the η -transform applied in $-1/(R_k(x) + \frac{1}{x})$

$$xR_k + 1 = \int \frac{1}{1 - \frac{t}{R_k(x) + \frac{1}{x}}} \mu_k(dt)$$

The expression

$$xR_k(x)+1=\int \frac{1}{1-\frac{t}{R_k(x)+\frac{1}{x}}}\mu_k(dt)$$

leads to

$$R_k(x) = \frac{1}{x} \int \frac{t}{R_k(x) + \frac{1}{x} - t} \mu_k(dt)$$

and, in particular, defining $\beta_k(x) = R_k(-x\eta)$, we have

$$\beta_k(\mathbf{x}) = \int \frac{t}{1 - \mathbf{x}\eta\beta_k + \mathbf{x}\eta t} \mu_k(dt)$$

Now, since $R(x) = \sum_{k=1}^{K} R_k(x)$ asymptotically on *N*, using the reverse definition of the *R*-transform

$$R(-x\eta(x)) = -\frac{1}{x}(1-\frac{1}{\eta}(x))$$

we have

$$\eta(x) = \left(1 + x \sum_{k=1}^{K} R_k(-x\eta)\right)^{-1} = \left(1 + x \sum_{k=1}^{K} \beta_k\right)^{-1}$$

which completes the proof.

500

(日)

The power allocation policy $p_{kn} = p_{kn}^{\star}$ optimizing the deterministic approximation of $C(\sigma^2)$ satisfies, for all k, n, q

$$\boldsymbol{p}_{kn}^{\star} = \left(\alpha_{k} - \frac{\sigma^{2} - \eta^{\star}\beta_{k}^{\star}}{\lambda_{kn}\eta^{\star}}\right)^{-1}$$

where η^* , β_k^* are the respective values of η and β_k when *C* achieves its maximum, and α_k is such that $\sum_k p_{kn}^* = P_k$.

Lemma (Iterative Water-filling)

Upon convergence, the following algorithm converges to the optimal power allocation policy,

At initialization, for all
$$k$$
, $p_{kn} = \frac{P_k}{N}$, $\eta = 1$, $\beta_k = 1$.
while the p_{kn} 's have not converged do
for $k \in \{1, ..., K\}$ do
Solve fixed-point equation for (η, β_k) , p_{kn} fixed
for $n = 1 ..., N$ do
Set $p_{kn} = \left(\alpha_k - \frac{\sigma^2 - \eta\beta_k}{\lambda_{kn}\eta}\right)^+$, with α_k such that $\sum_n p_{kn} = P_k$.
end for
end for
end while

イロト イヨト イヨト イヨト

The power allocation policy $p_{kn} = p_{kn}^{\star}$ optimizing the deterministic approximation of $C(\sigma^2)$ satisfies, for all k, n, q

$$\boldsymbol{p}_{kn}^{\star} = \left(\alpha_{k} - \frac{\sigma^{2} - \eta^{\star} \beta_{k}^{\star}}{\lambda_{kn} \eta^{\star}}\right)^{-1}$$

where η^* , β_k^* are the respective values of η and β_k when *C* achieves its maximum, and α_k is such that $\sum_k p_{kn}^* = P_k$.

Lemma (Iterative Water-filling)

Upon convergence, the following algorithm converges to the optimal power allocation policy,

At initialization, for all
$$k$$
, $p_{kn} = \frac{P_k}{N}$, $\eta = 1$, $\beta_k = 1$.
while the p_{kn} 's have not converged do
for $k \in \{1, ..., K\}$ do
Solve fixed-point equation for (η, β_k) , p_{kn} fixed
for $n = 1 ..., N$ do
Set $p_{kn} = \left(\alpha_k - \frac{\sigma^2 - \eta\beta_k}{\lambda_{kn}\eta}\right)^+$, with α_k such that $\sum_n p_{kn} = P_k$.
end for
end for
end for

・ロト ・回ト ・ヨト ・ヨト

Local optimization: From the formulas of η and β_k, at step (t) of the iterative water-filling, we can write

•
$$\eta^{(t)}(\mathbf{x}) = \left(\frac{1}{\eta^{(t-1)}(\mathbf{x})} + \mathbf{x}(\beta_k^{(t)} - \beta_k^{(t-1)})\right)^{-1}$$

• $\beta_k^{(t)} = f(\beta_k^{(t)}, \eta^{(t)})$

This is only dependent on k.

 \Rightarrow Cluster k does not need to know all λ_{in} , $i \neq k$.

- Iterative self-organized process The preceding algorithm can be rewritten such that,
 - at each time step (t), based on $\eta^{(t-1)}$, cell k performs self-optimization of \mathbf{P}_k and updates $\eta^{(t-1)}$ to $\eta^{(t)}$
 - cell k forwards $\eta^{(t)}$ to next cell (k + 1)
 - upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)

• Local optimization: From the formulas of η and β_k , at step (t) of the iterative water-filling, we can write

•
$$\eta^{(t)}(\mathbf{x}) = \left(\frac{1}{\eta^{(t-1)}(\mathbf{x})} + \mathbf{x}(\beta_k^{(t)} - \beta_k^{(t-1)})\right)^{-1}$$

• $\beta_k^{(t)} = f(\beta_k^{(t)}, \eta^{(t)})$

This is only dependent on k.

\Rightarrow Cluster k does not need to know all λ_{in} , $i \neq k$.

- Iterative self-organized process The preceding algorithm can be rewritten such that,
 - at each time step (t), based on $\eta^{(t-1)}$, cell k performs self-optimization of \mathbf{P}_k and updates $\eta^{(t-1)}$ to $\eta^{(t)}$
 - cell k forwards $\eta^{(t)}$ to next cell (k + 1)
 - upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)

Local optimization: From the formulas of η and β_k, at step (t) of the iterative water-filling, we can write

•
$$\eta^{(t)}(\mathbf{x}) = \left(\frac{1}{\eta^{(t-1)}(\mathbf{x})} + \mathbf{x}(\beta_k^{(t)} - \beta_k^{(t-1)})\right)^{-1}$$

• $\beta_k^{(t)} = f(\beta_k^{(t)}, \eta^{(t)})$

This is only dependent on k.

- \Rightarrow Cluster k does not need to know all λ_{in} , $i \neq k$.
- Iterative self-organized process The preceding algorithm can be rewritten such that,
 - at each time step (*t*), based on $\eta^{(t-1)}$, cell *k* performs self-optimization of **P**_k and updates $\eta^{(t-1)}$ to $\eta^{(t)}$
 - cell k forwards $\eta^{(t)}$ to next cell (k + 1)
 - upon convergence (not proven), this proceeds until convergence to the optimal solution (proven)

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks Self-organization in orthogonal CDMA networks

Figure: Self-organization in orthogonal CDMA network

・ロト ・回ト ・ヨト ・ヨト

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks Self-organization in orthogonal CDMA networks

Figure: Self-organization in orthogonal CDMA network

(ロ) (同) (目) (目)

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA network Self-organization in orthogonal CDMA networks

Figure: Self-organization in orthogonal CDMA network

(ロ) (同) (目) (目)

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks Self-organization in orthogonal CDMA networks

Figure: Self-organization in orthogonal CDMA network

Case study: exchanging relevant data in large self-organized networks Orthogonal CDMA networks Self-organization in orthogonal CDMA networks

Figure: Self-organization in orthogonal CDMA network

(ロ) (同) (目) (目)

Stieltjes transform methods for more elaborate models

2 Kronecker models and Variance Profiles

3 Capacity expressions, Rate Regions

4 Touching the boundary: optimal power allocation

5

Case study: exchanging relevant data in large self-organized networks • Orthogonal CDMA networks

Spectrum sharing in multiple access channels

- Somewhat similarly as η for the clustered CDMA system, user *k* of a multiple-access channel can find its optimal transmit covariance matrix from the estimation of e_k .
- if *F* frequency bands are shared among the users, the MAC rate region is the set of rates R_1, \ldots, R_K such that, for any subset $\mathcal{K} \subset \{1, \ldots, K\}$,

$$\sum_{k \in \mathcal{K}} R_k \leq \frac{1}{N} \sum_{f=1}^{F} \log \det \left(\mathbf{I}_N + \frac{1}{\sigma^2} \sum_{k \in \mathcal{K}} \mathbf{H}_{k,f}^{\mathsf{H}} \mathbf{P}_{k,f} \mathbf{H}_{k,f} \right)$$

• the optimal $\mathbf{P}_{k,f}$'s have eigenvectors aligned to the transmit correlation matrix and eigenvectors $q_{k,f,1}, \ldots, q_{k,f,n_k}$ given by

$$q_{k,f,i} = \left(\mu_k - \frac{1}{c_k e_{k,f} t_{k,f,i}}\right)^+$$

with

$$\begin{cases} \mathbf{e}_{k,f} &= \frac{1}{N} \operatorname{tr} \mathbf{R}_{k,f} \left(\sigma^2 \left[\mathbf{I}_N + \sum_{k' \in \mathcal{K}} \delta_{k',f} \mathbf{R}_{k',f} \right] \right)^{-1} \\ \bar{\mathbf{e}}_{k,f} &= \frac{1}{n_k} \operatorname{tr} \mathbf{T}_{k,f} \left(\sigma^2 \left[\mathbf{I}_{n_k} + c_k \mathbf{e}_{k,f} \mathbf{P}_{k,f} \mathbf{T}_{k,f} \right] \right)^{-1} . \end{cases}$$

Iterative water-filling is still optimal in this case.

・ロト ・回ト ・ヨト ・ヨト

- Somewhat similarly as η for the clustered CDMA system, user *k* of a multiple-access channel can find its optimal transmit covariance matrix from the estimation of e_k .
- if *F* frequency bands are shared among the users, the MAC rate region is the set of rates R_1, \ldots, R_K such that, for any subset $\mathcal{K} \subset \{1, \ldots, K\}$,

$$\sum_{k \in \mathcal{K}} R_k \leq \frac{1}{N} \sum_{f=1}^{F} \log \det \left(\mathbf{I}_N + \frac{1}{\sigma^2} \sum_{k \in \mathcal{K}} \mathbf{H}_{k,f}^{\mathsf{H}} \mathbf{P}_{k,f} \mathbf{H}_{k,f} \right)$$

 the optimal P_{k,f}'s have eigenvectors aligned to the transmit correlation matrix and eigenvectors q_{k,f,1},..., q_{k,f,nk} given by

$$q_{k,f,i} = \left(\mu_k - \frac{1}{c_k e_{k,f} t_{k,f,i}}\right)^+$$

with

$$\begin{cases} \mathbf{e}_{k,f} &= \frac{1}{N} \operatorname{tr} \mathbf{R}_{k,f} \left(\sigma^2 \left[\mathbf{I}_N + \sum_{k' \in \mathcal{K}} \delta_{k',f} \mathbf{R}_{k',f} \right] \right)^{-1} \\ \bar{\mathbf{e}}_{k,f} &= \frac{1}{n_k} \operatorname{tr} \mathbf{T}_{k,f} \left(\sigma^2 \left[\mathbf{I}_{n_k} + c_k \mathbf{e}_{k,f} \mathbf{P}_{k,f} \mathbf{T}_{k,f} \right] \right)^{-1}. \end{cases}$$

Iterative water-filling is still optimal in this case.

Spectrum sharing, alternative approaches

Classical ways to share spectrum,

- via central entity: may be onerous and/or not possible
- game theoretical considerations: may fall in bad Nash equilibrium
- Through random matrix theory approaches, it seems that the fundamental system parameters naturally appear. In this case,
 - for given $e_{k,1}, \ldots, e_{k,F}$, user k can evaluate $\bar{e}_{k,1}, \ldots, \bar{e}_{k,f}$ and optimize $\mathbf{P}_{k,1}, \ldots, \mathbf{P}_{k,F}$
 - for given $\bar{e}_{k,1}, \ldots, \bar{e}_{k,F}$, the base station can evaluate $e_{k,1}, \ldots, e_{k,f}$

Classical ways to share spectrum,

- via central entity: may be onerous and/or not possible
- game theoretical considerations: may fall in bad Nash equilibrium
- Through random matrix theory approaches, it seems that the fundamental system parameters naturally appear. In this case,
 - for given $e_{k,1}, \ldots, e_{k,F}$, user k can evaluate $\bar{e}_{k,1}, \ldots, \bar{e}_{k,f}$ and optimize $\mathbf{P}_{k,1}, \ldots, \mathbf{P}_{k,F}$
 - for given $\bar{e}_{k,1}, \ldots, \bar{e}_{k,F}$, the base station can evaluate $e_{k,1}, \ldots, e_{k,F}$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

R. Couillet, H. V. Poor, M. Debbah, "Self-organized spectrum sharing in large MIMO multiple-access channels", to be submitted to ISIT 2010.

Depending on the correlation pattern at the base station, we obtain two iterative algorithms,

```
Base-station aided algorithm, in case of receive correlation
      Initialization: for all k, f, \bar{e}_{k,f} = 1. Define convergence threshold \varepsilon > 0.
      while \max_{k,f} \|\mathbf{P}_{k,f} - \mathbf{P}_{k,f}^{\star}\| > \varepsilon do
         for k \in \{1, ..., K\} do
            for f \in \{1, ..., F\} do
               The base station computes e_{k,f}
            end for
            The base station transmits (e_{k,1}, \ldots, e_{k,F}) to user k
            for f \in \{1, ..., F\} do
               Based on e_{k,f}, user k computes \mathbf{P}_{k,f}
               Based on e_{k,f} and \mathbf{P}_{k,f}, user k computes \bar{e}_{k,f}
            end for
            User k transmits (\bar{e}_{k,1}, \ldots, \bar{e}_{k,F}) to the base station
         end for
      end while
```

・ロン ・四 ・ ・ ヨン ・ ヨン

Self-organized iterative water-filling, if no correlation at the base station

```
Initialization: for all k, f, \bar{e}_{k,f} = 1. Define convergence threshold \varepsilon > 0.

while \max_{k,f} \|\mathbf{P}_{k,f} - \mathbf{P}_{k,f}^*\| > \varepsilon, do

for k \in \{1, \dots, K\} do

for f \in \{1, \dots, F\} do

Based on e_f, user k computes \mathbf{P}_{k,f}

Based on \{e_f, \mathbf{P}_{k,f}\}, user k computes \bar{e}_{k,f}

Based on \bar{e}_{k,f}, user k updates e_{k,f}

end for

User k transmits (e_{k,1}, \dots, e_{k,F}) to user k + 1 \pmod{K}

end for

end while
```

 however, proposed algorithm is sequential, time harvesting. Next step is to work on asynchronous schemes using,

- gossiping approaches
- graph theory
- coding theory

• transmission bands must be uncorrelated. Currently working on frequency selective channels.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Self-organized iterative water-filling, if no correlation at the base station

```
Initialization: for all k, f, \bar{\mathbf{e}}_{k,f} = 1. Define convergence threshold \varepsilon > 0.

while \max_{k,f} \|\mathbf{P}_{k,f} - \mathbf{P}_{k,f}^*\| > \varepsilon, do

for k \in \{1, \dots, K\} do

for f \in \{1, \dots, F\} do

Based on e_f, user k computes \mathbf{P}_{k,f}

Based on \{e_f, \mathbf{P}_{k,f}\}, user k computes \bar{e}_{k,f}

Based on \bar{e}_{k,f}, user k updates e_{k,f}

end for

User k transmits (e_{k,1}, \dots, e_{k,F}) to user k + 1 \pmod{K}

end while
```

 however, proposed algorithm is sequential, time harvesting. Next step is to work on asynchronous schemes using,

- gossiping approaches
- graph theory
- coding theory

transmission bands must be uncorrelated. Currently working on frequency selective channels.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels MIMO multi-band multiple access channel

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

Figure: MIMO multi-band MAC

<ロ> <同> <同> < 同> < 同>

Figure: MIMO multi-band MAC

Work left to be done

- generalize Stieltjes transform approaches to structured matrices
- use random matrix theory to solve open issues
 - optimal Wiener filter in broadcast channels
 - optimal feedback for communications with imperfect CSI
- decentralized network organization using random matrix theory,
 - propose efficient feedback schemes
 - prove convergence or quasi-convergence
 - develop suboptimal schemes
Work left to be done

- generalize Stieltjes transform approaches to structured matrices
- use random matrix theory to solve open issues
 - optimal Wiener filter in broadcast channels
 - optimal feedback for communications with imperfect CSI
- decentralized network organization using random matrix theory,
 - propose efficient feedback schemes
 - prove convergence or quasi-convergence
 - develop suboptimal schemes

Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels Related bibliography

- A. Moustakas, S. Simon and A. Sengupta, "MIMO Capacity Through Correlated Channels in the Presence of Correlated Interferers and Noise: A (Not So) Large N Analysis," IEEE Trans. on Information Theory, vol. 49, no. 10, 2003.
- C. K. Wen, Y. N. Lee, J. T. Chen, and P. Ting, "Asymptotic spectral efficiency of MIMO multiple-access wireless systems exploring only channel spatial correlations," IEEE Transactions on Signal Processing, vol. 53, no. 6, pp. 2059-2073, 2005.
- D. Guo and S. Verdú, "Multiuser Detection and Statistical Physics," Communications on Information and Network Security, Kluwer Academic Publishers, 2003.
- B. Zaidel, S. Shamai and S. Verdú, "Multicell Uplink Spectral Efficiency of Coded DS-CDMA With Random Signatures," IEEE Journal on Selected Areas in Communications, vol. 19, no. 8, 2001.
- Z. Bai and J. Silverstein, "On the signal-to-interference-ratio of CDMA systems in wireless communications," Annals of Applied Probability vol. 17 no. 1, pp. 81-101, 2007.
- R. B. Dozier and J. W. Silverstein, "On the Empirical Distribution of Eigenvalues of Large Dimensional Information-Plus-Noise Type Matrices," Journal of Multivariate Analysis 98(4), pp. 678-694, 2007.
- A.M. Tulino, A. Lozano and S. Verdù, "Impact of antenna correlation on the capacity of multiantenna channels," IEEE Trans. on Information Theory, vol. 51, no. 7, pp. 2491-2509, 2005.
- J. Dumont, S. Lasaulce, W. Hachem, Ph. Loubaton and J. Najim, "On the Capacity Achieving Covariance Matrix for Rician MIMO Channels: An Asymptotic Approach", submitted to IEEE Trans. on Information Theory.
- D. N. C. Tse, and S. V. Hanly, "Multiaccess fading channels. I. Polymatroid structure, optimal resource allocation and throughput capacities," *IEEE Trans. Information Theory*, vol. 44, no. 7, pp. 2796-2815, 1998.

・ロト ・回ト ・ヨト ・ヨト

Case study: exchanging relevant data in large self-organized networks Spectrum sharing in multiple access channels Related bibliography

- W. Hachem, Ph. Loubaton, and J. Najim, "A CLT for information theoretic statistics of Gram random matrices with a given variance profile," *Annals of Applied Probability*, vol. 18, no. 6, pp. 2071-2130, 2008.
- S. Vishwanath, N. Jindal, and A. Goldsmith, "Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels," *IEEE Trans. Information Theory*, vol. 49, no. 10, pp. 2658-2668, 2003.
- A. M. Tulino, and S. Verdù, "Random Matrix Theory and Wireless Communications," Now Publishers Inc., Dordrecht, The Netherlands, 2004.
- R. Couillet, S. Wagner, M. Debbah, "Asymptotic Analysis of Correlated Multi-Antenna Broadcast Channels", WCNC 2009, Budapest, Hungary.
- R. Couillet, M. Debbah, "Bayesian Inference for Multiple Antenna Cognitive Receivers", WCNC 2009, Budapest, Hungary.
- R. Couillet, M. Debbah, "Uplink capacity of self-organizing clustered orthogonal CDMA networks in flat fading channels", ITW 2009 Fall, Taormina, Sicily.
- R. Couillet, S. Wagner, M. Debbah, "Asymptotic Analysis of Linear Precoding Techniques in Correlated Multi-Antenna Broadcast Channels," submitted to IEEE Trans. on Information Theory.
- R. Couillet, M. Debbah, J. Silverstein, "A deterministic equivalent for the capacity analysis of correlated multi-user MIMO channels," submitted to IEEE Trans. on Information Theory.
- R. Couillet, J. Silverstein, M. Debbah, "Eigen-inference for multi-source power estimation", in preparation, to be submitted to ISIT 2010.
- R. Couillet, M. Debbah, V. Poor, "Self-organized spectrum sharing in large MIMO multiple access channels", submitted to ISIT 2010.
- R. Couillet, S. Wagner, M. Debbah, D. Slock, "Asymptotic analysis of linear precoding in vector broadcast channels with limited feedback" to be submitted