
Random Matrices in Wireless Communications
Course 1: Introduction to random matrix theory and the Stieltjes

transform

Romain Couillet
ST-Ericsson, Supélec, FRANCE
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What is a random matrix? Generalities

High-dimensional data

Let x1, x2 . . . ∈ CN be independently drawn from an N-variate process of mean zero and
covariance R = E[x1xH

1 ].

Law of large numbers

As n → ∞,
1

n

n
∑

i=1

xi x
H
i

a.s.−→ R

In reality, one cannot afford n → ∞.

if n ≫ N,

Rn =
1

n

n
∑

i=1

xi x
H
i

is a “good” estimator of R.

if N/n = O(1), and if both (n,N) are large, we can still say, for all (i, j),

(Rn)ij
a.s.−→ (R)ij

What about the global behaviour? What about the eigenvalue distribution?

Assume R = IN and draw the eigenvalues of Rn for n,N large.
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What is a random matrix? Generalities

Empirical and limit spectra of Wishart matrices
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Figure: Histogram of the eigenvalues of Rn for n = 2000, N = 500, R = IN
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What is a random matrix? Generalities

Definition

Definition

Let Ω be some probability space, and let ω ∈ Ω. A random matrix X = X(ω) is a random variable
whose value lies in some matrix space.

Note:

the probability space Ω is often neglected; it is e.g. the propagation environment for MIMO
channel matrices.

for asymptotic considerations, ω ∈ Ω will be the realization of an infinite sequence
X1(ω),X2(ω), . . . of size 1, 2, . . . random matrices.

In practice, we are mostly interested into Hermitian matrices and especially in the distribution of
their eigenvalues.

Definition

The distribution function FN of the eigenvalues of the N × N random Hermitian matrix XN = XN(ω)
is called the empirical spectrum distribution (e.s.d.) of XN . If FN has a limit F when N → ∞, this
limit is called the limit spectral distribution of XN .
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What is a random matrix? Generalities

Finite size and asymptotic considerations

The field of random matrices is often segmented into
Finite-size random matrices:

of interest are: joint entry distributions, ordered eigenvalue distributions, e.s.d., expectation of
functionals
particularly suitable to small size matrices
however, much problems arise for models more involved than i.i.d. Gaussian

Limiting results:
of interest are: limit spectral distributions (l.s.d.), functionals of l.s.d., central limit theorems etc.
suitable to large matrices, but often good approximation to smaller matrices
much easier to work with than finite size, more flexible (i.i.d., Kronecker, variance profile models,
structured matrices)
possesses a variety of powerful tools: Stieltjes transform, free probability

Remark: This course will mainly focus on limiting results and almost no finite size considerations.
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What is a random matrix? Generalities

Why is this useful to wireless communications?

increasing number of parameters: multi-user systems, multiple concurrent cells, multiple
antennas

matrices with random entries are the basis for MIMO channels, CDMA codes

it is no longer possible to treat large dimensional problems with classical probability
approaches

random matrices answer a widening panel of problems: system performance, detection,
estimation. . .

Example

MIMO channel capacity Call H ∈ Cn×N the realization of a MIMO channel matrix whose entries
and distributed according to some random process. We have the per-antenna mutual information

C(σ2) =
1

N
log det

[

IN +
1

σ2
HHH

]

Note that, with hi the i th column of H, HHH =
∑N

i=1 hi hH
i . If H has i.i.d. entries, then, as both

n,N → ∞, n/N → c,

C(σ2) →
∫

log
[

1 +
t

σ2

]

dFc(t)

with Fc the Marc̆enko-Pastur law with parameter c.
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History of mathematical advances
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History of mathematical advances

Wishart matrices

J. Wishart, “The generalized product moment distribution in samples from a normal multivariate
population”, Biometrika, vol. 20A, pp. 32-52, 1928.

First random matrix considerations date back to Wishart (1928) who studies the joint
distribution of Gaussian sample covariance matrices Rn = XXH =

∑n
i=1 xi xH

i ,
xi ∈ CN ∼ N (0,R),

PRn (B) =
πN(N−1)/2

det Rn
∏N

i=1(n − i)!
e− tr(R−1B) det Bn−N

Subsequent work provide expressions of the joint and marginal eigenvalue distributions,

P(λi )
(λ1, . . . , λN) =

det({e−r−1
j λi }N)

∆(R−1)
∆(L)

N
∏

j=1

λn−N
j

j!(n − j)!

with r1 ≥ . . . ≥ rN the eigenvalues of R and L = diag(λ1 ≥ . . . ≥ λN) and

pλ(λ) =
1

M

N−1
∑

k=0

k!

(k + n − N)!
[Ln−N

k ]2λn−Ne−λ

where Lk
n are the Laguerre polynomials defined as

Lk
n(λ) =

eλ

k!λn

dk

dλk
(e−λλn+k )
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History of mathematical advances

Semi-circle law, Full circle law...

First asymptotic approach is due to Wigner for nuclear physics purposes

E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” The annals of
mathematics, vol. 62, pp. 546-564, 1955.

If XN ∈ CN×N is Hermitian with i.i.d. entries of mean 0, variance 1/N, then F XN
a.s.−→ F where

F has density f the semi-circle law

f (x) =
1

2π

√

(4 − x2)+

If XN ∈ CN×N has with i.i.d. 0 mean, variance 1/N entries, then asymptotically its complex
eigenvalues distribute uniformly on the complex unit circle.
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History of mathematical advances

Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for N = 500
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History of mathematical advances

Circular law

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Eigenvalues (real part)

E
ig

en
va

lu
es

(im
ag

in
ar

y
pa

rt
)

Empirical eigenvalue distribution

Circular Law

Figure: Eigenvalues of XN with i.i.d. standard Gaussian entries, for N = 500.
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History of mathematical advances

More involved matrix models

much study has surrounded the Marc̆enko-Pastur law, the Wigner semi-circle law etc.
for practical purposes, we often need more general matrix models

products and sums of random matrices
i.i.d. models with correlation/variance profile
distribution of inverses etc.

for these models, it is often impossible to have an expression of the limiting distribution.

sometimes we do not have a limiting convergence.

Tools for random matrix theory

To study these models, a consistent powerful mathematical framework is required.
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The moment approach and free probability

Eigenvalue distribution and moments

Moments of eigenvalue distributions,
The e.s.d. of an N × N Hermitian matrix XN (ω) has successive empirical moments M̂k , k = 1, 2, . . .,

M̂k =
1

N

N∑
i=1

λ
k
i

if FN denotes the e.s.d. of XN (ω), Mk is

M̂k =

∫
λ

k dF (λ)

In classical probability theory, if A and B are independent, the moments of A + B are
functions of the moments of A and those of B. In particular, for A, B independent,

ck (A + B) = ck (A) + ck (B)

with ck (X) the cumulants of X (polynomial functions of the moments mk of X ).
The cumulants cn are connected to the moments mn through formulas invoking partitions,

mn =
∑

π∈P(n)

∏

V∈π

c|V |

If A, B are Hermitian matrices, we feel that, if they have independent entries, there should
exist a relationship between the eigenvalue distribution moments
Mk (A + B) = Eω[M̂k (A(ω) + B(ω))]

D. V. Voiculescu, K. J. Dykema, A. Nica, “Free random variables,” American Mathematical Society,
1992.
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The moment approach and free probability

Free probability

Free probability applies to asymptotically large random matrices. We assume here all matrices
have infinite size

To connect the moments of A + B to those of A and B, independence is not enough. One
needs for A = A(ω) and B(ω) to be realizations of free sub-algebras of random matrices.
Roughly speaking, A and B need to be independent and to have “disconnected
eigen-directions”.

two Gaussian matrices are free
a Gaussian matrix and any deterministic matrix are free
unitary (Haar distributed) matrices are free
a Haar matrix and a Gaussian matrix are free etc.

Similarly as in classical probability, we define free cumulants Ck ,

C1 = M1

C2 = M2 − M2
1

C3 = M3 − 3M1M2 + 2M2
1

R. Speicher, “Combinatorial theory of the free product with amalgamation and operator-valued
free probability theory,” Mem. A.M.S., vol. 627, 1998.

A combinatorial description of the relation moments-cumulants invokes non-crossing
partitions,

Mn =
∑

π∈NC(n)

∏

V∈π

C|V |
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The moment approach and free probability

Non-crossing partitions

1

2

3

4

5

6

7

8

Figure: Non-crossing partition π = {{1, 3, 4}, {2}, {5, 6, 7}, {8}} of NC(8).
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The moment approach and free probability

Moments of sums and products of random matrices

Combinatorial calculus of all moments

Theorem

For free random matrices A and B, we have the relationship,

Ck (A + B) = Ck (A) + Ck (B)

Mn(AB) =
∑

(π1,π2)∈NC(n)

∏

V1∈π1
V2∈π2

C|V1|
(A)C|V2|

(B)

in conjunction with free moment-cumulant formula, gives all moments of sum and product.
Denote mF (z) the moment-generating function of the l.s.d. F of a random Hermitian matrix X,
also called Stieltjes transform,

mF (z) = −
∞
∑

k=0

Mk z−k−1

Theorem

If F is a compactly supported distribution function, then mF above exists for all z ∈ C∗ and gives
access to F through an inverse Stieltjes-transform formula (see Section 23).

In the absence of support compactness, it is impossible to retrieve the distribution function
from moments. This is in particular the case of Vandermonde matrices.
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The moment approach and free probability

Free convolution

In classical probability theory, for independent A, B,

fA+B(x) = fA(x) ∗ fB(x)
∆
=

∫

fA(t)fB(x − t)dt

In free probability, for free A, B, we use the notations

µA+B = µA ⊞ µB, µA = µA+B ⊟ µB, µAB = µA ⊠ µB, µA = µA+B � µB

Ø. Ryan, M. Debbah, “Multiplicative free convolution and information-plus-noise type matrices,”
Arxiv preprint math.PR/0702342, 2007.

Theorem

Convolution of the information-plus-noise model Let XN ∈ CN×n have i.i.d. Gaussian entries of
mean 0 and variance 1, RN ∈ CN×n, such that µ 1

n RN RH
N
⇒ µΓ, as n/N → c. Then the e.s.d. of

BN =
1

n
(RN + σXN) (RN + σXN)

H

converges weakly and almost surely to µB such that

µB =
(

(µΓ � µc) ⊞ δσ2
)

⊠ µc

with µc the Marc̆enko-Pastur law.
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The moment approach and free probability

Similarities between classical and free probability

Classical Probability Free probability

Moments mk =

∫

xk dF (x) Mk =

∫

xk dF (x)

Cumulants mn =
∑

π∈P(n)

∏

V∈π

c|V | Mn =
∑

π∈NC(n)

∏

V∈π

C|V |

Independence classical independence freeness
Additive convolution fA+B = fA ∗ fB µA+B = µA ⊞ µB

Multiplicative convolution fAB µAB = µA ⊠ µB
Sum Rule ck (A + B) = ck (A) + ck (B) Ck (A + B) = Ck (A) + Ck (B)

Central Limit
1√
n

n
∑

i=1

xi → N (0, 1)
1√
n

n
∑

i=1

Xi ⇒ semi-circle law

R. Couillet (Supélec) Random Matrix Theory Course 29/10/2009 21 / 46



The moment approach and free probability
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Introduction of the Stieltjes transform

The Stieltjes transform

Definition

Let F be a probability distribution function. The Stieltjes transform mF of F is the function defined,
for z ∈ C+, as

mF (z) =
∫

1

λ− z
dF (λ)

For a < b real, denoting z = x + iy , we have the inverse formula

F ([a, b]) = lim
y→0

1

π

∫ b

a
ℑ[mF (x + iy)]
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Introduction of the Stieltjes transform

Remark on the Stieltjes transform

If F is the e.s.d. of a Hermitian matrix XN ∈ CN×N , we might denote mX
∆
=mF , and

mX(z) =
∫

1

λ− z
dF (λ) =

1

N
tr (XN − zIN)

−1

We already saw that, for compactly supported F ,

mF (z) = −
∞
∑

k=0

Mk z−k−1

The Stieltjes transform is doubly more powerful than the moment approach!
conveys more information than any K -finite sequence M1, . . . , MK .

is not handicapped by the support compactness constraint.

however, Stieltjes transform methods, while stronger, are more painful to work with.
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Introduction of the Stieltjes transform

Properties of the Stieltjes transform

mF defined in general on C+ but exists everywhere outside the support of F .

if X ∈ CN×n, the spectral distribution of XXH and XHX only differ by a mass of |N − n| zeros.
Say N ≥ n,

mXXH (z) =
1

N

N
∑

i=1

1

λi − z
=

1

N

n
∑

i=1

1

λi − z
+

1

N
(N − n)

−1

z

hence

mXXH (z) =
n

N
mXHX − N − n

N

1

z
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Introduction of the Stieltjes transform

Asymptotic results using the Stieltjes transform

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

Theorem

Let BN = XNTNXH
N ∈ CN×N , where XN ∈ CN×n has i.i.d. entries of mean 0 and variance 1/N,

F TN ⇒ F T and n/N → c. Then, F BN converges weakly and almost surely to F with Stieltjes
transform

mF (z) =

(

c
∫

t

1 + tmF (z)
dF T (t)− z

)−1

whose solution is unique in the set {z ∈ C+,mF (z) ∈ C+}.

The proof of a more general theorem will be given in Part 2 of this course.

in general, no explicit expression for F .

the theorem above characterizes also the Stieltjes transform of BN = T
1
2
N XH

NXNT
1
2
N with

asymptotic distribution F ,

mF = cmF + (c − 1)
1

z
This gives access to the spectrum of the sample covariance matrix model, when
XN = [x1, . . . , xn], with i.i.d. columns TN = E[x1xH

1 ].
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Introduction of the Stieltjes transform

Getting F ′ from mF

Remember that, for a < b real,

F ′(x) = lim
y→0

1

π
ℑ[mF (x + iy)]

where mF is (up to now) only defined on C+.
(we will show in Part 3 that it can be somehow extended to C∗)
to plot the density F ′,

first approach: span z = x + iy on the line {x ∈ R, y = ε} parallel but close to the real axis, solve
mF (z) for each z, and plot ℑ[mF (z)].
refined approach: see Part 3.

Example (Sample covariance matrix)

For N multiple of 3, let F
′TN (x) = 1

3 δ(x − 1) + 1
3 δ(x − 3) + 1

3 δ(x − K ) and let BN = T
1
2
N XH

NXNT
1
2
N

with F BN → F , then

mF = cmF + (c − 1)
1

z

mF (z) =

(

c
∫

t

1 + tmF (z)
dF T (t)− z

)−1

We take c = 1/10 and alternatively K = 7 and K = 4.
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Introduction of the Stieltjes transform

Spectrum of the sample covariance matrix

1 3 7
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Figure: Histogram of the eigenvalues of BN = T
1
2
N XH

N XN T
1
2
N , N = 3000, n = 300, with TN diagonal composed of

three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at bottom.
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Introduction of the Stieltjes transform

Other notorious result

V. L. Girko, “Theory of Random Determinants,” Kluwer, Dordrecht, 1990.

Theorem

Let XN ∈ CN×n with xij i.i.d. of zero mean and variance σ2
ij /N where the σij ’s are uniformly

bounded. Assume the distribution of σij tends to pσ(x , y) as n,N → ∞, n/N → c. Then, almost
surely, the e.s.d. of BN = XNXH

N converges weakly to F with Stieltjes transform

mF (z) =
∫ 1

0
u(x , z)dx

and u(x , z) satisfies

u(x , z) =

[

−z +

∫ c

0

pσ(x , y)dy

1 +
∫ 1

0 u(x ′, z)pσ(x ′, y)dx ′

]−1
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Introduction of the Stieltjes transform

Other transforms: the R-transform

All classically used transforms can be expressed as a function of the Stieltjes transform

Some transforms are more handy to treat specific problems.

Definition

Let F be a distribution function mF its Stieltjes transform. Then the R-transform of F is defined as

mF (RF (z) + z−1) = −z

or equivalently

mF (z) =
1

RF (−mF (z))− z

The main property of the R-transform is that, for A, B free random matrices,

RA+B = RA + RB
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Introduction of the Stieltjes transform

Other transforms: the S-transform

Definition

Let F be a distribution function mF its Stieltjes transform. Then the S-transform of F is defined as

mF

(

z + 1

zSF (z)

)

= −zSF (z)

The S-transform is the product equivalent of the R-transform, i.e. for A, B free random matrices,

SAB = SA · SB

Remark: the R- and S-transforms are convenient to use when dealing with unitary matrices.
Example of use is worked out in Part 2.
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Introduction of the Stieltjes transform

Other transforms: Shannon and η-transforms

A. M. Tulino, S. Verdù, “Random matrix theory and wireless communications,” Now Publishers Inc.,
2004.

Definition

Let F be a probability distribution, mF its Stieltjes transform, then the Shannon-transform VF of F
is defined as

VF (x)
∆
=

∫ ∞

0
log(1 + xλ)dF (λ) =

∫ ∞

x

(

1

t
− mF (−t)

)

dt

Note that this last relation is fundamental to wireless communication purposes!

Definition

Let F be a probability distribution, mF its Stieltjes transform, then the η-transform ηF of F is
defined as

ηF (x)
∆
=

∫ ∞

0

1

1 + xλ
dF (λ) =

1

x
mF

(

− 1

x

)

The η-transform is only a convenient way to use the Stieltjes transform on the negative real-line.
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Proof of the Marc̆enko-Pastur law

The Marc̆enko-Pastur law

The theorem to be proven is the following

Theorem

Let XN ∈ CN×n have i.i.d. zero mean variance 1/n entries with finite eighth order moments. As
n,N → ∞ with N

n → c ∈ (0,∞), the e.s.d. of XNXH
N converges almost surely to a nonrandom

distribution function Fc with density fc given by

fc(x) = (1 − c−1)+δ(x) +
1

2πcx

√

(x − a)+(b − x)+

where a = (1 −√
c)2, b = (1 +

√
c)2 and δ(x) = I{0}(x).
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Proof of the Marc̆enko-Pastur law

The Marc̆enko-Pastur density
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Figure: Marc̆enko-Pastur law for different limit ratios c = limN→∞ N/n.
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Proof of the Marc̆enko-Pastur law

Diagonal entries of the resolvent

Since we want an expression of mF , we start by identifying the diagonal entries of the resolvent
(XNXH

N − zIN)−1 of XNXH
N . Denote

XN =

[

yH

Y

]

Now, for z ∈ C+, we have

(

XNXH
N − zIN

)−1
=

[

yHy − z yHYH

Yy YYH − zIN−1

]−1

Consider the first diagonal element of (RN − zIN)
−1. From the matrix inversion lemma,

(

A B
C D

)−1

=

(

(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−(A − BD−1C)−1CA−1 (D − CA−1B)−1

)

which here gives
[

(

XNXH
N − zIN

)−1
]

11
=

1

−z − zyH(YHY − zIn)−1y
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Proof of the Marc̆enko-Pastur law

Trace Lemma

D. N. C. Tse, O. Zeitouni, “Linear multiuser receivers in random environments,” IEEE Trans. on
Information Theory, vol. 46, no. 1, pp. 171-188, 2000.

To go further, we need the following result,

Theorem

Let {AN} ∈ CN×N . Let {xN} ∈ CN , be a random vector of i.i.d. entries with zero mean, variance
1/N and finite 8th order moment, independent of AN . Then

√
N
[

xH
NANxN − 1

N
tr AN

]

→ CN (0, 1)

As a corollary, we have

xH
NANxN − 1

N
tr AN → 0

almost surely.

For large N, we therefore have approximately
[

(

XNXH
N − zIN

)−1
]

11
≃ 1

−z − z 1
N tr(YHY − zIn)−1
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Proof of the Marc̆enko-Pastur law

Rank-1 perturbation lemma

J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large
dimensional random matrices,” Journal of Multivariate Analysis, vol. 54, no. 2, pp. 175-192, 1995.

It is somewhat intuitive that adding a single column to Y won’t affect the trace in the limit.

Theorem

Let z ∈ C+, A and B N × N with B Hermitian, and v ∈ CN . Then
∣

∣

∣

∣

1

N
tr
(

(B − zIN)
−1 − (B + vvH − zIN)

−1
)

A
∣

∣

∣

∣

≤ 1

N

‖A‖
ℑ[z]

with ‖A‖ the spectral norm of A.

Therefore, for large N, we have approximately,
[

(

XNXH
N − zIN

)−1
]

11
≃ 1

−z − z 1
N tr(YHY − zIn)−1

≃ 1

−z − z 1
N tr(XH

NXN − zIn)−1

=
1

−z − z n
N mF (z)

in which we recognize the Stieltjes transform mF of the l.s.d. of XH
NXN .
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Proof of the Marc̆enko-Pastur law

End of the proof

We have again the relation
n

N
mF (z) = mF (z) +

N − n

N

1

z

hence
[

(

XNXH
N − zIN

)−1
]

11
≃ 1

n
N − 1 − z − zmF (z)

Note that the choice (1, 1) is irrelevant here, so the expression is valid for all pair (i, i). Summing
over the N terms and averaging, we finally have

mF (z) =
1

N
tr
(

XNXH
N − zIN

)−1
≃ 1

c − 1 − z − zmF (z)

which solve a polynomial of second order. Finally

mF (z) =
c − 1

2z
− 1

2
+

√

(c − 1 − z)2 − 4z

2z

from the inverse Stieltjes transform formula, we then verify that mF is the Stieltjes transform of the
Marc̆enko-Pastur law.
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Summary of what we know, what is left to be done, which approach to consider to
attack a large dimensional wireless communication problem?

Models studied with analytic tools

Stieltjes transform: models involving i.i.d. matrices

sample covariance matrix models, XTXH and T
1
2 XHXT

1
2

doubly correlated models, R
1
2 XTXHR

1
2 . With X Gaussian, Kronecker model.

doubly correlated models with external matrix, R
1
2 XTXHR

1
2 + A.

variance profile, XXH, where X has i.i.d. entries with mean 0, variance σ2
i,j .

Ricean channels, XXH + A, where X has a variance profile.

sum of doubly correlated i.i.d. matrices,
∑K

k=1 R
1
2
k Xk Tk XH

k R
1
2
k .

information-plus-noise models (X + A)(X + A)H

frequency-selective doubly-correlated channels (
∑K

k=1 R
1
2
k Xk Tk Xk R

1
2
k )(

∑K
k=1 R

1
2
k Xk Tk Xk R

1
2
k )

sum of frequency-selective doubly-correlated channels
∑K

k=1 R
1
2
k Hk Tk HH

k R
1
2
k , where

Hk =
∑L

l=1 R′

kl

1
2 Xkl T

′

kl X
H
kl R

′

kl

1
2 .

R- and S-transforms: models involving a column subset W of unitary matrices

doubly correlated Haar matrix R
1
2 WTWHR

1
2

sum of simply correlated Haar matrices
∑K

k=1 Wk Tk WH
k

In most cases, T and R can be taken random, but independent of X. More involved random
matrices, such as Vandermonde matrices, were not yet studied.
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Summary of what we know, what is left to be done, which approach to consider to
attack a large dimensional wireless communication problem?

Models studied with moments/free probability

asymptotic results
most of the above models with Gaussian X.
products V1VH

1 T1V2VH
2 T2... of Vandermonde and deterministic matrices

conjecture: any probability space of matrices invariant to row or column permutations.

marginal studies, not yet fully explored
rectangular free convolution: singular values of rectangular matrices
finite size models. Instead of almost sure convergence of mXN

as N → ∞, we can study finite size
behaviour of E[mXN

].
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Summary of what we know, what is left to be done, which approach to consider to
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Open problems, to be explored

Stieltjes transform methods for more structured matrices: e.g. Vandermonde matrices

clean framework for band matrix models

finite dimensional methods for Ricean matrices

other ?
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