
1/88

Introduction to Optimization

Romain Couillet and Ronald Phlypo

December 3, 2020

2/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

3/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

4/88

Main objective

Objective of the class: solve the problem

Find x? ∈ argminx∈Ω⊂X f (x) (1)

for some function f : X → R ∪ {+∞}.

Remark
argminx∈Ω⊂X f (x) is a subset of X (may be empty, a singleton, a discrete set, an
uncountable set).

I f is the cost, penalty, or objective function;

I Ω = S ∩ X is the set of constraints S restricted to X .

4/88

Main objective

Objective of the class: solve the problem

Find x? ∈ argminx∈Ω⊂X f (x) (1)

for some function f : X → R ∪ {+∞}.

Remark
argminx∈Ω⊂X f (x) is a subset of X (may be empty, a singleton, a discrete set, an
uncountable set).

I f is the cost, penalty, or objective function;

I Ω = S ∩ X is the set of constraints S restricted to X .

4/88

Main objective

Objective of the class: solve the problem

Find x? ∈ argminx∈Ω⊂X f (x) (1)

for some function f : X → R ∪ {+∞}.

Remark
argminx∈Ω⊂X f (x) is a subset of X (may be empty, a singleton, a discrete set, an
uncountable set).

I f is the cost, penalty, or objective function;

I Ω = S ∩ X is the set of constraints S restricted to X .

5/88

Specifying f

6/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:

I n assets;

I at time t, return [xt]i for asset i , with E[xt] = µ and Cov[xt] = C ;

I investment of wealth 1 across assets [w]1, . . . , [w]n,
∑n

i=1[w]i = 1.

Objective:

I Optimal expected gain:

argmaxw∈Rn E[wTxt] = wTµ, such that
n∑

i=1

[w]i = 1.

I Risk minimization:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1.

I Risk minimization under constrained expected gain g :

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and E[wTxt] ≥ g .

6/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:

I n assets;

I at time t, return [xt]i for asset i , with E[xt] = µ and Cov[xt] = C ;

I investment of wealth 1 across assets [w]1, . . . , [w]n,
∑n

i=1[w]i = 1.

Objective:

I Optimal expected gain:

argmaxw∈Rn E[wTxt] = wTµ, such that
n∑

i=1

[w]i = 1.

I Risk minimization:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1.

I Risk minimization under constrained expected gain g :

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and E[wTxt] ≥ g .

6/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:

I n assets;

I at time t, return [xt]i for asset i , with E[xt] = µ and Cov[xt] = C ;

I investment of wealth 1 across assets [w]1, . . . , [w]n,
∑n

i=1[w]i = 1.

Objective:

I Optimal expected gain:

argmaxw∈Rn E[wTxt] = wTµ, such that
n∑

i=1

[w]i = 1.

I Risk minimization:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1.

I Risk minimization under constrained expected gain g :

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and E[wTxt] ≥ g .

6/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:

I n assets;

I at time t, return [xt]i for asset i , with E[xt] = µ and Cov[xt] = C ;

I investment of wealth 1 across assets [w]1, . . . , [w]n,
∑n

i=1[w]i = 1.

Objective:

I Optimal expected gain:

argmaxw∈Rn E[wTxt] = wTµ, such that
n∑

i=1

[w]i = 1.

I Risk minimization:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1.

I Risk minimization under constrained expected gain g :

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and E[wTxt] ≥ g .

7/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Objective:

I Risk minimization with non-negativity constraint:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and ∀i , [w]i ≥ 0.

Overview:

I Without inequality constraint, Lagrange multipliers give the solution:

w? =
C−11n

1T
nC
−11n

.

I With inequality constraint, interior point method (Lab Session 1), or proximal
point method (Lab Session 2).

7/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Objective:

I Risk minimization with non-negativity constraint:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and ∀i , [w]i ≥ 0.

Overview:

I Without inequality constraint, Lagrange multipliers give the solution:

w? =
C−11n

1T
nC
−11n

.

I With inequality constraint, interior point method (Lab Session 1), or proximal
point method (Lab Session 2).

7/88

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Objective:

I Risk minimization with non-negativity constraint:

argminw∈Rn E[|wT(xt − µ)|2], such that
n∑

i=1

[w]i = 1 and ∀i , [w]i ≥ 0.

Overview:

I Without inequality constraint, Lagrange multipliers give the solution:

w? =
C−11n

1T
nC
−11n

.

I With inequality constraint, interior point method (Lab Session 1), or proximal
point method (Lab Session 2).

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:
I Data points and labels

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1};
I Separating hyperplane of Rn of the form
H = {x | xTw? + b? = 0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w?, b?) ∈ argminw,b∈Rn

{
‖w‖2

}
such that yi (w

Txi + b) ≥ 1.

Why? Distance between “supporting” hyperplanes H±1 : xTw? + b? = ±1 for all
‖x+1 − x−1‖, x±1 ∈ H±1: implies (x+1 − x−1)Tw? = 2. Distance max for ‖w?‖ min.

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w?, b?) ∈ argminw,b∈Rp

{
1

m

m∑
i=1

max(0, 1− yi [w
Txi + b]) + λ‖w‖2

}

for some λ > 0.

Solution: Interior point or proximal methods.

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:
I Data points and labels

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1};
I Separating hyperplane of Rn of the form
H = {x | xTw? + b? = 0}.

Objective: Maximize hyperplane “margin”,

or equivalently

(w?, b?) ∈ argminw,b∈Rn

{
‖w‖2

}
such that yi (w

Txi + b) ≥ 1.

Why? Distance between “supporting” hyperplanes H±1 : xTw? + b? = ±1 for all
‖x+1 − x−1‖, x±1 ∈ H±1: implies (x+1 − x−1)Tw? = 2. Distance max for ‖w?‖ min.

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w?, b?) ∈ argminw,b∈Rp

{
1

m

m∑
i=1

max(0, 1− yi [w
Txi + b]) + λ‖w‖2

}

for some λ > 0.

Solution: Interior point or proximal methods.

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:
I Data points and labels

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1};
I Separating hyperplane of Rn of the form
H = {x | xTw? + b? = 0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w?, b?) ∈ argminw,b∈Rn

{
‖w‖2

}
such that yi (w

Txi + b) ≥ 1.

Why? Distance between “supporting” hyperplanes H±1 : xTw? + b? = ±1 for all
‖x+1 − x−1‖, x±1 ∈ H±1: implies (x+1 − x−1)Tw? = 2. Distance max for ‖w?‖ min.

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w?, b?) ∈ argminw,b∈Rp

{
1

m

m∑
i=1

max(0, 1− yi [w
Txi + b]) + λ‖w‖2

}

for some λ > 0.

Solution: Interior point or proximal methods.

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:
I Data points and labels

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1};
I Separating hyperplane of Rn of the form
H = {x | xTw? + b? = 0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w?, b?) ∈ argminw,b∈Rn

{
‖w‖2

}
such that yi (w

Txi + b) ≥ 1.

Why? Distance between “supporting” hyperplanes H±1 : xTw? + b? = ±1 for all
‖x+1 − x−1‖, x±1 ∈ H±1: implies (x+1 − x−1)Tw? = 2. Distance max for ‖w?‖ min.

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w?, b?) ∈ argminw,b∈Rp

{
1

m

m∑
i=1

max(0, 1− yi [w
Txi + b]) + λ‖w‖2

}

for some λ > 0.

Solution: Interior point or proximal methods.

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:
I Data points and labels

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1};
I Separating hyperplane of Rn of the form
H = {x | xTw? + b? = 0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w?, b?) ∈ argminw,b∈Rn

{
‖w‖2

}
such that yi (w

Txi + b) ≥ 1.

Why? Distance between “supporting” hyperplanes H±1 : xTw? + b? = ±1 for all
‖x+1 − x−1‖, x±1 ∈ H±1: implies (x+1 − x−1)Tw? = 2. Distance max for ‖w?‖ min.

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w?, b?) ∈ argminw,b∈Rp

{
1

m

m∑
i=1

max(0, 1− yi [w
Txi + b]) + λ‖w‖2

}

for some λ > 0.

Solution: Interior point or proximal methods.

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:
I Data points and labels

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1};
I Separating hyperplane of Rn of the form
H = {x | xTw? + b? = 0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w?, b?) ∈ argminw,b∈Rn

{
‖w‖2

}
such that yi (w

Txi + b) ≥ 1.

Why? Distance between “supporting” hyperplanes H±1 : xTw? + b? = ±1 for all
‖x+1 − x−1‖, x±1 ∈ H±1: implies (x+1 − x−1)Tw? = 2. Distance max for ‖w?‖ min.

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w?, b?) ∈ argminw,b∈Rp

{
1

m

m∑
i=1

max(0, 1− yi [w
Txi + b]) + λ‖w‖2

}

for some λ > 0.

Solution: Interior point or proximal methods.

9/88

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

I retrieve x ∈ Rn from y = Ax ∈ Rp , p � n, with x a sparse vector;

Objective: Maximize sparsity via “`1-relaxation”

x? ∈ argminx∈Rn ‖x‖1 such that y = Ax

with ‖x‖1 =
∑n

i=1 |[x]i |.

Remark 1: ‖ · ‖1 is not differentiable.

Remark 2: Denoting ıΩ(x) = 0 if x ∈ Ω and ıΩ(x) = +∞ if x /∈ Ω,

x? ∈ argminx∈Rn

{
‖x‖1 + ı{y=Ax}

}
≡ argminx∈Rn {f1(x) + f2(x)}

with f1, f2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

9/88

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

I retrieve x ∈ Rn from y = Ax ∈ Rp , p � n, with x a sparse vector;

Objective: Maximize sparsity via “`1-relaxation”

x? ∈ argminx∈Rn ‖x‖1 such that y = Ax

with ‖x‖1 =
∑n

i=1 |[x]i |.

Remark 1: ‖ · ‖1 is not differentiable.

Remark 2: Denoting ıΩ(x) = 0 if x ∈ Ω and ıΩ(x) = +∞ if x /∈ Ω,

x? ∈ argminx∈Rn

{
‖x‖1 + ı{y=Ax}

}
≡ argminx∈Rn {f1(x) + f2(x)}

with f1, f2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

9/88

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

I retrieve x ∈ Rn from y = Ax ∈ Rp , p � n, with x a sparse vector;

Objective: Maximize sparsity via “`1-relaxation”

x? ∈ argminx∈Rn ‖x‖1 such that y = Ax

with ‖x‖1 =
∑n

i=1 |[x]i |.

Remark 1: ‖ · ‖1 is not differentiable.

Remark 2: Denoting ıΩ(x) = 0 if x ∈ Ω and ıΩ(x) = +∞ if x /∈ Ω,

x? ∈ argminx∈Rn

{
‖x‖1 + ı{y=Ax}

}
≡ argminx∈Rn {f1(x) + f2(x)}

with f1, f2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

9/88

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

I retrieve x ∈ Rn from y = Ax ∈ Rp , p � n, with x a sparse vector;

Objective: Maximize sparsity via “`1-relaxation”

x? ∈ argminx∈Rn ‖x‖1 such that y = Ax

with ‖x‖1 =
∑n

i=1 |[x]i |.

Remark 1: ‖ · ‖1 is not differentiable.

Remark 2: Denoting ıΩ(x) = 0 if x ∈ Ω and ıΩ(x) = +∞ if x /∈ Ω,

x? ∈ argminx∈Rn

{
‖x‖1 + ı{y=Ax}

}

≡ argminx∈Rn {f1(x) + f2(x)}

with f1, f2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

9/88

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

I retrieve x ∈ Rn from y = Ax ∈ Rp , p � n, with x a sparse vector;

Objective: Maximize sparsity via “`1-relaxation”

x? ∈ argminx∈Rn ‖x‖1 such that y = Ax

with ‖x‖1 =
∑n

i=1 |[x]i |.

Remark 1: ‖ · ‖1 is not differentiable.

Remark 2: Denoting ıΩ(x) = 0 if x ∈ Ω and ıΩ(x) = +∞ if x /∈ Ω,

x? ∈ argminx∈Rn

{
‖x‖1 + ı{y=Ax}

}
≡ argminx∈Rn {f1(x) + f2(x)}

with f1, f2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

9/88

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

I retrieve x ∈ Rn from y = Ax ∈ Rp , p � n, with x a sparse vector;

Objective: Maximize sparsity via “`1-relaxation”

x? ∈ argminx∈Rn ‖x‖1 such that y = Ax

with ‖x‖1 =
∑n

i=1 |[x]i |.

Remark 1: ‖ · ‖1 is not differentiable.

Remark 2: Denoting ıΩ(x) = 0 if x ∈ Ω and ıΩ(x) = +∞ if x /∈ Ω,

x? ∈ argminx∈Rn

{
‖x‖1 + ı{y=Ax}

}
≡ argminx∈Rn {f1(x) + f2(x)}

with f1, f2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

10/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

11/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

12/88

Convex Sets

Definition (Convex Set)
C ⊂ X convex iif ∀x , y ∈ C and ∀λ ∈ [0, 1],

(1− λ)x + λy = x + λ(y − x) ∈ C.

Figure: Convex sets and non-convex sets (stroke out).

12/88

Convex Sets

Definition (Convex Set)
C ⊂ X convex iif ∀x , y ∈ C and ∀λ ∈ [0, 1],

(1− λ)x + λy = x + λ(y − x) ∈ C.

Figure: Convex sets and non-convex sets (stroke out).

13/88

Convex Sets: basic properties

Remark (Ensemble manipulations on convex sets)
For convex sets C1, C2,

I Ci can be open, closed, bounded, unbounded.

I C1 ∩ C2 is convex.

I C1 ∪ C2 is not necessarily convex.

Remark (List of convex sets)
The following ensembles are convex:

I line, segment, half-line, Rn

I a vector subspace

I hyperplanes {x , xTa = b}, half-spaces {x , xTa ≤ b}
I balls B(xc ; r) ≡ {x , ‖x − xc‖ ≤ r} and ellipsoids {x , (x − xc)TP−1(x − xc) ≤ r}.

13/88

Convex Sets: basic properties

Remark (Ensemble manipulations on convex sets)
For convex sets C1, C2,

I Ci can be open, closed, bounded, unbounded.

I C1 ∩ C2 is convex.

I C1 ∪ C2 is not necessarily convex.

Remark (List of convex sets)
The following ensembles are convex:

I line, segment, half-line, Rn

I a vector subspace

I hyperplanes {x , xTa = b}, half-spaces {x , xTa ≤ b}
I balls B(xc ; r) ≡ {x , ‖x − xc‖ ≤ r} and ellipsoids {x , (x − xc)TP−1(x − xc) ≤ r}.

14/88

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that B(xc ; r) ≡ {x , ‖x − xc‖ ≤ r} is convex.

Proof of ball convexity.
Let x , y ∈ B(xc ; r). Then,

‖λx +(1−λ)y−xc‖ = ‖λ(x−xc)+(1−λ)(y−xc)‖ ≤ λ‖x−xc‖+(1−λ)‖y−xc‖ ≤ r .

Exercise (2. Polyhedron convexity)
For A ∈ Rl×n, B ∈ Rm×n and b ∈ Rl , d ∈ Rm,
show the convexity of polyhedron

P = {x , Ax ≤ b, Cx = d} .

Figure: A polyhedron.

14/88

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that B(xc ; r) ≡ {x , ‖x − xc‖ ≤ r} is convex.

Proof of ball convexity.
Let x , y ∈ B(xc ; r). Then,

‖λx +(1−λ)y−xc‖ = ‖λ(x−xc)+(1−λ)(y−xc)‖

≤ λ‖x−xc‖+(1−λ)‖y−xc‖ ≤ r .

Exercise (2. Polyhedron convexity)
For A ∈ Rl×n, B ∈ Rm×n and b ∈ Rl , d ∈ Rm,
show the convexity of polyhedron

P = {x , Ax ≤ b, Cx = d} .

Figure: A polyhedron.

14/88

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that B(xc ; r) ≡ {x , ‖x − xc‖ ≤ r} is convex.

Proof of ball convexity.
Let x , y ∈ B(xc ; r). Then,

‖λx +(1−λ)y−xc‖ = ‖λ(x−xc)+(1−λ)(y−xc)‖ ≤ λ‖x−xc‖+(1−λ)‖y−xc‖ ≤ r .

Exercise (2. Polyhedron convexity)
For A ∈ Rl×n, B ∈ Rm×n and b ∈ Rl , d ∈ Rm,
show the convexity of polyhedron

P = {x , Ax ≤ b, Cx = d} .

Figure: A polyhedron.

14/88

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that B(xc ; r) ≡ {x , ‖x − xc‖ ≤ r} is convex.

Proof of ball convexity.
Let x , y ∈ B(xc ; r). Then,

‖λx +(1−λ)y−xc‖ = ‖λ(x−xc)+(1−λ)(y−xc)‖ ≤ λ‖x−xc‖+(1−λ)‖y−xc‖ ≤ r .

Exercise (2. Polyhedron convexity)
For A ∈ Rl×n, B ∈ Rm×n and b ∈ Rl , d ∈ Rm,
show the convexity of polyhedron

P = {x , Ax ≤ b, Cx = d} .

Figure: A polyhedron.

15/88

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1, . . . , xk ∈ S is the set{

θ1x1 + . . .+ θkxk |
k∑

i=1

θi = 1, θ1, . . . , θk ≥ 0

}
.

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x1, . . . , x5.

Definition (Convex hull)
The convex hull conv(X) is the set of all convex combinations of points in X ,

conv(X) =

{
θ1x1 + . . .+ θkxk |

k∑
i=1

θi = 1, θ1, . . . , θk ≥ 0, x1, . . . , xk ∈ X , k ≥ 0

}
.

Property (Convex sets and convex hulls)
conv(X) is the smallest convex set containing X : X is convex iif X = conv(X).

15/88

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1, . . . , xk ∈ S is the set{

θ1x1 + . . .+ θkxk |
k∑

i=1

θi = 1, θ1, . . . , θk ≥ 0

}
.

This is a convex set.

The polyhedron (Figure 2) is the set of convex combinations of x1, . . . , x5.

Definition (Convex hull)
The convex hull conv(X) is the set of all convex combinations of points in X ,

conv(X) =

{
θ1x1 + . . .+ θkxk |

k∑
i=1

θi = 1, θ1, . . . , θk ≥ 0, x1, . . . , xk ∈ X , k ≥ 0

}
.

Property (Convex sets and convex hulls)
conv(X) is the smallest convex set containing X : X is convex iif X = conv(X).

15/88

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1, . . . , xk ∈ S is the set{

θ1x1 + . . .+ θkxk |
k∑

i=1

θi = 1, θ1, . . . , θk ≥ 0

}
.

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x1, . . . , x5.

Definition (Convex hull)
The convex hull conv(X) is the set of all convex combinations of points in X ,

conv(X) =

{
θ1x1 + . . .+ θkxk |

k∑
i=1

θi = 1, θ1, . . . , θk ≥ 0, x1, . . . , xk ∈ X , k ≥ 0

}
.

Property (Convex sets and convex hulls)
conv(X) is the smallest convex set containing X : X is convex iif X = conv(X).

15/88

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1, . . . , xk ∈ S is the set{

θ1x1 + . . .+ θkxk |
k∑

i=1

θi = 1, θ1, . . . , θk ≥ 0

}
.

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x1, . . . , x5.

Definition (Convex hull)
The convex hull conv(X) is the set of all convex combinations of points in X ,

conv(X) =

{
θ1x1 + . . .+ θkxk |

k∑
i=1

θi = 1, θ1, . . . , θk ≥ 0, x1, . . . , xk ∈ X , k ≥ 0

}
.

Property (Convex sets and convex hulls)
conv(X) is the smallest convex set containing X : X is convex iif X = conv(X).

15/88

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1, . . . , xk ∈ S is the set{

θ1x1 + . . .+ θkxk |
k∑

i=1

θi = 1, θ1, . . . , θk ≥ 0

}
.

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x1, . . . , x5.

Definition (Convex hull)
The convex hull conv(X) is the set of all convex combinations of points in X ,

conv(X) =

{
θ1x1 + . . .+ θkxk |

k∑
i=1

θi = 1, θ1, . . . , θk ≥ 0, x1, . . . , xk ∈ X , k ≥ 0

}
.

Property (Convex sets and convex hulls)
conv(X) is the smallest convex set containing X : X is convex iif X = conv(X).

16/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

17/88

Convex Function

Definition (Epigraph of a function)
The epigraph of f : X → R is the set

epi(f) = {(x , c) ∈ X ×R, f (x) ≤ c} .

Figure: Epigraph of a function f : R→ R.

Definition (Convex function)
A function f : X → R ∪ {+∞} is convex iif epi(f) is a convex set.

17/88

Convex Function

Definition (Epigraph of a function)
The epigraph of f : X → R is the set

epi(f) = {(x , c) ∈ X ×R, f (x) ≤ c} .

Figure: Epigraph of a function f : R→ R.

Definition (Convex function)
A function f : X → R ∪ {+∞} is convex iif epi(f) is a convex set.

18/88

Convex Function

Property (Convex function)
f : X → R ∪ {+∞} is convex iif, for all x , y ∈ X and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Proof.
⇒ Let x , y ∈ X . Then (x , f (x)), (y , f (y)) ∈ epi(f).
Thus so is (λx + (1− λ)y , λf (x) + (1− λ)f (y)).
By definition of epi(f), this implies λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

⇐ For x , y ∈ X , (λx + (1− λ)y , λf (x) + (1− λ)f (y)) ∈ epi(f) and so epi(f) is
convex.

18/88

Convex Function

Property (Convex function)
f : X → R ∪ {+∞} is convex iif, for all x , y ∈ X and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Proof.
⇒ Let x , y ∈ X . Then (x , f (x)), (y , f (y)) ∈ epi(f).
Thus so is (λx + (1− λ)y , λf (x) + (1− λ)f (y)).
By definition of epi(f), this implies λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

⇐ For x , y ∈ X , (λx + (1− λ)y , λf (x) + (1− λ)f (y)) ∈ epi(f) and so epi(f) is
convex.

18/88

Convex Function

Property (Convex function)
f : X → R ∪ {+∞} is convex iif, for all x , y ∈ X and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Proof.
⇒ Let x , y ∈ X . Then (x , f (x)), (y , f (y)) ∈ epi(f).

Thus so is (λx + (1− λ)y , λf (x) + (1− λ)f (y)).
By definition of epi(f), this implies λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

⇐ For x , y ∈ X , (λx + (1− λ)y , λf (x) + (1− λ)f (y)) ∈ epi(f) and so epi(f) is
convex.

18/88

Convex Function

Property (Convex function)
f : X → R ∪ {+∞} is convex iif, for all x , y ∈ X and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Proof.
⇒ Let x , y ∈ X . Then (x , f (x)), (y , f (y)) ∈ epi(f).
Thus so is (λx + (1− λ)y , λf (x) + (1− λ)f (y)).

By definition of epi(f), this implies λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

⇐ For x , y ∈ X , (λx + (1− λ)y , λf (x) + (1− λ)f (y)) ∈ epi(f) and so epi(f) is
convex.

18/88

Convex Function

Property (Convex function)
f : X → R ∪ {+∞} is convex iif, for all x , y ∈ X and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Proof.
⇒ Let x , y ∈ X . Then (x , f (x)), (y , f (y)) ∈ epi(f).
Thus so is (λx + (1− λ)y , λf (x) + (1− λ)f (y)).
By definition of epi(f), this implies λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

⇐ For x , y ∈ X , (λx + (1− λ)y , λf (x) + (1− λ)f (y)) ∈ epi(f) and so epi(f) is
convex.

18/88

Convex Function

Property (Convex function)
f : X → R ∪ {+∞} is convex iif, for all x , y ∈ X and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Proof.
⇒ Let x , y ∈ X . Then (x , f (x)), (y , f (y)) ∈ epi(f).
Thus so is (λx + (1− λ)y , λf (x) + (1− λ)f (y)).
By definition of epi(f), this implies λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

⇐ For x , y ∈ X , (λx + (1− λ)y , λf (x) + (1− λ)f (y)) ∈ epi(f) and so epi(f) is
convex.

19/88

Differentiable convex function
Reminder. For f differentiable at x , ∇f (x) =

{
∂f
∂xi

(x)
}n

i=1
.

Definition (Domain of a function)
The domain of f : X → R ∪ {+∞} is the set dom(f) = {x , f (x) < +∞}.

Theorem (First order conditions)
For f : X → R ∪ {+∞} differentiable in its domain, f convex iif, ∀x , y ∈ dom(f),

f (y) ≥ f (x) +∇f (x)T(y − x).

Differentiable f : f convex iif all tangent hyperplanes of epi(f) are below the epigraph.

19/88

Differentiable convex function
Reminder. For f differentiable at x , ∇f (x) =

{
∂f
∂xi

(x)
}n

i=1
.

Definition (Domain of a function)
The domain of f : X → R ∪ {+∞} is the set dom(f) = {x , f (x) < +∞}.

Theorem (First order conditions)
For f : X → R ∪ {+∞} differentiable in its domain, f convex iif, ∀x , y ∈ dom(f),

f (y) ≥ f (x) +∇f (x)T(y − x).

Differentiable f : f convex iif all tangent hyperplanes of epi(f) are below the epigraph.

19/88

Differentiable convex function
Reminder. For f differentiable at x , ∇f (x) =

{
∂f
∂xi

(x)
}n

i=1
.

Definition (Domain of a function)
The domain of f : X → R ∪ {+∞} is the set dom(f) = {x , f (x) < +∞}.

Theorem (First order conditions)
For f : X → R ∪ {+∞} differentiable in its domain, f convex iif, ∀x , y ∈ dom(f),

f (y) ≥ f (x) +∇f (x)T(y − x).

Differentiable f : f convex iif all tangent hyperplanes of epi(f) are below the epigraph.

19/88

Differentiable convex function
Reminder. For f differentiable at x , ∇f (x) =

{
∂f
∂xi

(x)
}n

i=1
.

Definition (Domain of a function)
The domain of f : X → R ∪ {+∞} is the set dom(f) = {x , f (x) < +∞}.

Theorem (First order conditions)
For f : X → R ∪ {+∞} differentiable in its domain, f convex iif, ∀x , y ∈ dom(f),

f (y) ≥ f (x) +∇f (x)T(y − x).

Differentiable f : f convex iif all tangent hyperplanes of epi(f) are below the epigraph.

20/88

Differentiable convex function

Proof.
⇒ f convex implies, for λ ∈ [0, 1], x , y ∈ X ,

f (λx + (1− λ)y) = f (y + λ(x − y)) ≤ λf (x) + (1− λ)f (y) = λ(f (x)− f (y)) + f (y)

or equivalently

f (y + λ(x − y))− f (y)

λ
≤ f (x)− f (y).

Taking the limit y ↓ 0 (for this: g(λ) = f (y + λ(x − y))⇒ g ′(λ) =
∑n

i=1
∂f
∂[x]i

d [x]i
dλ

),

∇f (y)T(x − y) ≤ f (x)− f (y).

⇐ For z = λx + (1− λ)y ,

(∗) f (x) ≥ f (z) +∇f (z)T(x − z)

(∗∗) f (y) ≥ f (z) +∇f (z)T(y − z).

Then λ(∗) + (1− λ)(∗∗) gives

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

20/88

Differentiable convex function

Proof.
⇒ f convex implies, for λ ∈ [0, 1], x , y ∈ X ,

f (λx + (1− λ)y) = f (y + λ(x − y)) ≤ λf (x) + (1− λ)f (y) = λ(f (x)− f (y)) + f (y)

or equivalently

f (y + λ(x − y))− f (y)

λ
≤ f (x)− f (y).

Taking the limit y ↓ 0 (for this: g(λ) = f (y + λ(x − y))⇒ g ′(λ) =
∑n

i=1
∂f
∂[x]i

d [x]i
dλ

),

∇f (y)T(x − y) ≤ f (x)− f (y).

⇐ For z = λx + (1− λ)y ,

(∗) f (x) ≥ f (z) +∇f (z)T(x − z)

(∗∗) f (y) ≥ f (z) +∇f (z)T(y − z).

Then λ(∗) + (1− λ)(∗∗) gives

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

20/88

Differentiable convex function

Proof.
⇒ f convex implies, for λ ∈ [0, 1], x , y ∈ X ,

f (λx + (1− λ)y) = f (y + λ(x − y)) ≤ λf (x) + (1− λ)f (y) = λ(f (x)− f (y)) + f (y)

or equivalently

f (y + λ(x − y))− f (y)

λ
≤ f (x)− f (y).

Taking the limit y ↓ 0 (for this: g(λ) = f (y + λ(x − y))⇒ g ′(λ) =
∑n

i=1
∂f
∂[x]i

d [x]i
dλ

),

∇f (y)T(x − y) ≤ f (x)− f (y).

⇐ For z = λx + (1− λ)y ,

(∗) f (x) ≥ f (z) +∇f (z)T(x − z)

(∗∗) f (y) ≥ f (z) +∇f (z)T(y − z).

Then λ(∗) + (1− λ)(∗∗) gives

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

20/88

Differentiable convex function

Proof.
⇒ f convex implies, for λ ∈ [0, 1], x , y ∈ X ,

f (λx + (1− λ)y) = f (y + λ(x − y)) ≤ λf (x) + (1− λ)f (y) = λ(f (x)− f (y)) + f (y)

or equivalently

f (y + λ(x − y))− f (y)

λ
≤ f (x)− f (y).

Taking the limit y ↓ 0 (for this: g(λ) = f (y + λ(x − y))⇒ g ′(λ) =
∑n

i=1
∂f
∂[x]i

d [x]i
dλ

),

∇f (y)T(x − y) ≤ f (x)− f (y).

⇐ For z = λx + (1− λ)y ,

(∗) f (x) ≥ f (z) +∇f (z)T(x − z)

(∗∗) f (y) ≥ f (z) +∇f (z)T(y − z).

Then λ(∗) + (1− λ)(∗∗) gives

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

20/88

Differentiable convex function

Proof.
⇒ f convex implies, for λ ∈ [0, 1], x , y ∈ X ,

f (λx + (1− λ)y) = f (y + λ(x − y)) ≤ λf (x) + (1− λ)f (y) = λ(f (x)− f (y)) + f (y)

or equivalently

f (y + λ(x − y))− f (y)

λ
≤ f (x)− f (y).

Taking the limit y ↓ 0 (for this: g(λ) = f (y + λ(x − y))⇒ g ′(λ) =
∑n

i=1
∂f
∂[x]i

d [x]i
dλ

),

∇f (y)T(x − y) ≤ f (x)− f (y).

⇐ For z = λx + (1− λ)y ,

(∗) f (x) ≥ f (z) +∇f (z)T(x − z)

(∗∗) f (y) ≥ f (z) +∇f (z)T(y − z).

Then λ(∗) + (1− λ)(∗∗) gives

λf (x) + (1− λ)f (y) ≥ f (z) = f (λx + (1− λ)y).

21/88

Differentiable convex function

Detailed derivation of the first order conditions for n = 1:

I hyperplane H equation given by ωT(y , cy) + C = 0, with (x , f (x)) ∈ H
I hence C = f (x)− f ′(x)x (because (f ′(x),−1)T(x , f (x)) + C = 0)

I using cy ≤ f (y), one retrieves the first order conditions.

21/88

Differentiable convex function

Detailed derivation of the first order conditions for n = 1:

I hyperplane H equation given by ωT(y , cy) + C = 0, with (x , f (x)) ∈ H

I hence C = f (x)− f ′(x)x (because (f ′(x),−1)T(x , f (x)) + C = 0)

I using cy ≤ f (y), one retrieves the first order conditions.

21/88

Differentiable convex function

Detailed derivation of the first order conditions for n = 1:

I hyperplane H equation given by ωT(y , cy) + C = 0, with (x , f (x)) ∈ H
I hence C = f (x)− f ′(x)x (because (f ′(x),−1)T(x , f (x)) + C = 0)

I using cy ≤ f (y), one retrieves the first order conditions.

21/88

Differentiable convex function

Detailed derivation of the first order conditions for n = 1:

I hyperplane H equation given by ωT(y , cy) + C = 0, with (x , f (x)) ∈ H
I hence C = f (x)− f ′(x)x (because (f ′(x),−1)T(x , f (x)) + C = 0)

I using cy ≤ f (y), one retrieves the first order conditions.

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.

Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!

So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.

True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

22/88

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat’s rule)
x? ∈ X minimizes f : X → R ∪ {+∞} convex iif ∇f (x?) = 0.

Proof.
⇒ Assume ∇f (x?) 6= 0.
Then, for h ∈ X and ε > 0,

f (x? + εh) = f (x?) + ε∇f (x?)Th + O(ε2)

f (x? − εh) = f (x?)− ε∇f (x?)Th + O(ε2).

If ∇f (x?)Th 6= 0, contradiction as ε→ 0!
So ∇f (x?)Th = 0.
True for all h: this implies ∇f (x?) = 0.

⇐ If ∇f (x?) = 0 with f convex, ∀x ∈ X ,

f (x) ≥ f (x?) +∇f (x?)T(x − x?) = f (x?)

so x? minimizes f .

23/88

Twice-differentiable convex function

Reminder: For f twice-differentiable at x , Hessian ∇2f (x) = { ∂2f
∂[x]i∂[x]j

}ni,j=1.

Theorem (Second order conditions)
For f : X → R ∪ {+∞} twice differentiable, f is convex on its domain iif ∇2f (x) is
semi-definite positive for all x ∈ dom(f).

Remark (Case n = 1)
For n = 1, ∇2f (x) = f ′′(x). Thus, f convex iif f ′′(x) > 0 (or equivalently f ′(x)
non-decreasing).

23/88

Twice-differentiable convex function

Reminder: For f twice-differentiable at x , Hessian ∇2f (x) = { ∂2f
∂[x]i∂[x]j

}ni,j=1.

Theorem (Second order conditions)
For f : X → R ∪ {+∞} twice differentiable, f is convex on its domain iif ∇2f (x) is
semi-definite positive for all x ∈ dom(f).

Remark (Case n = 1)
For n = 1, ∇2f (x) = f ′′(x). Thus, f convex iif f ′′(x) > 0 (or equivalently f ′(x)
non-decreasing).

23/88

Twice-differentiable convex function

Reminder: For f twice-differentiable at x , Hessian ∇2f (x) = { ∂2f
∂[x]i∂[x]j

}ni,j=1.

Theorem (Second order conditions)
For f : X → R ∪ {+∞} twice differentiable, f is convex on its domain iif ∇2f (x) is
semi-definite positive for all x ∈ dom(f).

Remark (Case n = 1)
For n = 1, ∇2f (x) = f ′′(x).

Thus, f convex iif f ′′(x) > 0 (or equivalently f ′(x)
non-decreasing).

23/88

Twice-differentiable convex function

Reminder: For f twice-differentiable at x , Hessian ∇2f (x) = { ∂2f
∂[x]i∂[x]j

}ni,j=1.

Theorem (Second order conditions)
For f : X → R ∪ {+∞} twice differentiable, f is convex on its domain iif ∇2f (x) is
semi-definite positive for all x ∈ dom(f).

Remark (Case n = 1)
For n = 1, ∇2f (x) = f ′′(x). Thus, f convex iif f ′′(x) > 0 (or equivalently f ′(x)
non-decreasing).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).

But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th

⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

24/88

Twice-differentiable convex function

Proof.
⇒ By Taylor-Lagrange, ∀h ∈ X and ∀ε > 0,

∃γ ∈ (0, ε), f (x + εh) = f (x) + εhT∇f (x) + ε2hT∇2f (x + γh)h

Why? 1D Taylor-Lagrange by differentiating g : ε 7→ f (x + εh).
But by convexity,

f (x + εh) ≥ f (x) + ε∇f (x)Th ⇒ ∀h ∈ X , hT
[
∇2f (x + γh)

]
h ≥ 0.

With ε ↓ 0, we obtain ∀h ∈ X , hT
[
∇2f (x)

]
h ≥ 0, i.e., ∇2f � 0.

⇐ Define g : [0, 1]→ R ∪ {+∞}, g(t) = f (tx + (1− t)y).

By chain rule (g ′(t) =
∑n

i=1
∂f
∂[z]i

d [z]i (t)
dt

with g(t) ≡ f (z(t)), and similarly for g ′′(t))

g ′′(t) = (x − y)T
[
∇2f (tx + (1− t)y)

]
(x − y) ≥ 0 (since ∇2f � 0).

By Taylor-Lagrange, we then have, for some ζx , ζy ∈ [0, 1],

(∗) f (y) = g(0) = g(t) + (0− t)g ′(t) +
1

2
t2g ′′(ζy) ≥ g(t)− tg ′(t)

(∗∗) f (x) = g(1) = g(t) + (1− t)g ′(t) +
1

2
t2g ′′(ζx) ≥ g(t) + (1− t)g ′(t).

Using (1− t)(∗) + t(∗∗), we conclude tf (x) + (1− t)f (y) ≥ g(t) = f (tx + (1− t)y).

25/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

26/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .

Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses

(6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat

(close to ∇f (x∗) = 0 but maybe far from x?).

27/88

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x? ∈ argminx∈Ω⊂X {f (x)}.

Assumption (Unconstrained Ω, differentiable f)

I f differentiable everywhere on X ;

I Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x1, x2, . . . with xk+1 a function of xk .
Algorithm terminates when either:

I ‖xk+1 − xk‖ < ε: the algorithm no longer progresses in X ;

I |f (xk+1)− f (xk)| < ε: the cost no longer progresses (6⇒ xk converges!);

I ‖∇f (xk)‖ < ε: cost almost flat (close to ∇f (x∗) = 0 but maybe far from x?).

28/88

Convex optimization algorithms: descent methods

Definition (Descent Method)
Descent method is an algorithm outputing x1, x2, . . . ∈ X of the form

xk+1 = xk + tk∆xk , step size tk > 0, increment ∆xk

such that f (xk+1) < f (xk) if xk 6∈ argmin f and f (xk+1) = f (xk) if xk ∈ argmin f .

29/88

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

I too slow descent: we may have limk f (xk) > f (x?);

I f (xk)→ f (x?) does not imply that xk converges at all (periodic behavior of xk !).

Descent sequences either not converging (top) or not reaching minimum (bottom).

29/88

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

I too slow descent: we may have limk f (xk) > f (x?);

I f (xk)→ f (x?) does not imply that xk converges at all (periodic behavior of xk !).

Descent sequences either not converging (top) or not reaching minimum (bottom).

29/88

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

I too slow descent: we may have limk f (xk) > f (x?);

I f (xk)→ f (x?) does not imply that xk converges at all (periodic behavior of xk !).

Descent sequences either not converging (top) or not reaching minimum (bottom).

29/88

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

I too slow descent: we may have limk f (xk) > f (x?);

I f (xk)→ f (x?) does not imply that xk converges at all (periodic behavior of xk !).

Descent sequences either not converging (top) or not reaching minimum (bottom).

30/88

Convex optimization algorithms: descent methods

Important property: for xk , xk+1 ∈ X , by first order condition

f (xk + tk∆xk) ≥ f (xk) + tk∇f (xk)T∆xk .

As such, letting x1, x2, . . . defined by

xk+1 = xk + tk∆xk ,

we have

f (xk+1) ≥ f (xk) +∇f (xk)T(xk+1 − xk) = f (xk) + tk∇f (xk)T∆xk .

and thus x1, x2, . . . cannot be a descent method sequence unless ∇f (xk)T∆xk ≤ 0.

Property (Descent direction)
Necessary condition for x1, x2, . . . to be a descent sequence,

∇f (xk)T∆xk ≤ 0

where ∆xk = xk+1 − xk , and equality reached iif xk ∈ arg min f .

30/88

Convex optimization algorithms: descent methods

Important property: for xk , xk+1 ∈ X , by first order condition

f (xk + tk∆xk) ≥ f (xk) + tk∇f (xk)T∆xk .

As such, letting x1, x2, . . . defined by

xk+1 = xk + tk∆xk ,

we have

f (xk+1) ≥ f (xk) +∇f (xk)T(xk+1 − xk) = f (xk) + tk∇f (xk)T∆xk .

and thus x1, x2, . . . cannot be a descent method sequence unless ∇f (xk)T∆xk ≤ 0.

Property (Descent direction)
Necessary condition for x1, x2, . . . to be a descent sequence,

∇f (xk)T∆xk ≤ 0

where ∆xk = xk+1 − xk , and equality reached iif xk ∈ arg min f .

30/88

Convex optimization algorithms: descent methods

Important property: for xk , xk+1 ∈ X , by first order condition

f (xk + tk∆xk) ≥ f (xk) + tk∇f (xk)T∆xk .

As such, letting x1, x2, . . . defined by

xk+1 = xk + tk∆xk ,

we have

f (xk+1) ≥ f (xk) +∇f (xk)T(xk+1 − xk) = f (xk) + tk∇f (xk)T∆xk .

and thus x1, x2, . . . cannot be a descent method sequence unless ∇f (xk)T∆xk ≤ 0.

Property (Descent direction)
Necessary condition for x1, x2, . . . to be a descent sequence,

∇f (xk)T∆xk ≤ 0

where ∆xk = xk+1 − xk , and equality reached iif xk ∈ arg min f .

30/88

Convex optimization algorithms: descent methods

Important property: for xk , xk+1 ∈ X , by first order condition

f (xk + tk∆xk) ≥ f (xk) + tk∇f (xk)T∆xk .

As such, letting x1, x2, . . . defined by

xk+1 = xk + tk∆xk ,

we have

f (xk+1) ≥ f (xk) +∇f (xk)T(xk+1 − xk) = f (xk) + tk∇f (xk)T∆xk .

and thus x1, x2, . . . cannot be a descent method sequence unless ∇f (xk)T∆xk ≤ 0.

Property (Descent direction)
Necessary condition for x1, x2, . . . to be a descent sequence,

∇f (xk)T∆xk ≤ 0

where ∆xk = xk+1 − xk , and equality reached iif xk ∈ arg min f .

31/88

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f (x) = [x]2
1 + [x]2

2.
Initialized at x1 = [1, 1].

Although ∆x1 = [−1, 1/2] has acute an-
gle with −∇f (x1),

x2 = [0, 3/2] = x1 + ∆x1

increases rather than decreases f .

Yet, for small t, x1 + t∆x1 is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f (xk+1) = f (xk) + tk∇f (xk)T∆xk + O(t2
k‖∆xk‖2)

so that, ∀tk > 0 small, f (xk+1) < f (xk).

⇒ Careful control of step sizes needed!

31/88

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f (x) = [x]2
1 + [x]2

2.
Initialized at x1 = [1, 1].

Although ∆x1 = [−1, 1/2] has acute an-
gle with −∇f (x1),

x2 = [0, 3/2] = x1 + ∆x1

increases rather than decreases f .

Yet, for small t, x1 + t∆x1 is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f (xk+1) = f (xk) + tk∇f (xk)T∆xk + O(t2
k‖∆xk‖2)

so that, ∀tk > 0 small, f (xk+1) < f (xk).

⇒ Careful control of step sizes needed!

31/88

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f (x) = [x]2
1 + [x]2

2.
Initialized at x1 = [1, 1].

Although ∆x1 = [−1, 1/2] has acute an-
gle with −∇f (x1),

x2 = [0, 3/2] = x1 + ∆x1

increases rather than decreases f .

Yet, for small t, x1 + t∆x1 is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f (xk+1) = f (xk) + tk∇f (xk)T∆xk + O(t2
k‖∆xk‖2)

so that, ∀tk > 0 small, f (xk+1) < f (xk).

⇒ Careful control of step sizes needed!

31/88

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f (x) = [x]2
1 + [x]2

2.
Initialized at x1 = [1, 1].

Although ∆x1 = [−1, 1/2] has acute an-
gle with −∇f (x1),

x2 = [0, 3/2] = x1 + ∆x1

increases rather than decreases f .

Yet, for small t, x1 + t∆x1 is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f (xk+1) = f (xk) + tk∇f (xk)T∆xk + O(t2
k‖∆xk‖2)

so that, ∀tk > 0 small, f (xk+1) < f (xk).

⇒ Careful control of step sizes needed!

31/88

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f (x) = [x]2
1 + [x]2

2.
Initialized at x1 = [1, 1].

Although ∆x1 = [−1, 1/2] has acute an-
gle with −∇f (x1),

x2 = [0, 3/2] = x1 + ∆x1

increases rather than decreases f .

Yet, for small t, x1 + t∆x1 is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f (xk+1) = f (xk) + tk∇f (xk)T∆xk + O(t2
k‖∆xk‖2)

so that, ∀tk > 0 small, f (xk+1) < f (xk).

⇒ Careful control of step sizes needed!

31/88

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f (x) = [x]2
1 + [x]2

2.
Initialized at x1 = [1, 1].

Although ∆x1 = [−1, 1/2] has acute an-
gle with −∇f (x1),

x2 = [0, 3/2] = x1 + ∆x1

increases rather than decreases f .

Yet, for small t, x1 + t∆x1 is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f (xk+1) = f (xk) + tk∇f (xk)T∆xk + O(t2
k‖∆xk‖2)

so that, ∀tk > 0 small, f (xk+1) < f (xk).

⇒ Careful control of step sizes needed!

32/88

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f (xk+1)− f (xk)| maximal when
∇f (xk)T∆xk both negative and of maximal absolute value.

For ‖∆xk‖ = 1, optimal when

∆xk = −
∇f (xk)

‖∇f (xk)‖
.

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm)
x1 ∈ X and, for all k ≥ 1,

xk+1 = xk − tk∇f (xk), t1, t2, . . . > 0.

Remark: Often, constant step, i.e., tk = t constant:

I easy: does not request fine-tuning of tk ,

I but suboptimal.

32/88

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f (xk+1)− f (xk)| maximal when
∇f (xk)T∆xk both negative and of maximal absolute value.

For ‖∆xk‖ = 1, optimal when

∆xk = −
∇f (xk)

‖∇f (xk)‖
.

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm)
x1 ∈ X and, for all k ≥ 1,

xk+1 = xk − tk∇f (xk), t1, t2, . . . > 0.

Remark: Often, constant step, i.e., tk = t constant:

I easy: does not request fine-tuning of tk ,

I but suboptimal.

32/88

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f (xk+1)− f (xk)| maximal when
∇f (xk)T∆xk both negative and of maximal absolute value.

For ‖∆xk‖ = 1, optimal when

∆xk = −
∇f (xk)

‖∇f (xk)‖
.

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm)
x1 ∈ X and, for all k ≥ 1,

xk+1 = xk − tk∇f (xk), t1, t2, . . . > 0.

Remark: Often, constant step, i.e., tk = t constant:

I easy: does not request fine-tuning of tk ,

I but suboptimal.

32/88

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f (xk+1)− f (xk)| maximal when
∇f (xk)T∆xk both negative and of maximal absolute value.

For ‖∆xk‖ = 1, optimal when

∆xk = −
∇f (xk)

‖∇f (xk)‖
.

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm)
x1 ∈ X and, for all k ≥ 1,

xk+1 = xk − tk∇f (xk), t1, t2, . . . > 0.

Remark: Often, constant step, i.e., tk = t constant:

I easy: does not request fine-tuning of tk ,

I but suboptimal.

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!
Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!
Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!
Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!
Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!
Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!

Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

33/88

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given ∆xk with ‖∆xk‖ = 1 and ∇f (xk)T∆xk < 0, and α ∈ (0, 1), tk satisfies
Armijo-Goldstein condition if

f (xk + tk∆xk) < f (xk) + αtk∇f (xk)T∆xk .

Remark: a descent sequence x1, x2,

Remark (On step size)

I [Line search]

tk ∈ argmint>0 f (xk + t∆xk)

But can be expensive (second optimization or full line search).

I [Backtracking] simplified line search: t(0) = 1 and, for some 0 < α, β < 1,
t(j+1) = βt(j) until

f (xk + t(j+1)∆xk) < f (xk) + αt(j+1)∇f (xk)T∆xk .

Remark: meets Armijo-Goldstein condition!
Always achievable: as t(j) → 0,

f (xk + t(j+1)∆xk) ' f (xk) + t(j)∇f (xk)T∆xk < f (xk) + αt(j+1)∇f (xk)T∆xk .

34/88

Convex optimization algorithms: convergence of gradient descent

Theorem (Convergence of Gradient Descent with Constant Step Size)
f : X → R ∪ {+∞} convex, twice continuously differentiable, with L-Lipschitz ∇f :

∀x , y ∈ X ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖.

Then gradient descent with constant step size t ≤ 1
L

convergences to a minimum of f :

xk → x? ∈ argminx f (x).

35/88

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on ∇f implies ∇2f (x) � LIn:

for x , u ∈ X

f (x + εu) = f (x) + ε∇f (x)Tu +
1

2
ε2uT∇2f (x)u + o(ε2)

f (x) = f (x + εu)− ε∇f (x + εu)Tu +
1

2
ε2uT∇2f (x + εu)u + o(ε2).

Summing and dividing by ε2:

(∇f (x + εu)−∇f (x))Tu

ε
=

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1) ≤

‖∇f (x + εu)−∇f (x)‖‖u‖
ε

≤ L‖u‖2.

So, as ε→ 0,

uT∇2f (x)u ≤ L‖u‖2, ∀u ∈ X .

35/88

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on ∇f implies ∇2f (x) � LIn: for x , u ∈ X

f (x + εu) = f (x) + ε∇f (x)Tu +
1

2
ε2uT∇2f (x)u + o(ε2)

f (x) = f (x + εu)− ε∇f (x + εu)Tu +
1

2
ε2uT∇2f (x + εu)u + o(ε2).

Summing and dividing by ε2:

(∇f (x + εu)−∇f (x))Tu

ε
=

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1) ≤

‖∇f (x + εu)−∇f (x)‖‖u‖
ε

≤ L‖u‖2.

So, as ε→ 0,

uT∇2f (x)u ≤ L‖u‖2, ∀u ∈ X .

35/88

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on ∇f implies ∇2f (x) � LIn: for x , u ∈ X

f (x + εu) = f (x) + ε∇f (x)Tu +
1

2
ε2uT∇2f (x)u + o(ε2)

f (x) = f (x + εu)− ε∇f (x + εu)Tu +
1

2
ε2uT∇2f (x + εu)u + o(ε2).

Summing and dividing by ε2:

(∇f (x + εu)−∇f (x))Tu

ε
=

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1) ≤

‖∇f (x + εu)−∇f (x)‖‖u‖
ε

≤ L‖u‖2.

So, as ε→ 0,

uT∇2f (x)u ≤ L‖u‖2, ∀u ∈ X .

35/88

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on ∇f implies ∇2f (x) � LIn: for x , u ∈ X

f (x + εu) = f (x) + ε∇f (x)Tu +
1

2
ε2uT∇2f (x)u + o(ε2)

f (x) = f (x + εu)− ε∇f (x + εu)Tu +
1

2
ε2uT∇2f (x + εu)u + o(ε2).

Summing and dividing by ε2:

(∇f (x + εu)−∇f (x))Tu

ε
=

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1) ≤

‖∇f (x + εu)−∇f (x)‖‖u‖
ε

≤ L‖u‖2.

So, as ε→ 0,

uT∇2f (x)u ≤ L‖u‖2, ∀u ∈ X .

35/88

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on ∇f implies ∇2f (x) � LIn: for x , u ∈ X

f (x + εu) = f (x) + ε∇f (x)Tu +
1

2
ε2uT∇2f (x)u + o(ε2)

f (x) = f (x + εu)− ε∇f (x + εu)Tu +
1

2
ε2uT∇2f (x + εu)u + o(ε2).

Summing and dividing by ε2:

(∇f (x + εu)−∇f (x))Tu

ε
=

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,

1

2
uT(∇2f (x) +∇2f (x + εu))u + o(1) ≤

‖∇f (x + εu)−∇f (x)‖‖u‖
ε

≤ L‖u‖2.

So, as ε→ 0,

uT∇2f (x)u ≤ L‖u‖2, ∀u ∈ X .

36/88

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (∗) and ∇2f (x) � LIn (∗∗), for x , y ∈ X ,

(∗) f (y) ≥ f (x) +∇f (x)T(y − x)

(∗∗) f (y) = f (x) +∇f (x)T(y − x) +
1

2
(y − x)T∇2f (ζ)(y − x)

≤ f (x) +∇f (x)T(y − x) +
1

2
L‖y − x‖2

(ζ = x + λ(y − x) for some λ ∈ [0, 1]).

From (∗∗),

f (xk+1) ≤ f (xk) +∇f (xk)T(xk+1 − xk) +
1

2
L‖xk+1 − xk‖2

= f (xk)− t‖∇f (xk)‖2 +
1

2
Lt2‖∇f (xk)‖2

= f (xk)−
(

1−
1

2
Lt

)
t‖∇f (xk)‖2.

We now use t ≤ 1/L:

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2(≤ f (xk)) (2)

with equality iif ∇f (xk) = 0 ⇒ gradient descent is a descent algorithm.

36/88

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (∗) and ∇2f (x) � LIn (∗∗), for x , y ∈ X ,

(∗) f (y) ≥ f (x) +∇f (x)T(y − x)

(∗∗) f (y) = f (x) +∇f (x)T(y − x) +
1

2
(y − x)T∇2f (ζ)(y − x)

≤ f (x) +∇f (x)T(y − x) +
1

2
L‖y − x‖2

(ζ = x + λ(y − x) for some λ ∈ [0, 1]).
From (∗∗),

f (xk+1) ≤ f (xk) +∇f (xk)T(xk+1 − xk) +
1

2
L‖xk+1 − xk‖2

= f (xk)− t‖∇f (xk)‖2 +
1

2
Lt2‖∇f (xk)‖2

= f (xk)−
(

1−
1

2
Lt

)
t‖∇f (xk)‖2.

We now use t ≤ 1/L:

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2(≤ f (xk)) (2)

with equality iif ∇f (xk) = 0 ⇒ gradient descent is a descent algorithm.

36/88

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (∗) and ∇2f (x) � LIn (∗∗), for x , y ∈ X ,

(∗) f (y) ≥ f (x) +∇f (x)T(y − x)

(∗∗) f (y) = f (x) +∇f (x)T(y − x) +
1

2
(y − x)T∇2f (ζ)(y − x)

≤ f (x) +∇f (x)T(y − x) +
1

2
L‖y − x‖2

(ζ = x + λ(y − x) for some λ ∈ [0, 1]).
From (∗∗),

f (xk+1) ≤ f (xk) +∇f (xk)T(xk+1 − xk) +
1

2
L‖xk+1 − xk‖2

= f (xk)− t‖∇f (xk)‖2 +
1

2
Lt2‖∇f (xk)‖2

= f (xk)−
(

1−
1

2
Lt

)
t‖∇f (xk)‖2.

We now use t ≤ 1/L:

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2(≤ f (xk)) (2)

with equality iif ∇f (xk) = 0

⇒ gradient descent is a descent algorithm.

36/88

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (∗) and ∇2f (x) � LIn (∗∗), for x , y ∈ X ,

(∗) f (y) ≥ f (x) +∇f (x)T(y − x)

(∗∗) f (y) = f (x) +∇f (x)T(y − x) +
1

2
(y − x)T∇2f (ζ)(y − x)

≤ f (x) +∇f (x)T(y − x) +
1

2
L‖y − x‖2

(ζ = x + λ(y − x) for some λ ∈ [0, 1]).
From (∗∗),

f (xk+1) ≤ f (xk) +∇f (xk)T(xk+1 − xk) +
1

2
L‖xk+1 − xk‖2

= f (xk)− t‖∇f (xk)‖2 +
1

2
Lt2‖∇f (xk)‖2

= f (xk)−
(

1−
1

2
Lt

)
t‖∇f (xk)‖2.

We now use t ≤ 1/L:

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2(≤ f (xk)) (2)

with equality iif ∇f (xk) = 0 ⇒ gradient descent is a descent algorithm.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x)

⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2 ≤ f (x?) +∇f (xk)T(xk − x?)−

t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x) ⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2 ≤ f (x?) +∇f (xk)T(xk − x?)−

t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x) ⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2

≤ f (x?) +∇f (xk)T(xk − x?)−
t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x) ⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2 ≤ f (x?) +∇f (xk)T(xk − x?)−

t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x) ⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2 ≤ f (x?) +∇f (xk)T(xk − x?)−

t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x) ⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2 ≤ f (x?) +∇f (xk)T(xk − x?)−

t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

37/88

Convex optimization algorithms: convergence of gradient descent

Proof.
3. Convergence to minimum. From (∗), for any x? ∈ argmin f and x ∈ X ,

f (x?) ≥ f (x) +∇f (x)T(x? − x) ⇔ f (x) ≤ f (x?) +∇f (x)T(x − x?).

So in particular, from (2), (f (xk+1) ≤ f (xk)− t
2
‖∇f (xk)‖2)

f (xk+1) ≤ f (xk)−
t

2
‖∇f (xk)‖2 ≤ f (x?) +∇f (xk)T(xk − x?)−

t

2
‖∇f (xk)‖2.

We need to relate ∇f (xk)T(xk − x?) to t‖∇f (xk)‖2:

‖xk − x? − t∇f (xk)‖2 = ‖xk − x?‖2 + t2‖∇f (xk)‖2 − 2t∇f (xk)T(xk − x?)

which yields

f (xk+1) ≤ f (x?) +
1

2t

(
‖xk − x?‖2 − ‖ xk − t∇f (xk)︸ ︷︷ ︸

xk+1

−x?‖2
)
.

Summing for k = 1, . . . ,K , RHS telescopes:

K∑
k=1

f (xk+1)− f (x?)

︸ ︷︷ ︸
≥K(f (xK)−f (x?))

≤
1

2t

(
‖x1 − x?‖2 − ‖xK − x?‖2

)
≤

1

2t
‖x1 − x?‖2.

38/88

Convex optimization algorithms: convergence of gradient descent

Proof.
So finally, as K →∞

f (xK)− f (x?) ≤
1

2Kt
‖x1 − x?‖2 → 0

xK may not converge, but f (xK)→ f (x?).

38/88

Convex optimization algorithms: convergence of gradient descent

Proof.
So finally, as K →∞

f (xK)− f (x?) ≤
1

2Kt
‖x1 − x?‖2 → 0

xK may not converge, but f (xK)→ f (x?).

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

39/88

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

I simple to implement: for f not easily differentiable, gradient approximation

{(f (xk + εei)− f (xk))/ε}ni=1 with [ei]j = δji i -th canonical vector;

I quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

I ensured convergence for fixed steps: “no” step size adaptation required;

I BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

I strong constraints on f : bounded ∇2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

I f needs be everywhere differentiable for gradient to be evaluated;

I needs unbounded Ω: xk + t∇f (xk) remains within the domain of f .

40/88

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

f (xk)− f (x?) ≤
1

2kt
‖x1 − x?‖2.

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f : X → R ∪ {+∞} convex, twice continuously differentiable, and ∀x ∈ X ,

lIn � ∇2f (x) � LIn, for some L ≥ l > 0.

Then, ofr gradient descent algorithm with step size t ≤ 1
L

,

f (xk)− f (x?) ≤ αC k , C < 1.

Convergence is said linear.

40/88

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

f (xk)− f (x?) ≤
1

2kt
‖x1 − x?‖2.

i.e., 100 steps lead to 1% error:

this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f : X → R ∪ {+∞} convex, twice continuously differentiable, and ∀x ∈ X ,

lIn � ∇2f (x) � LIn, for some L ≥ l > 0.

Then, ofr gradient descent algorithm with step size t ≤ 1
L

,

f (xk)− f (x?) ≤ αC k , C < 1.

Convergence is said linear.

40/88

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

f (xk)− f (x?) ≤
1

2kt
‖x1 − x?‖2.

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f : X → R ∪ {+∞} convex, twice continuously differentiable, and ∀x ∈ X ,

lIn � ∇2f (x) � LIn, for some L ≥ l > 0.

Then, ofr gradient descent algorithm with step size t ≤ 1
L

,

f (xk)− f (x?) ≤ αC k , C < 1.

Convergence is said linear.

40/88

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

f (xk)− f (x?) ≤
1

2kt
‖x1 − x?‖2.

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f : X → R ∪ {+∞} convex, twice continuously differentiable, and ∀x ∈ X ,

lIn � ∇2f (x) � LIn, for some L ≥ l > 0.

Then, ofr gradient descent algorithm with step size t ≤ 1
L

,

f (xk)− f (x?) ≤ αC k , C < 1.

Convergence is said linear.

40/88

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

f (xk)− f (x?) ≤
1

2kt
‖x1 − x?‖2.

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f : X → R ∪ {+∞} convex, twice continuously differentiable, and ∀x ∈ X ,

lIn � ∇2f (x) � LIn, for some L ≥ l > 0.

Then, ofr gradient descent algorithm with step size t ≤ 1
L

,

f (xk)− f (x?) ≤ αC k , C < 1.

Convergence is said linear.

40/88

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

f (xk)− f (x?) ≤
1

2kt
‖x1 − x?‖2.

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f : X → R ∪ {+∞} convex, twice continuously differentiable, and ∀x ∈ X ,

lIn � ∇2f (x) � LIn, for some L ≥ l > 0.

Then, ofr gradient descent algorithm with step size t ≤ 1
L

,

f (xk)− f (x?) ≤ αC k , C < 1.

Convergence is said linear.

41/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
We already know, since t ≤ 1

L
,

f (xk+1) ≤ f (xk)−
1

2
t‖∇f (xk)‖2

from which

f (xk+1)− f (x?) ≤ f (xk)− f (x?)−
1

2
t‖∇f (xk)‖2. (3)

Also, by Taylor expansion: ∀x , y ∈ X ,

f (y) = f (x)+∇f (x)T(y−x)+
1

2
(y−x)T∇2f (ζ)(y−x) ≥ f (x)+∇f (x)T(y−x)+

l

2
‖y−x‖2

Right-hand side minimized for y = x − 1
l
∇f (x) (differentiate along y): ∀x , y ∈ X ,

f (y) ≥ f (x)−
1

2l
‖∇f (x)‖2.

Applied to y = x? and x = xk ,

−
t

2
‖∇f (xk)‖2 ≤ tl(f (x?)− f (xk)).

41/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
We already know, since t ≤ 1

L
,

f (xk+1) ≤ f (xk)−
1

2
t‖∇f (xk)‖2

from which

f (xk+1)− f (x?) ≤ f (xk)− f (x?)−
1

2
t‖∇f (xk)‖2. (3)

Also, by Taylor expansion: ∀x , y ∈ X ,

f (y) = f (x)+∇f (x)T(y−x)+
1

2
(y−x)T∇2f (ζ)(y−x) ≥ f (x)+∇f (x)T(y−x)+

l

2
‖y−x‖2

Right-hand side minimized for y = x − 1
l
∇f (x) (differentiate along y): ∀x , y ∈ X ,

f (y) ≥ f (x)−
1

2l
‖∇f (x)‖2.

Applied to y = x? and x = xk ,

−
t

2
‖∇f (xk)‖2 ≤ tl(f (x?)− f (xk)).

41/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
We already know, since t ≤ 1

L
,

f (xk+1) ≤ f (xk)−
1

2
t‖∇f (xk)‖2

from which

f (xk+1)− f (x?) ≤ f (xk)− f (x?)−
1

2
t‖∇f (xk)‖2. (3)

Also, by Taylor expansion: ∀x , y ∈ X ,

f (y) = f (x)+∇f (x)T(y−x)+
1

2
(y−x)T∇2f (ζ)(y−x)

≥ f (x)+∇f (x)T(y−x)+
l

2
‖y−x‖2

Right-hand side minimized for y = x − 1
l
∇f (x) (differentiate along y): ∀x , y ∈ X ,

f (y) ≥ f (x)−
1

2l
‖∇f (x)‖2.

Applied to y = x? and x = xk ,

−
t

2
‖∇f (xk)‖2 ≤ tl(f (x?)− f (xk)).

41/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
We already know, since t ≤ 1

L
,

f (xk+1) ≤ f (xk)−
1

2
t‖∇f (xk)‖2

from which

f (xk+1)− f (x?) ≤ f (xk)− f (x?)−
1

2
t‖∇f (xk)‖2. (3)

Also, by Taylor expansion: ∀x , y ∈ X ,

f (y) = f (x)+∇f (x)T(y−x)+
1

2
(y−x)T∇2f (ζ)(y−x) ≥ f (x)+∇f (x)T(y−x)+

l

2
‖y−x‖2

Right-hand side minimized for y = x − 1
l
∇f (x) (differentiate along y): ∀x , y ∈ X ,

f (y) ≥ f (x)−
1

2l
‖∇f (x)‖2.

Applied to y = x? and x = xk ,

−
t

2
‖∇f (xk)‖2 ≤ tl(f (x?)− f (xk)).

41/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
We already know, since t ≤ 1

L
,

f (xk+1) ≤ f (xk)−
1

2
t‖∇f (xk)‖2

from which

f (xk+1)− f (x?) ≤ f (xk)− f (x?)−
1

2
t‖∇f (xk)‖2. (3)

Also, by Taylor expansion: ∀x , y ∈ X ,

f (y) = f (x)+∇f (x)T(y−x)+
1

2
(y−x)T∇2f (ζ)(y−x) ≥ f (x)+∇f (x)T(y−x)+

l

2
‖y−x‖2

Right-hand side minimized for y = x − 1
l
∇f (x) (differentiate along y): ∀x , y ∈ X ,

f (y) ≥ f (x)−
1

2l
‖∇f (x)‖2.

Applied to y = x? and x = xk ,

−
t

2
‖∇f (xk)‖2 ≤ tl(f (x?)− f (xk)).

41/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
We already know, since t ≤ 1

L
,

f (xk+1) ≤ f (xk)−
1

2
t‖∇f (xk)‖2

from which

f (xk+1)− f (x?) ≤ f (xk)− f (x?)−
1

2
t‖∇f (xk)‖2. (3)

Also, by Taylor expansion: ∀x , y ∈ X ,

f (y) = f (x)+∇f (x)T(y−x)+
1

2
(y−x)T∇2f (ζ)(y−x) ≥ f (x)+∇f (x)T(y−x)+

l

2
‖y−x‖2

Right-hand side minimized for y = x − 1
l
∇f (x) (differentiate along y): ∀x , y ∈ X ,

f (y) ≥ f (x)−
1

2l
‖∇f (x)‖2.

Applied to y = x? and x = xk ,

−
t

2
‖∇f (xk)‖2 ≤ tl(f (x?)− f (xk)).

42/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
Back to (3), this implies

f (xk+1)− f (x?) ≤ (1− tl) (f (xk)− f (x?)), 1− tl = C < 1 (by assumption).

Applied to k = 1, . . . ,K , this is

f (xK+1)− f (x?) ≤ CK (f (x1)− f (x?)).

42/88

Convex optimization algorithms: convergence speed of gradient descent

Proof.
Back to (3), this implies

f (xk+1)− f (x?) ≤ (1− tl) (f (xk)− f (x?)), 1− tl = C < 1 (by assumption).

Applied to k = 1, . . . ,K , this is

f (xK+1)− f (x?) ≤ CK (f (x1)− f (x?)).

43/88

Convex optimization algorithms: Newton’s method

Intuition of Newton’s method: second-order Taylor expansion of f

f (x + h) = f (x) +∇f (x)Th +
1

2
hT∇2f (x)h︸ ︷︷ ︸

≡f̂ (x+h)

+o(‖h‖2).

Idea:

I approximate f (x + h) by f̂ (x + h) for every x ∈ X
I solve local minimization of f (x + h) via minimization of f̂ (x + h) for h, i.e., for

h = −[∇2f (x)]−1∇f (x).

Definition (Newton’s Method)
For f twice-differentiable and ∇2f (x) � 0 for all x ∈ X . Then Newton’s method:{

∆xk = −
[
∇2f (xk)

]
∇f (xk).

tk = 1

43/88

Convex optimization algorithms: Newton’s method

Intuition of Newton’s method: second-order Taylor expansion of f

f (x + h) = f (x) +∇f (x)Th +
1

2
hT∇2f (x)h︸ ︷︷ ︸

≡f̂ (x+h)

+o(‖h‖2).

Idea:

I approximate f (x + h) by f̂ (x + h) for every x ∈ X
I solve local minimization of f (x + h) via minimization of f̂ (x + h) for h, i.e., for

h = −[∇2f (x)]−1∇f (x).

Definition (Newton’s Method)
For f twice-differentiable and ∇2f (x) � 0 for all x ∈ X . Then Newton’s method:{

∆xk = −
[
∇2f (xk)

]
∇f (xk).

tk = 1

43/88

Convex optimization algorithms: Newton’s method

Intuition of Newton’s method: second-order Taylor expansion of f

f (x + h) = f (x) +∇f (x)Th +
1

2
hT∇2f (x)h︸ ︷︷ ︸

≡f̂ (x+h)

+o(‖h‖2).

Idea:

I approximate f (x + h) by f̂ (x + h) for every x ∈ X
I solve local minimization of f (x + h) via minimization of f̂ (x + h) for h, i.e., for

h = −[∇2f (x)]−1∇f (x).

Definition (Newton’s Method)
For f twice-differentiable and ∇2f (x) � 0 for all x ∈ X . Then Newton’s method:{

∆xk = −
[
∇2f (xk)

]
∇f (xk).

tk = 1

44/88

Convex optimization algorithms: Newton’s method

Figure: (left) Gradient descent fast on hyperplane-shaped f ; (right) Newton improves convergence
speed, while not following the steepest descent.

45/88

Convex optimization algorithms: Newton’s method

Property (Newton’s Method is a Descent Method)
Since ∇2f (x) � 0,

−∇f (x)T
[
∇2f (xk)

]
∇f (xk) ≤ 0

with equality for ∇f (xk) = 0: Newton’s method is a valid descent method.

Remark
I linear invariance: if x = Ay and g(y) = f (x) = f (Ay), and {xk} is a Newton

descent on f , then yk+1 = Axk+1 is a Newton descent on g.
Not true for gradient descent!

I If ∇2f (x) almost singular, Newton’s method can be very slow and even diverge.

I For n� 1, can be extremely costly (inversion of ∇2f (xk) for every k!).

45/88

Convex optimization algorithms: Newton’s method

Property (Newton’s Method is a Descent Method)
Since ∇2f (x) � 0,

−∇f (x)T
[
∇2f (xk)

]
∇f (xk) ≤ 0

with equality for ∇f (xk) = 0: Newton’s method is a valid descent method.

Remark
I linear invariance: if x = Ay and g(y) = f (x) = f (Ay), and {xk} is a Newton

descent on f ,

then yk+1 = Axk+1 is a Newton descent on g.
Not true for gradient descent!

I If ∇2f (x) almost singular, Newton’s method can be very slow and even diverge.

I For n� 1, can be extremely costly (inversion of ∇2f (xk) for every k!).

45/88

Convex optimization algorithms: Newton’s method

Property (Newton’s Method is a Descent Method)
Since ∇2f (x) � 0,

−∇f (x)T
[
∇2f (xk)

]
∇f (xk) ≤ 0

with equality for ∇f (xk) = 0: Newton’s method is a valid descent method.

Remark
I linear invariance: if x = Ay and g(y) = f (x) = f (Ay), and {xk} is a Newton

descent on f , then yk+1 = Axk+1 is a Newton descent on g.

Not true for gradient descent!

I If ∇2f (x) almost singular, Newton’s method can be very slow and even diverge.

I For n� 1, can be extremely costly (inversion of ∇2f (xk) for every k!).

45/88

Convex optimization algorithms: Newton’s method

Property (Newton’s Method is a Descent Method)
Since ∇2f (x) � 0,

−∇f (x)T
[
∇2f (xk)

]
∇f (xk) ≤ 0

with equality for ∇f (xk) = 0: Newton’s method is a valid descent method.

Remark
I linear invariance: if x = Ay and g(y) = f (x) = f (Ay), and {xk} is a Newton

descent on f , then yk+1 = Axk+1 is a Newton descent on g.
Not true for gradient descent!

I If ∇2f (x) almost singular, Newton’s method can be very slow and even diverge.

I For n� 1, can be extremely costly (inversion of ∇2f (xk) for every k!).

45/88

Convex optimization algorithms: Newton’s method

Property (Newton’s Method is a Descent Method)
Since ∇2f (x) � 0,

−∇f (x)T
[
∇2f (xk)

]
∇f (xk) ≤ 0

with equality for ∇f (xk) = 0: Newton’s method is a valid descent method.

Remark
I linear invariance: if x = Ay and g(y) = f (x) = f (Ay), and {xk} is a Newton

descent on f , then yk+1 = Axk+1 is a Newton descent on g.
Not true for gradient descent!

I If ∇2f (x) almost singular, Newton’s method can be very slow and even diverge.

I For n� 1, can be extremely costly (inversion of ∇2f (xk) for every k!).

45/88

Convex optimization algorithms: Newton’s method

Property (Newton’s Method is a Descent Method)
Since ∇2f (x) � 0,

−∇f (x)T
[
∇2f (xk)

]
∇f (xk) ≤ 0

with equality for ∇f (xk) = 0: Newton’s method is a valid descent method.

Remark
I linear invariance: if x = Ay and g(y) = f (x) = f (Ay), and {xk} is a Newton

descent on f , then yk+1 = Axk+1 is a Newton descent on g.
Not true for gradient descent!

I If ∇2f (x) almost singular, Newton’s method can be very slow and even diverge.

I For n� 1, can be extremely costly (inversion of ∇2f (xk) for every k!).

46/88

Convex optimization algorithms: Newton’s method

Solution: to avoid singular ∇2f , Newton with a step-size adaption,

Definition (Damped Newton’s Method)
Damped Newton’s method:

xk+1 = xk − tk
[
∇2f (xk)

]−1∇f (xk)

with tk obtained by backtracking line search.

Theorem (Convergence of damped Newton’s method)
Assume lIn � ∇2f (x) � LIn and ∇2f is M-Lipschitz, i.e.,

∀x , y ,
∥∥∇2f (y)−∇2f (x)

∥∥ ≤ M‖y − x‖.

Then damped Newton’s method converges sublinearly then quadratically as soon as
‖∇f (xk)‖ < η for some small η > 0; besides, from this point on, tk = 1.

46/88

Convex optimization algorithms: Newton’s method

Solution: to avoid singular ∇2f , Newton with a step-size adaption,

Definition (Damped Newton’s Method)
Damped Newton’s method:

xk+1 = xk − tk
[
∇2f (xk)

]−1∇f (xk)

with tk obtained by backtracking line search.

Theorem (Convergence of damped Newton’s method)
Assume lIn � ∇2f (x) � LIn and ∇2f is M-Lipschitz, i.e.,

∀x , y ,
∥∥∇2f (y)−∇2f (x)

∥∥ ≤ M‖y − x‖.

Then damped Newton’s method converges sublinearly then quadratically as soon as
‖∇f (xk)‖ < η for some small η > 0; besides, from this point on, tk = 1.

46/88

Convex optimization algorithms: Newton’s method

Solution: to avoid singular ∇2f , Newton with a step-size adaption,

Definition (Damped Newton’s Method)
Damped Newton’s method:

xk+1 = xk − tk
[
∇2f (xk)

]−1∇f (xk)

with tk obtained by backtracking line search.

Theorem (Convergence of damped Newton’s method)
Assume lIn � ∇2f (x) � LIn and ∇2f is M-Lipschitz, i.e.,

∀x , y ,
∥∥∇2f (y)−∇2f (x)

∥∥ ≤ M‖y − x‖.

Then damped Newton’s method converges sublinearly then quadratically as soon as
‖∇f (xk)‖ < η for some small η > 0; besides, from this point on, tk = 1.

47/88

Convex optimization algorithms: Newton’s method
We only show the second part of the proof and take tk = 1.

Proof.
First write

‖∇f (xk+1)‖ = ‖∇f (xk + ∆xk)−∇f (xk)−∇2f (xk)∆xk︸ ︷︷ ︸
=0

‖

=

∥∥∥∥∫ 1

0
(∇2f (xk + u∆xk)−∇2f (xk))∆xkdu

∥∥∥∥
≤

M

2
‖∆xk‖2 =

M

2
‖[∇2f (xk)]−1∇f (xk)‖2 ≤

M

2l2
‖∇f (xk)‖2.

Multiplying both sides by M/(2l2),

M

2l2
‖∇f (xK)‖ ≤

(
M

2l2
‖∇f (xk0

)‖
)2

.

Iterated over k = k0, . . . ,K ,

‖∇f (xK)‖ ≤ αC2K−k0

with C = M
2l2
‖∇f (xk0

)‖ < 1 if ‖∇f (xk0
)‖ < η = 2l2

M
.

47/88

Convex optimization algorithms: Newton’s method
We only show the second part of the proof and take tk = 1.

Proof.
First write

‖∇f (xk+1)‖ = ‖∇f (xk + ∆xk)−∇f (xk)−∇2f (xk)∆xk︸ ︷︷ ︸
=0

‖

=

∥∥∥∥∫ 1

0
(∇2f (xk + u∆xk)−∇2f (xk))∆xkdu

∥∥∥∥
≤

M

2
‖∆xk‖2 =

M

2
‖[∇2f (xk)]−1∇f (xk)‖2 ≤

M

2l2
‖∇f (xk)‖2.

Multiplying both sides by M/(2l2),

M

2l2
‖∇f (xK)‖ ≤

(
M

2l2
‖∇f (xk0

)‖
)2

.

Iterated over k = k0, . . . ,K ,

‖∇f (xK)‖ ≤ αC2K−k0

with C = M
2l2
‖∇f (xk0

)‖ < 1 if ‖∇f (xk0
)‖ < η = 2l2

M
.

47/88

Convex optimization algorithms: Newton’s method
We only show the second part of the proof and take tk = 1.

Proof.
First write

‖∇f (xk+1)‖ = ‖∇f (xk + ∆xk)−∇f (xk)−∇2f (xk)∆xk︸ ︷︷ ︸
=0

‖

=

∥∥∥∥∫ 1

0
(∇2f (xk + u∆xk)−∇2f (xk))∆xkdu

∥∥∥∥
≤

M

2
‖∆xk‖2 =

M

2
‖[∇2f (xk)]−1∇f (xk)‖2 ≤

M

2l2
‖∇f (xk)‖2.

Multiplying both sides by M/(2l2),

M

2l2
‖∇f (xK)‖ ≤

(
M

2l2
‖∇f (xk0

)‖
)2

.

Iterated over k = k0, . . . ,K ,

‖∇f (xK)‖ ≤ αC2K−k0

with C = M
2l2
‖∇f (xk0

)‖ < 1 if ‖∇f (xk0
)‖ < η = 2l2

M
.

47/88

Convex optimization algorithms: Newton’s method
We only show the second part of the proof and take tk = 1.

Proof.
First write

‖∇f (xk+1)‖ = ‖∇f (xk + ∆xk)−∇f (xk)−∇2f (xk)∆xk︸ ︷︷ ︸
=0

‖

=

∥∥∥∥∫ 1

0
(∇2f (xk + u∆xk)−∇2f (xk))∆xkdu

∥∥∥∥
≤

M

2
‖∆xk‖2 =

M

2
‖[∇2f (xk)]−1∇f (xk)‖2 ≤

M

2l2
‖∇f (xk)‖2.

Multiplying both sides by M/(2l2),

M

2l2
‖∇f (xK)‖ ≤

(
M

2l2
‖∇f (xk0

)‖
)2

.

Iterated over k = k0, . . . ,K ,

‖∇f (xK)‖ ≤ αC2K−k0

with C = M
2l2
‖∇f (xk0

)‖ < 1 if ‖∇f (xk0
)‖ < η = 2l2

M
.

48/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx ⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx ⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx ⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx

⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx ⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx ⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

49/88

Inequality constrained optimization
Setup: So far, Ω ⊂ X is unbounded. What if Ω has strict boundaries?

Example: if we impose ∀i , [x]i > 0, what if gradient descent points to [x]i < 0 ?

Example (Linear Programming)

min
x∈Rn
{cTx} such that Ax ≤ b (Ax ≤ b understood entry-wise)

This is equivalent to

min
x∈Rn, Ax≤b

cTx ⇔ min
x∈Rn

cTx + ı{Ax≤b}(x).

Solution: a corner point of Ω!

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

50/88

Inequality constrained optimization: the barrier method
Considered problem:

min
x∈Rn

f (x) such that ci (x) ≥ 0, i = 1, . . . ,m

where ci (x) = aT
i x − bi for some ai , bi ∈ Rn.

Generic solution: Interior point (or barrier) method:

I relax f (x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for µ > 0, let

φ(x ;µ) ≡ f (x)− µ
m∑
i=1

log(ci (x)).

I Start with x0(µ) ∈ X such that ∀i , ci (x0(µ)) > 0,

I descent algorithm on

min
x∈Rn

φ(x ;µ)

with solution x?(µ).

I decrease µ and, starting from the previous x?(µ), repeat.

51/88

Inequality constrained optimization: the barrier method

Figure: Barrier Method. (left) Level sets of f and constraint set: algorithm “stuck”; (right) Level
sets of f − µ

∑m
i=1 log(ci (x)) and constraint set: algorithm finds approximation for x?.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;

I costly double-iteration with refined µ; often difficult to handle:
I initialization point in next µ-step must be close to µ-step solution to avoid slow

descents (but too small µ-updates slows convergence).
I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).

I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

52/88

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)
Far from ideal...:

I descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
I costly double-iteration with refined µ; often difficult to handle:

I initialization point in next µ-step must be close to µ-step solution to avoid slow
descents (but too small µ-updates slows convergence).

I exacerbated for solutions near or at a constraint (solution hard to reach!).
I on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

I barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f .

Figure: Barrier Method. (left) Sequence of φ(x ; µ) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

53/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

54/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

55/88

Linear constraints

min
x∈X

f (x) such that hi (x) = 0, i = 1, . . . , p. (4)

Theorem
If x? solution to (4), then ∃λ1, . . . , λp ∈ R such that

∇f (x?) =

p∑
i=1

(−λi)∇hi (x?).

55/88

Linear constraints

min
x∈X

f (x) such that hi (x) = 0, i = 1, . . . , p. (4)

Theorem
If x? solution to (4), then ∃λ1, . . . , λp ∈ R such that

∇f (x?) =

p∑
i=1

(−λi)∇hi (x?).

56/88

Linear constraints

Geometric Proof for p = 1.
1. Gradient orthogonal to level sets: level set `c (g) ≡ {x | g(x) = c}.

For h ∈ X such that g(x) = g(x + h) = c and ‖h‖ → 0,

0 = (g(x + h)− g(x))/‖h‖ = ∇g(x)T(h/‖h‖) + o(1)

Thus ∇g(x) orthogonal to `c (g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x?, so ∃λ such that ∇f (x?) = λ∇h(x?).

3. When minimum of f coincides with h(x) = 0: formula still holds with λ = 0.

56/88

Linear constraints

Geometric Proof for p = 1.
1. Gradient orthogonal to level sets: level set `c (g) ≡ {x | g(x) = c}.
For h ∈ X such that g(x) = g(x + h) = c and ‖h‖ → 0,

0 = (g(x + h)− g(x))/‖h‖ = ∇g(x)T(h/‖h‖) + o(1)

Thus ∇g(x) orthogonal to `c (g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x?, so ∃λ such that ∇f (x?) = λ∇h(x?).

3. When minimum of f coincides with h(x) = 0: formula still holds with λ = 0.

56/88

Linear constraints

Geometric Proof for p = 1.
1. Gradient orthogonal to level sets: level set `c (g) ≡ {x | g(x) = c}.
For h ∈ X such that g(x) = g(x + h) = c and ‖h‖ → 0,

0 = (g(x + h)− g(x))/‖h‖ = ∇g(x)T(h/‖h‖) + o(1)

Thus ∇g(x) orthogonal to `c (g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x?, so ∃λ such that ∇f (x?) = λ∇h(x?).

3. When minimum of f coincides with h(x) = 0: formula still holds with λ = 0.

56/88

Linear constraints

Geometric Proof for p = 1.
1. Gradient orthogonal to level sets: level set `c (g) ≡ {x | g(x) = c}.
For h ∈ X such that g(x) = g(x + h) = c and ‖h‖ → 0,

0 = (g(x + h)− g(x))/‖h‖ = ∇g(x)T(h/‖h‖) + o(1)

Thus ∇g(x) orthogonal to `c (g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x?, so ∃λ such that ∇f (x?) = λ∇h(x?).

3. When minimum of f coincides with h(x) = 0: formula still holds with λ = 0.

56/88

Linear constraints

Geometric Proof for p = 1.
1. Gradient orthogonal to level sets: level set `c (g) ≡ {x | g(x) = c}.
For h ∈ X such that g(x) = g(x + h) = c and ‖h‖ → 0,

0 = (g(x + h)− g(x))/‖h‖ = ∇g(x)T(h/‖h‖) + o(1)

Thus ∇g(x) orthogonal to `c (g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x?, so ∃λ such that ∇f (x?) = λ∇h(x?).

3. When minimum of f coincides with h(x) = 0: formula still holds with λ = 0.

57/88

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints hi : find x
such that f (x) +

∑
i λihi (x) has zero gradient for some λ1, . . . , λp .

Definition (Lagrange dual function)
For λ ∈ Rp , Lagrange dual g of f is

g(λ) = inf
x∈X

L(x ;λ)

L(x ;λ) ≡ f (x) +

p∑
i=1

λihi (x).

The coefficients λ1, . . . , λp are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x? solution, since hi (x

?) = 0, we have for all λ ∈ Rp ,

g(λ) = inf
x∈X

L(x ;λ) ≤ L(x?;λ) = f (x?).

In particular

sup
λ∈Rp

g(λ) ≤ f (x?).

57/88

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints hi : find x
such that f (x) +

∑
i λihi (x) has zero gradient for some λ1, . . . , λp .

Definition (Lagrange dual function)
For λ ∈ Rp , Lagrange dual g of f is

g(λ) = inf
x∈X

L(x ;λ)

L(x ;λ) ≡ f (x) +

p∑
i=1

λihi (x).

The coefficients λ1, . . . , λp are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x? solution, since hi (x

?) = 0, we have for all λ ∈ Rp ,

g(λ) = inf
x∈X

L(x ;λ) ≤ L(x?;λ) = f (x?).

In particular

sup
λ∈Rp

g(λ) ≤ f (x?).

57/88

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints hi : find x
such that f (x) +

∑
i λihi (x) has zero gradient for some λ1, . . . , λp .

Definition (Lagrange dual function)
For λ ∈ Rp , Lagrange dual g of f is

g(λ) = inf
x∈X

L(x ;λ)

L(x ;λ) ≡ f (x) +

p∑
i=1

λihi (x).

The coefficients λ1, . . . , λp are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x? solution, since hi (x

?) = 0, we have for all λ ∈ Rp ,

g(λ) = inf
x∈X

L(x ;λ) ≤ L(x?;λ) = f (x?).

In particular

sup
λ∈Rp

g(λ) ≤ f (x?).

57/88

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints hi : find x
such that f (x) +

∑
i λihi (x) has zero gradient for some λ1, . . . , λp .

Definition (Lagrange dual function)
For λ ∈ Rp , Lagrange dual g of f is

g(λ) = inf
x∈X

L(x ;λ)

L(x ;λ) ≡ f (x) +

p∑
i=1

λihi (x).

The coefficients λ1, . . . , λp are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x? solution, since hi (x

?) = 0, we have for all λ ∈ Rp ,

g(λ) = inf
x∈X

L(x ;λ) ≤ L(x?;λ) = f (x?).

In particular

sup
λ∈Rp

g(λ) ≤ f (x?).

57/88

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints hi : find x
such that f (x) +

∑
i λihi (x) has zero gradient for some λ1, . . . , λp .

Definition (Lagrange dual function)
For λ ∈ Rp , Lagrange dual g of f is

g(λ) = inf
x∈X

L(x ;λ)

L(x ;λ) ≡ f (x) +

p∑
i=1

λihi (x).

The coefficients λ1, . . . , λp are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x? solution, since hi (x

?) = 0, we have for all λ ∈ Rp ,

g(λ) = inf
x∈X

L(x ;λ) ≤ L(x?;λ) = f (x?).

In particular

sup
λ∈Rp

g(λ) ≤ f (x?).

58/88

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

sup
λ∈Rn

g(λ) = sup
λ∈Rp

{
inf
x∈X

L(x ;λ)

}
.

We denote λ? ∈ Rn any point of argmaxλ g(λ) (maybe empty).

I g(λ?)− f (x?) ≥ 0 is the duality gap
I if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property
Lagrange dual λ 7→ g(λ) is concave, irrespective of f (convex or not!).

Proof.
For λ1, λ2 ∈ Rp , α ∈ [0, 1],

g(αλ1 + (1− α)λ2) = inf
x∈X

{
α

(
f (x) +

p∑
i=1

λ1ihi (x)

)
+ (1− α)

(
f (x) +

p∑
i=1

λ2ihi (x)

)}

≥ α inf
x∈X

{
f (x) +

p∑
i=1

λ1ihi (x)

}
+ (1− α) inf

x∈X

{
f (x) +

p∑
i=1

λ2ihi (x)

}
= αg(λ1) + (1− α)g(λ2)

(inequality follows from infx{f1(x) + f2(x)} ≥ infx{f1(x)}+ infx{f2(x)}).

58/88

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

sup
λ∈Rn

g(λ) = sup
λ∈Rp

{
inf
x∈X

L(x ;λ)

}
.

We denote λ? ∈ Rn any point of argmaxλ g(λ) (maybe empty).

I g(λ?)− f (x?) ≥ 0 is the duality gap
I if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property
Lagrange dual λ 7→ g(λ) is concave, irrespective of f (convex or not!).

Proof.
For λ1, λ2 ∈ Rp , α ∈ [0, 1],

g(αλ1 + (1− α)λ2) = inf
x∈X

{
α

(
f (x) +

p∑
i=1

λ1ihi (x)

)
+ (1− α)

(
f (x) +

p∑
i=1

λ2ihi (x)

)}

≥ α inf
x∈X

{
f (x) +

p∑
i=1

λ1ihi (x)

}
+ (1− α) inf

x∈X

{
f (x) +

p∑
i=1

λ2ihi (x)

}
= αg(λ1) + (1− α)g(λ2)

(inequality follows from infx{f1(x) + f2(x)} ≥ infx{f1(x)}+ infx{f2(x)}).

58/88

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

sup
λ∈Rn

g(λ) = sup
λ∈Rp

{
inf
x∈X

L(x ;λ)

}
.

We denote λ? ∈ Rn any point of argmaxλ g(λ) (maybe empty).

I g(λ?)− f (x?) ≥ 0 is the duality gap

I if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property
Lagrange dual λ 7→ g(λ) is concave, irrespective of f (convex or not!).

Proof.
For λ1, λ2 ∈ Rp , α ∈ [0, 1],

g(αλ1 + (1− α)λ2) = inf
x∈X

{
α

(
f (x) +

p∑
i=1

λ1ihi (x)

)
+ (1− α)

(
f (x) +

p∑
i=1

λ2ihi (x)

)}

≥ α inf
x∈X

{
f (x) +

p∑
i=1

λ1ihi (x)

}
+ (1− α) inf

x∈X

{
f (x) +

p∑
i=1

λ2ihi (x)

}
= αg(λ1) + (1− α)g(λ2)

(inequality follows from infx{f1(x) + f2(x)} ≥ infx{f1(x)}+ infx{f2(x)}).

58/88

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

sup
λ∈Rn

g(λ) = sup
λ∈Rp

{
inf
x∈X

L(x ;λ)

}
.

We denote λ? ∈ Rn any point of argmaxλ g(λ) (maybe empty).

I g(λ?)− f (x?) ≥ 0 is the duality gap
I if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property
Lagrange dual λ 7→ g(λ) is concave, irrespective of f (convex or not!).

Proof.
For λ1, λ2 ∈ Rp , α ∈ [0, 1],

g(αλ1 + (1− α)λ2) = inf
x∈X

{
α

(
f (x) +

p∑
i=1

λ1ihi (x)

)
+ (1− α)

(
f (x) +

p∑
i=1

λ2ihi (x)

)}

≥ α inf
x∈X

{
f (x) +

p∑
i=1

λ1ihi (x)

}
+ (1− α) inf

x∈X

{
f (x) +

p∑
i=1

λ2ihi (x)

}
= αg(λ1) + (1− α)g(λ2)

(inequality follows from infx{f1(x) + f2(x)} ≥ infx{f1(x)}+ infx{f2(x)}).

58/88

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

sup
λ∈Rn

g(λ) = sup
λ∈Rp

{
inf
x∈X

L(x ;λ)

}
.

We denote λ? ∈ Rn any point of argmaxλ g(λ) (maybe empty).

I g(λ?)− f (x?) ≥ 0 is the duality gap
I if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property
Lagrange dual λ 7→ g(λ) is concave, irrespective of f (convex or not!).

Proof.
For λ1, λ2 ∈ Rp , α ∈ [0, 1],

g(αλ1 + (1− α)λ2) = inf
x∈X

{
α

(
f (x) +

p∑
i=1

λ1ihi (x)

)
+ (1− α)

(
f (x) +

p∑
i=1

λ2ihi (x)

)}

≥ α inf
x∈X

{
f (x) +

p∑
i=1

λ1ihi (x)

}
+ (1− α) inf

x∈X

{
f (x) +

p∑
i=1

λ2ihi (x)

}
= αg(λ1) + (1− α)g(λ2)

(inequality follows from infx{f1(x) + f2(x)} ≥ infx{f1(x)}+ infx{f2(x)}).

58/88

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

sup
λ∈Rn

g(λ) = sup
λ∈Rp

{
inf
x∈X

L(x ;λ)

}
.

We denote λ? ∈ Rn any point of argmaxλ g(λ) (maybe empty).

I g(λ?)− f (x?) ≥ 0 is the duality gap
I if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property
Lagrange dual λ 7→ g(λ) is concave, irrespective of f (convex or not!).

Proof.
For λ1, λ2 ∈ Rp , α ∈ [0, 1],

g(αλ1 + (1− α)λ2) = inf
x∈X

{
α

(
f (x) +

p∑
i=1

λ1ihi (x)

)
+ (1− α)

(
f (x) +

p∑
i=1

λ2ihi (x)

)}

≥ α inf
x∈X

{
f (x) +

p∑
i=1

λ1ihi (x)

}
+ (1− α) inf

x∈X

{
f (x) +

p∑
i=1

λ2ihi (x)

}
= αg(λ1) + (1− α)g(λ2)

(inequality follows from infx{f1(x) + f2(x)} ≥ infx{f1(x)}+ infx{f2(x)}).

59/88

Linear constraints: strong duality
Remarks:

I infλ−g(λ) convex: dual can be solved by standard unconstrained convex
optimization.

I if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f .

Theorem (Slater’s condition for strong duality)
If ∃x ∈ X such that ∀i , hi (x) = 0 (feasibility), f is convex and hi affine
(hi (x) = aT

i x + bi), then strong duality holds.

Proof.
Let λ̄ ∈ Rp be such that ∇f (x?) =

∑p
i=1(−λ̄i)∇hi (x?). Then

g(λ̄) = inf
x∈X

f (x) +

p∑
i=1

λ̄ihi (x) = f (x?).

Indeed, x 7→ f (x) +
∑p

i=1 λ̄ihi (x) convex (hi affine), so minimal at zero gradient: true

for x having same cost as x?, i.e., f (x?) +
∑p

i=1 λ̄ihi (x
?) = f (x?).

As a consequence,

g(λ?) = max
λ∈Rp

g(λ) ≥ g(λ̄) = f (x?)

g(λ?) ≤ f (x?)

so g(λ?) = f (x?).

59/88

Linear constraints: strong duality
Remarks:

I infλ−g(λ) convex: dual can be solved by standard unconstrained convex
optimization.

I if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f .

Theorem (Slater’s condition for strong duality)
If ∃x ∈ X such that ∀i , hi (x) = 0 (feasibility), f is convex and hi affine
(hi (x) = aT

i x + bi), then strong duality holds.

Proof.
Let λ̄ ∈ Rp be such that ∇f (x?) =

∑p
i=1(−λ̄i)∇hi (x?). Then

g(λ̄) = inf
x∈X

f (x) +

p∑
i=1

λ̄ihi (x) = f (x?).

Indeed, x 7→ f (x) +
∑p

i=1 λ̄ihi (x) convex (hi affine), so minimal at zero gradient: true

for x having same cost as x?, i.e., f (x?) +
∑p

i=1 λ̄ihi (x
?) = f (x?).

As a consequence,

g(λ?) = max
λ∈Rp

g(λ) ≥ g(λ̄) = f (x?)

g(λ?) ≤ f (x?)

so g(λ?) = f (x?).

59/88

Linear constraints: strong duality
Remarks:

I infλ−g(λ) convex: dual can be solved by standard unconstrained convex
optimization.

I if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f .

Theorem (Slater’s condition for strong duality)
If ∃x ∈ X such that ∀i , hi (x) = 0 (feasibility), f is convex and hi affine
(hi (x) = aT

i x + bi), then strong duality holds.

Proof.
Let λ̄ ∈ Rp be such that ∇f (x?) =

∑p
i=1(−λ̄i)∇hi (x?). Then

g(λ̄) = inf
x∈X

f (x) +

p∑
i=1

λ̄ihi (x) = f (x?).

Indeed, x 7→ f (x) +
∑p

i=1 λ̄ihi (x) convex (hi affine), so minimal at zero gradient: true

for x having same cost as x?, i.e., f (x?) +
∑p

i=1 λ̄ihi (x
?) = f (x?).

As a consequence,

g(λ?) = max
λ∈Rp

g(λ) ≥ g(λ̄) = f (x?)

g(λ?) ≤ f (x?)

so g(λ?) = f (x?).

59/88

Linear constraints: strong duality
Remarks:

I infλ−g(λ) convex: dual can be solved by standard unconstrained convex
optimization.

I if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f .

Theorem (Slater’s condition for strong duality)
If ∃x ∈ X such that ∀i , hi (x) = 0 (feasibility), f is convex and hi affine
(hi (x) = aT

i x + bi), then strong duality holds.

Proof.
Let λ̄ ∈ Rp be such that ∇f (x?) =

∑p
i=1(−λ̄i)∇hi (x?). Then

g(λ̄) = inf
x∈X

f (x) +

p∑
i=1

λ̄ihi (x) = f (x?).

Indeed, x 7→ f (x) +
∑p

i=1 λ̄ihi (x) convex (hi affine), so minimal at zero gradient: true

for x having same cost as x?, i.e., f (x?) +
∑p

i=1 λ̄ihi (x
?) = f (x?).

As a consequence,

g(λ?) = max
λ∈Rp

g(λ) ≥ g(λ̄) = f (x?)

g(λ?) ≤ f (x?)

so g(λ?) = f (x?).

59/88

Linear constraints: strong duality
Remarks:

I infλ−g(λ) convex: dual can be solved by standard unconstrained convex
optimization.

I if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f .

Theorem (Slater’s condition for strong duality)
If ∃x ∈ X such that ∀i , hi (x) = 0 (feasibility), f is convex and hi affine
(hi (x) = aT

i x + bi), then strong duality holds.

Proof.
Let λ̄ ∈ Rp be such that ∇f (x?) =

∑p
i=1(−λ̄i)∇hi (x?). Then

g(λ̄) = inf
x∈X

f (x) +

p∑
i=1

λ̄ihi (x) = f (x?).

Indeed, x 7→ f (x) +
∑p

i=1 λ̄ihi (x) convex (hi affine), so minimal at zero gradient: true

for x having same cost as x?, i.e., f (x?) +
∑p

i=1 λ̄ihi (x
?) = f (x?).

As a consequence,

g(λ?) = max
λ∈Rp

g(λ) ≥ g(λ̄) = f (x?)

g(λ?) ≤ f (x?)

so g(λ?) = f (x?).

60/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

61/88

Equality and inequality constraints

min
x∈X

f (x) such that gi (x) ≤ 0, i = 1, . . . ,m and hj (x) = 0, j = 1, . . . , p. (5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

I if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

I if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

61/88

Equality and inequality constraints

min
x∈X

f (x) such that gi (x) ≤ 0, i = 1, . . . ,m and hj (x) = 0, j = 1, . . . , p. (5)

Method: For inequalities, additional multipliers.

Main difference: multipliers imposed
to be positive.

I if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

I if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

61/88

Equality and inequality constraints

min
x∈X

f (x) such that gi (x) ≤ 0, i = 1, . . . ,m and hj (x) = 0, j = 1, . . . , p. (5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

I if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

I if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

61/88

Equality and inequality constraints

min
x∈X

f (x) such that gi (x) ≤ 0, i = 1, . . . ,m and hj (x) = 0, j = 1, . . . , p. (5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

I if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

I if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

61/88

Equality and inequality constraints

min
x∈X

f (x) such that gi (x) ≤ 0, i = 1, . . . ,m and hj (x) = 0, j = 1, . . . , p. (5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

I if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

I if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

61/88

Equality and inequality constraints

min
x∈X

f (x) such that gi (x) ≤ 0, i = 1, . . . ,m and hj (x) = 0, j = 1, . . . , p. (5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

I if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

I if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

62/88

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

max
λ∈Rp , ν∈Rm

+

g(λ, ν), g(λ, ν) ≡ inf
x∈X

L(x ;λ, ν)

L(x ;λ, ν) ≡ f (x) +
m∑
i=1

νigi (x) +

p∑
j=1

λjhj (x).

Theorem (Slater’s Condition)
For f be convex, gi convex, hj affine, and ∃x ∈ X such that hi (x) = 0 and gj (x) ≤ 0
for all i , j (feasibility). Then strong duality holds.

Remark:

I for gj convex, Gj =
{
x
∣∣gj (x) ≤ 0

}
is convex.

I for hi affine, Hi =
{
x
∣∣hi (x) = 0

}
also convex (but not if hi convex!).

I Hence,
x? = arg min

X∩
(⋂

j Gj
)
∩(
⋂

i Hi)
f (x)

i.e., minimising convex f over convex set.

62/88

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

max
λ∈Rp , ν∈Rm

+

g(λ, ν), g(λ, ν) ≡ inf
x∈X

L(x ;λ, ν)

L(x ;λ, ν) ≡ f (x) +
m∑
i=1

νigi (x) +

p∑
j=1

λjhj (x).

Theorem (Slater’s Condition)
For f be convex, gi convex, hj affine, and ∃x ∈ X such that hi (x) = 0 and gj (x) ≤ 0
for all i , j (feasibility). Then strong duality holds.

Remark:

I for gj convex, Gj =
{
x
∣∣gj (x) ≤ 0

}
is convex.

I for hi affine, Hi =
{
x
∣∣hi (x) = 0

}
also convex (but not if hi convex!).

I Hence,
x? = arg min

X∩
(⋂

j Gj
)
∩(
⋂

i Hi)
f (x)

i.e., minimising convex f over convex set.

62/88

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

max
λ∈Rp , ν∈Rm

+

g(λ, ν), g(λ, ν) ≡ inf
x∈X

L(x ;λ, ν)

L(x ;λ, ν) ≡ f (x) +
m∑
i=1

νigi (x) +

p∑
j=1

λjhj (x).

Theorem (Slater’s Condition)
For f be convex, gi convex, hj affine, and ∃x ∈ X such that hi (x) = 0 and gj (x) ≤ 0
for all i , j (feasibility). Then strong duality holds.

Remark:

I for gj convex, Gj =
{
x
∣∣gj (x) ≤ 0

}
is convex.

I for hi affine, Hi =
{
x
∣∣hi (x) = 0

}
also convex (but not if hi convex!).

I Hence,
x? = arg min

X∩
(⋂

j Gj
)
∩(
⋂

i Hi)
f (x)

i.e., minimising convex f over convex set.

62/88

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

max
λ∈Rp , ν∈Rm

+

g(λ, ν), g(λ, ν) ≡ inf
x∈X

L(x ;λ, ν)

L(x ;λ, ν) ≡ f (x) +
m∑
i=1

νigi (x) +

p∑
j=1

λjhj (x).

Theorem (Slater’s Condition)
For f be convex, gi convex, hj affine, and ∃x ∈ X such that hi (x) = 0 and gj (x) ≤ 0
for all i , j (feasibility). Then strong duality holds.

Remark:

I for gj convex, Gj =
{
x
∣∣gj (x) ≤ 0

}
is convex.

I for hi affine, Hi =
{
x
∣∣hi (x) = 0

}
also convex (but not if hi convex!).

I Hence,
x? = arg min

X∩
(⋂

j Gj
)
∩(
⋂

i Hi)
f (x)

i.e., minimising convex f over convex set.

63/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

64/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

65/88

Non-differentiable optimization

Setup: f convex but not everywhere differentiable.

Figure: Examples of not-everywhere differentiable convex functions

65/88

Non-differentiable optimization

Setup: f convex but not everywhere differentiable.

Figure: Examples of not-everywhere differentiable convex functions

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i
Since f differentiable at x , first order condition gives ∇f (x) = u.

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i
Since f differentiable at x , first order condition gives ∇f (x) = u.

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i
Since f differentiable at x , first order condition gives ∇f (x) = u.

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i
Since f differentiable at x , first order condition gives ∇f (x) = u.

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i
Since f differentiable at x , first order condition gives ∇f (x) = u.

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i

Since f differentiable at x , first order condition gives ∇f (x) = u.

66/88

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X → R ∪ {+∞},

∀x , z ∈ dom(f), f (z) ≥ f (x) +∇f (x)T(z − x).

−→ can be used to define ∇f for convex f : only linear function satisfying inequality.

Generalization: subdifferential of convex f :

Definition (Subdifferential)
Let f : X → R. The subdifferential ∂f of f is

∂f : X → 2X

x 7→
{
u ∈ X | ∀z ∈ X , f (x) ≤ f (z) + uT(x − z)

}
.

Careful: ∂f (x) is a set-valued function: members of the set are the subderivatives.

Property
For convex f , ∂f (x) at those x where f is differentiable is a singleton:

∂f (x) = {∇f (x)} .

Proof.
Let u ∈ ∂f (x), hence x ∈ arg minz∈X f (z)− uTz.i
Since f differentiable at x , first order condition gives ∇f (x) = u.

67/88

Non-differentiable optimization: subgradient

Property (Subdifferential as a convex set)
∂f (x) is a nonempty convex compact set.

Property (Subdifferential as union of supporting hyperplanes)
∂f (x) consists of the hyperplanes that support epi(f) at (x , f (x)).

67/88

Non-differentiable optimization: subgradient

Property (Subdifferential as a convex set)
∂f (x) is a nonempty convex compact set.

Property (Subdifferential as union of supporting hyperplanes)
∂f (x) consists of the hyperplanes that support epi(f) at (x , f (x)).

67/88

Non-differentiable optimization: subgradient

Property (Subdifferential as a convex set)
∂f (x) is a nonempty convex compact set.

Property (Subdifferential as union of supporting hyperplanes)
∂f (x) consists of the hyperplanes that support epi(f) at (x , f (x)).

68/88

Non-differentiable optimization: subgradient

Theorem (Fermat’s rule extension)
For f : X → R convex,

x? ∈ argminx∈X f (x)⇔ 0 ∈ ∂f (x?).

Proof.
⇒. ∂f (x?) must (at least) contain 0, since x? ∈ argminx∈X f (x) + 0Tx .

⇐. 0 ∈ ∂f (x) =⇒ x ∈ arg minz∈X f (z), but then x must be a solution.

Careful: looking for 0 in one of the sets ∂f (x), x ∈ X , different from looking for
singleton {0} among the sets ∂f (x), x ∈ X .

Definition (Subgradient algorithm)
Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. xk+1 = xk − tkuk , for any uk ∈ ∂f (xk)

2. f k+1
best = min{f kbest, f (xk+1)}.

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

68/88

Non-differentiable optimization: subgradient

Theorem (Fermat’s rule extension)
For f : X → R convex,

x? ∈ argminx∈X f (x)⇔ 0 ∈ ∂f (x?).

Proof.
⇒. ∂f (x?) must (at least) contain 0, since x? ∈ argminx∈X f (x) + 0Tx .

⇐. 0 ∈ ∂f (x) =⇒ x ∈ arg minz∈X f (z), but then x must be a solution.

Careful: looking for 0 in one of the sets ∂f (x), x ∈ X , different from looking for
singleton {0} among the sets ∂f (x), x ∈ X .

Definition (Subgradient algorithm)
Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. xk+1 = xk − tkuk , for any uk ∈ ∂f (xk)

2. f k+1
best = min{f kbest, f (xk+1)}.

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

68/88

Non-differentiable optimization: subgradient

Theorem (Fermat’s rule extension)
For f : X → R convex,

x? ∈ argminx∈X f (x)⇔ 0 ∈ ∂f (x?).

Proof.
⇒. ∂f (x?) must (at least) contain 0, since x? ∈ argminx∈X f (x) + 0Tx .

⇐. 0 ∈ ∂f (x) =⇒ x ∈ arg minz∈X f (z), but then x must be a solution.

Careful: looking for 0 in one of the sets ∂f (x), x ∈ X , different from looking for
singleton {0} among the sets ∂f (x), x ∈ X .

Definition (Subgradient algorithm)
Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. xk+1 = xk − tkuk , for any uk ∈ ∂f (xk)

2. f k+1
best = min{f kbest, f (xk+1)}.

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

68/88

Non-differentiable optimization: subgradient

Theorem (Fermat’s rule extension)
For f : X → R convex,

x? ∈ argminx∈X f (x)⇔ 0 ∈ ∂f (x?).

Proof.
⇒. ∂f (x?) must (at least) contain 0, since x? ∈ argminx∈X f (x) + 0Tx .

⇐. 0 ∈ ∂f (x) =⇒ x ∈ arg minz∈X f (z), but then x must be a solution.

Careful: looking for 0 in one of the sets ∂f (x), x ∈ X , different from looking for
singleton {0} among the sets ∂f (x), x ∈ X .

Definition (Subgradient algorithm)
Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. xk+1 = xk − tkuk , for any uk ∈ ∂f (xk)

2. f k+1
best = min{f kbest, f (xk+1)}.

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

68/88

Non-differentiable optimization: subgradient

Theorem (Fermat’s rule extension)
For f : X → R convex,

x? ∈ argminx∈X f (x)⇔ 0 ∈ ∂f (x?).

Proof.
⇒. ∂f (x?) must (at least) contain 0, since x? ∈ argminx∈X f (x) + 0Tx .

⇐. 0 ∈ ∂f (x) =⇒ x ∈ arg minz∈X f (z), but then x must be a solution.

Careful: looking for 0 in one of the sets ∂f (x), x ∈ X , different from looking for
singleton {0} among the sets ∂f (x), x ∈ X .

Definition (Subgradient algorithm)
Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. xk+1 = xk − tkuk , for any uk ∈ ∂f (xk)

2. f k+1
best = min{f kbest, f (xk+1)}.

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

68/88

Non-differentiable optimization: subgradient

Theorem (Fermat’s rule extension)
For f : X → R convex,

x? ∈ argminx∈X f (x)⇔ 0 ∈ ∂f (x?).

Proof.
⇒. ∂f (x?) must (at least) contain 0, since x? ∈ argminx∈X f (x) + 0Tx .

⇐. 0 ∈ ∂f (x) =⇒ x ∈ arg minz∈X f (z), but then x must be a solution.

Careful: looking for 0 in one of the sets ∂f (x), x ∈ X , different from looking for
singleton {0} among the sets ∂f (x), x ∈ X .

Definition (Subgradient algorithm)
Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. xk+1 = xk − tkuk , for any uk ∈ ∂f (xk)

2. f k+1
best = min{f kbest, f (xk+1)}.

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

69/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

70/88

From subgradient to proximal

Exercise (The Projection Operator)
For Ω a convex set and ıΩ the set indicator (ıΩ(x) = 0 if x ∈ Ω and = +∞ if not),
define

min
x∈X

1

2
‖x − y‖2 + ıΩ(x).

Show that x? is the (Euclidean) projection of y onto Ω ∩ X .

Projection and proximity: x? is the “proximal” point of y :

I stays close to x (through ‖ · −y‖2 term)

I simultaneously (approximately) minimizes objective function, here ıΩ.

70/88

From subgradient to proximal

Exercise (The Projection Operator)
For Ω a convex set and ıΩ the set indicator (ıΩ(x) = 0 if x ∈ Ω and = +∞ if not),
define

min
x∈X

1

2
‖x − y‖2 + ıΩ(x).

Show that x? is the (Euclidean) projection of y onto Ω ∩ X .

Projection and proximity: x? is the “proximal” point of y :

I stays close to x (through ‖ · −y‖2 term)

I simultaneously (approximately) minimizes objective function, here ıΩ.

70/88

From subgradient to proximal

Exercise (The Projection Operator)
For Ω a convex set and ıΩ the set indicator (ıΩ(x) = 0 if x ∈ Ω and = +∞ if not),
define

min
x∈X

1

2
‖x − y‖2 + ıΩ(x).

Show that x? is the (Euclidean) projection of y onto Ω ∩ X .

Projection and proximity: x? is the “proximal” point of y :

I stays close to x (through ‖ · −y‖2 term)

I simultaneously (approximately) minimizes objective function, here ıΩ.

70/88

From subgradient to proximal

Exercise (The Projection Operator)
For Ω a convex set and ıΩ the set indicator (ıΩ(x) = 0 if x ∈ Ω and = +∞ if not),
define

min
x∈X

1

2
‖x − y‖2 + ıΩ(x).

Show that x? is the (Euclidean) projection of y onto Ω ∩ X .

Projection and proximity: x? is the “proximal” point of y :

I stays close to x (through ‖ · −y‖2 term)

I simultaneously (approximately) minimizes objective function, here ıΩ.

70/88

From subgradient to proximal

Exercise (The Projection Operator)
For Ω a convex set and ıΩ the set indicator (ıΩ(x) = 0 if x ∈ Ω and = +∞ if not),
define

min
x∈X

1

2
‖x − y‖2 + ıΩ(x).

Show that x? is the (Euclidean) projection of y onto Ω ∩ X .

Projection and proximity: x? is the “proximal” point of y :

I stays close to x (through ‖ · −y‖2 term)

I simultaneously (approximately) minimizes objective function, here ıΩ.

71/88

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)
For f : X → R convex, proximal operator proxf of f is

proxf : X → X

x 7→ argmin
y∈X

{
f (y) +

1

2
‖y − x‖2

}
.

Remark: proximal point operator is single-valued. Not obvious! See next!

71/88

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)
For f : X → R convex, proximal operator proxf of f is

proxf : X → X

x 7→ argmin
y∈X

{
f (y) +

1

2
‖y − x‖2

}
.

Remark: proximal point operator is single-valued. Not obvious! See next!

71/88

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)
For f : X → R convex, proximal operator proxf of f is

proxf : X → X

x 7→ argmin
y∈X

{
f (y) +

1

2
‖y − x‖2

}
.

Remark: proximal point operator is single-valued.

Not obvious! See next!

71/88

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)
For f : X → R convex, proximal operator proxf of f is

proxf : X → X

x 7→ argmin
y∈X

{
f (y) +

1

2
‖y − x‖2

}
.

Remark: proximal point operator is single-valued. Not obvious! See next!

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).
But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:
by contradiction, inverse of D is single-valued.

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).
But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:
by contradiction, inverse of D is single-valued.

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).
But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:
by contradiction, inverse of D is single-valued.

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).
But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:
by contradiction, inverse of D is single-valued.

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).

But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:
by contradiction, inverse of D is single-valued.

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).
But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:

by contradiction, inverse of D is single-valued.

72/88

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X → 2X is monotone if

∀x , y ∈ X ,D : dx ∈ D(x), dy ∈ D(y) =⇒ (dy − dx)T (y − x) ≥ 0.

Strictly monotone: equality only for x = y .

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x ∈ X with δx ∈ D(x). Suppose ∃x ′ with δx ∈ D(x ′).
But, by strict monotonicity, 0 < (δx − δx)T(x − x ′) = 0:
by contradiction, inverse of D is single-valued.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).
Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).
Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).

Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).
Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).
Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).
Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

73/88

Non-differentiable optimization: proximal methods

Property
The operator proxf is single-valued (and thus well-defined).

Proof.
Idea. ∂f is a monotone operator: ∀dx ∈ ∂f (x), dy ∈ ∂f (y),

(dy − dx)T(y − x) ≥ 0 .

Follows from summing f (x) ≥ f (y) + dT
y (x − y) and f (y) ≥ f (x) + dT

x (y − x) (1st
order relations).
Implies I + ∂f strictly monotone operator:

((y + dy)− (x + dx))T(y − x) = (dy − dx)T(y − x) + ‖y − x‖2 > 0 .

For y ∈ proxf (x) (= argminz f (z) + 1
2
‖z − x‖2), 1st order optimality says

0 ∈ ∂f (y) + y − x = (I + ∂f)(y)− x ⇔ y ∈ (I + ∂f)−1(x).

But inverse of strictly monotone I + ∂f single-valued!

Consequence. Uniqueness of proxf makes optimization simpler: f may have multiple
minima, proxf (x) always unique.

74/88

Non-differentiable optimization: proximal methods

Remark (Properties of proxf)
For λ > 0,

proxλf (x) = argmin
y∈X

{
f (y) +

1

2λ
‖x − y‖2

}
.

For differentiable f ,

y = proxλf (x) = x − λ∇f (y) ⇐⇒ y +∇f (y) = x .

Consequence. Iterating proxf (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point (with
λ the step size).

Still for differentiable f ,

∇
(
f (y) +

1

2λ
‖y − x‖2

)
= ∇f (y) +

1

λ
(x − y).

Thus, at y = x, f and f + 1
2λ
‖x − ·‖2 have same value and gradient: proxf minimizes

“local approximation” of f .

74/88

Non-differentiable optimization: proximal methods

Remark (Properties of proxf)
For λ > 0,

proxλf (x) = argmin
y∈X

{
f (y) +

1

2λ
‖x − y‖2

}
.

For differentiable f ,

y = proxλf (x) = x − λ∇f (y) ⇐⇒ y +∇f (y) = x .

Consequence. Iterating proxf (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point (with
λ the step size).

Still for differentiable f ,

∇
(
f (y) +

1

2λ
‖y − x‖2

)
= ∇f (y) +

1

λ
(x − y).

Thus, at y = x, f and f + 1
2λ
‖x − ·‖2 have same value and gradient: proxf minimizes

“local approximation” of f .

74/88

Non-differentiable optimization: proximal methods

Remark (Properties of proxf)
For λ > 0,

proxλf (x) = argmin
y∈X

{
f (y) +

1

2λ
‖x − y‖2

}
.

For differentiable f ,

y = proxλf (x) = x − λ∇f (y) ⇐⇒ y +∇f (y) = x .

Consequence. Iterating proxf (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point (with
λ the step size).

Still for differentiable f ,

∇
(
f (y) +

1

2λ
‖y − x‖2

)
= ∇f (y) +

1

λ
(x − y).

Thus, at y = x, f and f + 1
2λ
‖x − ·‖2 have same value and gradient: proxf minimizes

“local approximation” of f .

74/88

Non-differentiable optimization: proximal methods

Remark (Properties of proxf)
For λ > 0,

proxλf (x) = argmin
y∈X

{
f (y) +

1

2λ
‖x − y‖2

}
.

For differentiable f ,

y = proxλf (x) = x − λ∇f (y) ⇐⇒ y +∇f (y) = x .

Consequence. Iterating proxf (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point (with
λ the step size).

Still for differentiable f ,

∇
(
f (y) +

1

2λ
‖y − x‖2

)
= ∇f (y) +

1

λ
(x − y).

Thus, at y = x, f and f + 1
2λ
‖x − ·‖2 have same value and gradient: proxf minimizes

“local approximation” of f .

74/88

Non-differentiable optimization: proximal methods

Remark (Properties of proxf)
For λ > 0,

proxλf (x) = argmin
y∈X

{
f (y) +

1

2λ
‖x − y‖2

}
.

For differentiable f ,

y = proxλf (x) = x − λ∇f (y) ⇐⇒ y +∇f (y) = x .

Consequence. Iterating proxf (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point (with
λ the step size).

Still for differentiable f ,

∇
(
f (y) +

1

2λ
‖y − x‖2

)
= ∇f (y) +

1

λ
(x − y).

Thus, at y = x, f and f + 1
2λ
‖x − ·‖2 have same value and gradient: proxf minimizes

“local approximation” of f .

75/88

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of proxf :

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)⇔ x? = proxf (x?).

Proof.
Follows from:

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)

⇔ 0 ∈ ∂f (x?) + (x? − x?)

⇔ x? = proxf (x?)

(last line from x? = proxf (x?) =⇒ x? ∈ arg minx f (x)).

Consequence: Suggests that fixed-point algorithm xk+1 = proxf (xk) converges to
minimum of f . But... does it converge?

I proxf unfortunately not contractive (i.e., α-Lipschitz with α ∈ (0, 1) so that
‖xk+1 − x?‖ ≤ α‖xk − x?‖)

I but proxf firmly non-expansive!

75/88

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of proxf :

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)⇔ x? = proxf (x?).

Proof.
Follows from:

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)

⇔ 0 ∈ ∂f (x?) + (x? − x?)

⇔ x? = proxf (x?)

(last line from x? = proxf (x?) =⇒ x? ∈ arg minx f (x)).

Consequence: Suggests that fixed-point algorithm xk+1 = proxf (xk) converges to
minimum of f . But... does it converge?

I proxf unfortunately not contractive (i.e., α-Lipschitz with α ∈ (0, 1) so that
‖xk+1 − x?‖ ≤ α‖xk − x?‖)

I but proxf firmly non-expansive!

75/88

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of proxf :

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)⇔ x? = proxf (x?).

Proof.
Follows from:

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)

⇔ 0 ∈ ∂f (x?) + (x? − x?)

⇔ x? = proxf (x?)

(last line from x? = proxf (x?) =⇒ x? ∈ arg minx f (x)).

Consequence: Suggests that fixed-point algorithm xk+1 = proxf (xk) converges to
minimum of f .

But... does it converge?

I proxf unfortunately not contractive (i.e., α-Lipschitz with α ∈ (0, 1) so that
‖xk+1 − x?‖ ≤ α‖xk − x?‖)

I but proxf firmly non-expansive!

75/88

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of proxf :

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)⇔ x? = proxf (x?).

Proof.
Follows from:

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)

⇔ 0 ∈ ∂f (x?) + (x? − x?)

⇔ x? = proxf (x?)

(last line from x? = proxf (x?) =⇒ x? ∈ arg minx f (x)).

Consequence: Suggests that fixed-point algorithm xk+1 = proxf (xk) converges to
minimum of f . But... does it converge?

I proxf unfortunately not contractive (i.e., α-Lipschitz with α ∈ (0, 1) so that
‖xk+1 − x?‖ ≤ α‖xk − x?‖)

I but proxf firmly non-expansive!

75/88

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of proxf :

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)⇔ x? = proxf (x?).

Proof.
Follows from:

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)

⇔ 0 ∈ ∂f (x?) + (x? − x?)

⇔ x? = proxf (x?)

(last line from x? = proxf (x?) =⇒ x? ∈ arg minx f (x)).

Consequence: Suggests that fixed-point algorithm xk+1 = proxf (xk) converges to
minimum of f . But... does it converge?

I proxf unfortunately not contractive (i.e., α-Lipschitz with α ∈ (0, 1) so that
‖xk+1 − x?‖ ≤ α‖xk − x?‖)

I but proxf firmly non-expansive!

75/88

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of proxf :

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)⇔ x? = proxf (x?).

Proof.
Follows from:

x? ∈ argmin
x∈X

f (x)⇔ 0 ∈ ∂f (x?)

⇔ 0 ∈ ∂f (x?) + (x? − x?)

⇔ x? = proxf (x?)

(last line from x? = proxf (x?) =⇒ x? ∈ arg minx f (x)).

Consequence: Suggests that fixed-point algorithm xk+1 = proxf (xk) converges to
minimum of f . But... does it converge?

I proxf unfortunately not contractive (i.e., α-Lipschitz with α ∈ (0, 1) so that
‖xk+1 − x?‖ ≤ α‖xk − x?‖)

I but proxf firmly non-expansive!

76/88

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X → X non-expansive if ∀x , y ∈ X ,

‖g(x)− g(y)‖ ≤ ‖x − y‖.

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
g : X → X firmly non-expansive if ∃G : X → X non-expansive with g = 1

2
(I + G).

Figure: Non-expansive g (left) and firmly non-expansive g (right).

76/88

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X → X non-expansive if ∀x , y ∈ X ,

‖g(x)− g(y)‖ ≤ ‖x − y‖.

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
g : X → X firmly non-expansive if ∃G : X → X non-expansive with g = 1

2
(I + G).

Figure: Non-expansive g (left) and firmly non-expansive g (right).

76/88

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X → X non-expansive if ∀x , y ∈ X ,

‖g(x)− g(y)‖ ≤ ‖x − y‖.

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
g : X → X firmly non-expansive if ∃G : X → X non-expansive with g = 1

2
(I + G).

Figure: Non-expansive g (left) and firmly non-expansive g (right).

76/88

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X → X non-expansive if ∀x , y ∈ X ,

‖g(x)− g(y)‖ ≤ ‖x − y‖.

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
g : X → X firmly non-expansive if ∃G : X → X non-expansive with g = 1

2
(I + G).

Figure: Non-expansive g (left) and firmly non-expansive g (right).

77/88

Non-differentiable optimization: proximal methods

Theorem
For convex f , proxf : X → X , x 7→ argminy f (y) + 1

2
‖x − y‖2 firmly non-expansive.

Proof.
Idea: Prove that 2proxf − I non-expansive, i.e., ∀x , y ∈ X ,

‖(2proxf (x)− x)− (2proxf (y)− y)‖2 ≤ ‖x − y‖2

⇔ ‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0.

For this, recall ∂f is monotone: for a = proxf (x) and b = proxf (y), then

x − a ∈ ∂f (a) and y − b ∈ ∂f (b).

Thus

((x − proxf (x))− (y − proxf (y)))T(proxf (x)− proxf (y)) ≥ 0.

Implies

(proxf (x)− proxf (y))T(x − y) ≥ ‖proxf (x)− proxf (y)‖2 ≥ 0 .

77/88

Non-differentiable optimization: proximal methods

Theorem
For convex f , proxf : X → X , x 7→ argminy f (y) + 1

2
‖x − y‖2 firmly non-expansive.

Proof.
Idea: Prove that 2proxf − I non-expansive, i.e., ∀x , y ∈ X ,

‖(2proxf (x)− x)− (2proxf (y)− y)‖2 ≤ ‖x − y‖2

⇔ ‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0.

For this, recall ∂f is monotone: for a = proxf (x) and b = proxf (y), then

x − a ∈ ∂f (a) and y − b ∈ ∂f (b).

Thus

((x − proxf (x))− (y − proxf (y)))T(proxf (x)− proxf (y)) ≥ 0.

Implies

(proxf (x)− proxf (y))T(x − y) ≥ ‖proxf (x)− proxf (y)‖2 ≥ 0 .

77/88

Non-differentiable optimization: proximal methods

Theorem
For convex f , proxf : X → X , x 7→ argminy f (y) + 1

2
‖x − y‖2 firmly non-expansive.

Proof.
Idea: Prove that 2proxf − I non-expansive, i.e., ∀x , y ∈ X ,

‖(2proxf (x)− x)− (2proxf (y)− y)‖2 ≤ ‖x − y‖2

⇔ ‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0.

For this, recall ∂f is monotone: for a = proxf (x) and b = proxf (y), then

x − a ∈ ∂f (a) and y − b ∈ ∂f (b).

Thus

((x − proxf (x))− (y − proxf (y)))T(proxf (x)− proxf (y)) ≥ 0.

Implies

(proxf (x)− proxf (y))T(x − y) ≥ ‖proxf (x)− proxf (y)‖2 ≥ 0 .

77/88

Non-differentiable optimization: proximal methods

Theorem
For convex f , proxf : X → X , x 7→ argminy f (y) + 1

2
‖x − y‖2 firmly non-expansive.

Proof.
Idea: Prove that 2proxf − I non-expansive, i.e., ∀x , y ∈ X ,

‖(2proxf (x)− x)− (2proxf (y)− y)‖2 ≤ ‖x − y‖2

⇔ ‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0.

For this, recall ∂f is monotone: for a = proxf (x) and b = proxf (y), then

x − a ∈ ∂f (a) and y − b ∈ ∂f (b).

Thus

((x − proxf (x))− (y − proxf (y)))T(proxf (x)− proxf (y)) ≥ 0.

Implies

(proxf (x)− proxf (y))T(x − y) ≥ ‖proxf (x)− proxf (y)‖2 ≥ 0 .

77/88

Non-differentiable optimization: proximal methods

Theorem
For convex f , proxf : X → X , x 7→ argminy f (y) + 1

2
‖x − y‖2 firmly non-expansive.

Proof.
Idea: Prove that 2proxf − I non-expansive, i.e., ∀x , y ∈ X ,

‖(2proxf (x)− x)− (2proxf (y)− y)‖2 ≤ ‖x − y‖2

⇔ ‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0.

For this, recall ∂f is monotone: for a = proxf (x) and b = proxf (y), then

x − a ∈ ∂f (a) and y − b ∈ ∂f (b).

Thus

((x − proxf (x))− (y − proxf (y)))T(proxf (x)− proxf (y)) ≥ 0.

Implies

(proxf (x)− proxf (y))T(x − y) ≥ ‖proxf (x)− proxf (y)‖2 ≥ 0 .

78/88

Non-differentiable optimization: proximal methods

Main property:

Theorem (The Proximal Point Algorithm)
For f : X → R convex, x1 ∈ X , let

xk+1 = proxf (xk), ∀k ≥ 1.

Then xk → x? ∈ argminx∈X {f (x)}.

Proof.

‖xk+1 − xk‖2

= ‖proxf (xk)− xk‖2

= ‖(proxf (xk)− xk)− (proxf (x?)− x?)‖2

= ‖proxf (xk)− proxf (x?)‖2 + ‖xk − x?‖2 − 2 (proxf (xk)− proxf (x?))T (xk − x?)

≤ ‖xk − x?‖2 − ‖proxf (xk)− proxf (x?)‖2.

Last inequality uses firm non-expansiveness of proxf :

(proxf (xk)− proxf (x?))T(xk − x?) ≥ ‖proxf (xk)− proxf (x?)‖2 ≥ 0 .

78/88

Non-differentiable optimization: proximal methods

Main property:

Theorem (The Proximal Point Algorithm)
For f : X → R convex, x1 ∈ X , let

xk+1 = proxf (xk), ∀k ≥ 1.

Then xk → x? ∈ argminx∈X {f (x)}.

Proof.

‖xk+1 − xk‖2

= ‖proxf (xk)− xk‖2

= ‖(proxf (xk)− xk)− (proxf (x?)− x?)‖2

= ‖proxf (xk)− proxf (x?)‖2 + ‖xk − x?‖2 − 2 (proxf (xk)− proxf (x?))T (xk − x?)

≤ ‖xk − x?‖2 − ‖proxf (xk)− proxf (x?)‖2.

Last inequality uses firm non-expansiveness of proxf :

(proxf (xk)− proxf (x?))T(xk − x?) ≥ ‖proxf (xk)− proxf (x?)‖2 ≥ 0 .

78/88

Non-differentiable optimization: proximal methods

Main property:

Theorem (The Proximal Point Algorithm)
For f : X → R convex, x1 ∈ X , let

xk+1 = proxf (xk), ∀k ≥ 1.

Then xk → x? ∈ argminx∈X {f (x)}.

Proof.

‖xk+1 − xk‖2

= ‖proxf (xk)− xk‖2

= ‖(proxf (xk)− xk)− (proxf (x?)− x?)‖2

= ‖proxf (xk)− proxf (x?)‖2 + ‖xk − x?‖2 − 2 (proxf (xk)− proxf (x?))T (xk − x?)

≤ ‖xk − x?‖2 − ‖proxf (xk)− proxf (x?)‖2.

Last inequality uses firm non-expansiveness of proxf :

(proxf (xk)− proxf (x?))T(xk − x?) ≥ ‖proxf (xk)− proxf (x?)‖2 ≥ 0 .

79/88

Non-differentiable optimization: proximal methods

Proof.
Geometric interpretation:

80/88

Non-differentiable optimization: proximal methods

Proof.
Recall now (non-expansiveness equivalence):

‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0

⇐⇒ 2 ‖proxf (x)− proxf (y)‖2 − 2(proxf (x)− proxf (y))T(x − y) + ‖x − y‖2 ≤ ‖x − y‖2

⇐⇒ ‖proxf (x)− proxf (y)‖2 + ‖(I − proxf) (y)− (I − proxf) (x)‖2 ≤ ‖x − y‖2

In particular

‖xk+1 − x?‖2 + ‖xk+1 − xk‖2 ≤ ‖xk − x?‖2

‖proxf (x)− proxf (y)‖2 ≤ ‖x − y‖2 .

Summing over k = 1, . . . ,K :

K‖xK+1 − xK‖2 ≤ ‖x1 − x?‖2 − ‖xK+1 − x?‖2 ≤ ‖x1 − x?‖2

and thus

‖xK+1 − xK‖ ≤
1
√
K
‖x1 − x?‖ → 0

as K →∞, i.e., ‖proxf (xk)− xk‖ → 0.

80/88

Non-differentiable optimization: proximal methods

Proof.
Recall now (non-expansiveness equivalence):

‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0

⇐⇒ 2 ‖proxf (x)− proxf (y)‖2 − 2(proxf (x)− proxf (y))T(x − y) + ‖x − y‖2 ≤ ‖x − y‖2

⇐⇒ ‖proxf (x)− proxf (y)‖2 + ‖(I − proxf) (y)− (I − proxf) (x)‖2 ≤ ‖x − y‖2

In particular

‖xk+1 − x?‖2 + ‖xk+1 − xk‖2 ≤ ‖xk − x?‖2

‖proxf (x)− proxf (y)‖2 ≤ ‖x − y‖2 .

Summing over k = 1, . . . ,K :

K‖xK+1 − xK‖2 ≤ ‖x1 − x?‖2 − ‖xK+1 − x?‖2 ≤ ‖x1 − x?‖2

and thus

‖xK+1 − xK‖ ≤
1
√
K
‖x1 − x?‖ → 0

as K →∞, i.e., ‖proxf (xk)− xk‖ → 0.

80/88

Non-differentiable optimization: proximal methods

Proof.
Recall now (non-expansiveness equivalence):

‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0

⇐⇒ 2 ‖proxf (x)− proxf (y)‖2 − 2(proxf (x)− proxf (y))T(x − y) + ‖x − y‖2 ≤ ‖x − y‖2

⇐⇒ ‖proxf (x)− proxf (y)‖2 + ‖(I − proxf) (y)− (I − proxf) (x)‖2 ≤ ‖x − y‖2

In particular

‖xk+1 − x?‖2 + ‖xk+1 − xk‖2 ≤ ‖xk − x?‖2

‖proxf (x)− proxf (y)‖2 ≤ ‖x − y‖2 .

Summing over k = 1, . . . ,K :

K‖xK+1 − xK‖2 ≤ ‖x1 − x?‖2 − ‖xK+1 − x?‖2 ≤ ‖x1 − x?‖2

and thus

‖xK+1 − xK‖ ≤
1
√
K
‖x1 − x?‖ → 0

as K →∞, i.e., ‖proxf (xk)− xk‖ → 0.

80/88

Non-differentiable optimization: proximal methods

Proof.
Recall now (non-expansiveness equivalence):

‖proxf (x)− proxf (y)‖2 − (proxf (x)− proxf (y))T(x − y) ≤ 0

⇐⇒ 2 ‖proxf (x)− proxf (y)‖2 − 2(proxf (x)− proxf (y))T(x − y) + ‖x − y‖2 ≤ ‖x − y‖2

⇐⇒ ‖proxf (x)− proxf (y)‖2 + ‖(I − proxf) (y)− (I − proxf) (x)‖2 ≤ ‖x − y‖2

In particular

‖xk+1 − x?‖2 + ‖xk+1 − xk‖2 ≤ ‖xk − x?‖2

‖proxf (x)− proxf (y)‖2 ≤ ‖x − y‖2 .

Summing over k = 1, . . . ,K :

K‖xK+1 − xK‖2 ≤ ‖x1 − x?‖2 − ‖xK+1 − x?‖2 ≤ ‖x1 − x?‖2

and thus

‖xK+1 − xK‖ ≤
1
√
K
‖x1 − x?‖ → 0

as K →∞, i.e., ‖proxf (xk)− xk‖ → 0.

81/88

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

I does not need differentiable f , does not have step size constraint;

I one can change f in λf (λ > 0): not affecting algorithm, but possibly
performance;

I but 2 main difficulties:
I proxf can be difficult to evaluate
I in worst case, sublinear convergence rate.

Table of classical prox operators:

f proxf (x) ∇f (x) -
0 x 0

ıΩ(x) PΩ(x) -
ıRn

+
(x) {max([x]i , 0)}Ni=1 -

λ‖x‖1 {sgn([x]i) max(|[x]i | − λ, 0)}ni=1 -
ı{x̄,Ax̄=y}(x) x + AT(AAT)−1(y − Ax) -
1
2
‖Ax − y‖2 (In + ATA)−1(x + ATy) AT(Ax − y)

xTATy x − ATy ATy
1
2
xTAx (In + A)−1x Ax

81/88

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

I does not need differentiable f , does not have step size constraint;

I one can change f in λf (λ > 0): not affecting algorithm, but possibly
performance;

I but 2 main difficulties:
I proxf can be difficult to evaluate
I in worst case, sublinear convergence rate.

Table of classical prox operators:

f proxf (x) ∇f (x) -
0 x 0

ıΩ(x) PΩ(x) -
ıRn

+
(x) {max([x]i , 0)}Ni=1 -

λ‖x‖1 {sgn([x]i) max(|[x]i | − λ, 0)}ni=1 -
ı{x̄,Ax̄=y}(x) x + AT(AAT)−1(y − Ax) -
1
2
‖Ax − y‖2 (In + ATA)−1(x + ATy) AT(Ax − y)

xTATy x − ATy ATy
1
2
xTAx (In + A)−1x Ax

81/88

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

I does not need differentiable f , does not have step size constraint;

I one can change f in λf (λ > 0): not affecting algorithm, but possibly
performance;

I but 2 main difficulties:
I proxf can be difficult to evaluate

I in worst case, sublinear convergence rate.

Table of classical prox operators:

f proxf (x) ∇f (x) -
0 x 0

ıΩ(x) PΩ(x) -
ıRn

+
(x) {max([x]i , 0)}Ni=1 -

λ‖x‖1 {sgn([x]i) max(|[x]i | − λ, 0)}ni=1 -
ı{x̄,Ax̄=y}(x) x + AT(AAT)−1(y − Ax) -
1
2
‖Ax − y‖2 (In + ATA)−1(x + ATy) AT(Ax − y)

xTATy x − ATy ATy
1
2
xTAx (In + A)−1x Ax

81/88

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

I does not need differentiable f , does not have step size constraint;

I one can change f in λf (λ > 0): not affecting algorithm, but possibly
performance;

I but 2 main difficulties:
I proxf can be difficult to evaluate
I in worst case, sublinear convergence rate.

Table of classical prox operators:

f proxf (x) ∇f (x) -
0 x 0

ıΩ(x) PΩ(x) -
ıRn

+
(x) {max([x]i , 0)}Ni=1 -

λ‖x‖1 {sgn([x]i) max(|[x]i | − λ, 0)}ni=1 -
ı{x̄,Ax̄=y}(x) x + AT(AAT)−1(y − Ax) -
1
2
‖Ax − y‖2 (In + ATA)−1(x + ATy) AT(Ax − y)

xTATy x − ATy ATy
1
2
xTAx (In + A)−1x Ax

81/88

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

I does not need differentiable f , does not have step size constraint;

I one can change f in λf (λ > 0): not affecting algorithm, but possibly
performance;

I but 2 main difficulties:
I proxf can be difficult to evaluate
I in worst case, sublinear convergence rate.

Table of classical prox operators:

f proxf (x) ∇f (x) -
0 x 0

ıΩ(x) PΩ(x) -
ıRn

+
(x) {max([x]i , 0)}Ni=1 -

λ‖x‖1 {sgn([x]i) max(|[x]i | − λ, 0)}ni=1 -
ı{x̄,Ax̄=y}(x) x + AT(AAT)−1(y − Ax) -
1
2
‖Ax − y‖2 (In + ATA)−1(x + ATy) AT(Ax − y)

xTATy x − ATy ATy
1
2
xTAx (In + A)−1x Ax

82/88

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

83/88

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f1 and f2,

min
x∈X

f1(x) + f2(x)

Crucial example:

I f1(x) = ıΩ(x) for convex Ω ⊂ X
I f2 any convex function (our previous f).

Case of differentiable convex f2: with L-Lipschitz gradient ∇f2 (f1 only convex).
Then:

x? ∈ argminx∈X {f1(x) + f2(x)} ⇔ 0 ∈ ∂f1(x?) +∇f2(x?)

⇔ 0 ∈ γ∂f1(x?) + γ∇f2(x?)

⇔ x? ∈ x? + γ∂f1(x?) + γ∇f2(x?)

⇔ x? − γ∇f2(x?) ∈ x? + γ∂f1(x?)

⇔ x? = proxγf1 ((I − γ∇f2)(x?))

⇔ x? =
(
proxγf1 ◦ (I − γ∇f2)

)
(x?).

Consequence: equivalent to finding fixed-point for:

proxγf1 ◦ (I − γ∇f2).

83/88

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f1 and f2,

min
x∈X

f1(x) + f2(x)

Crucial example:

I f1(x) = ıΩ(x) for convex Ω ⊂ X
I f2 any convex function (our previous f).

Case of differentiable convex f2: with L-Lipschitz gradient ∇f2 (f1 only convex).
Then:

x? ∈ argminx∈X {f1(x) + f2(x)} ⇔ 0 ∈ ∂f1(x?) +∇f2(x?)

⇔ 0 ∈ γ∂f1(x?) + γ∇f2(x?)

⇔ x? ∈ x? + γ∂f1(x?) + γ∇f2(x?)

⇔ x? − γ∇f2(x?) ∈ x? + γ∂f1(x?)

⇔ x? = proxγf1 ((I − γ∇f2)(x?))

⇔ x? =
(
proxγf1 ◦ (I − γ∇f2)

)
(x?).

Consequence: equivalent to finding fixed-point for:

proxγf1 ◦ (I − γ∇f2).

83/88

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f1 and f2,

min
x∈X

f1(x) + f2(x)

Crucial example:

I f1(x) = ıΩ(x) for convex Ω ⊂ X
I f2 any convex function (our previous f).

Case of differentiable convex f2: with L-Lipschitz gradient ∇f2 (f1 only convex).

Then:

x? ∈ argminx∈X {f1(x) + f2(x)} ⇔ 0 ∈ ∂f1(x?) +∇f2(x?)

⇔ 0 ∈ γ∂f1(x?) + γ∇f2(x?)

⇔ x? ∈ x? + γ∂f1(x?) + γ∇f2(x?)

⇔ x? − γ∇f2(x?) ∈ x? + γ∂f1(x?)

⇔ x? = proxγf1 ((I − γ∇f2)(x?))

⇔ x? =
(
proxγf1 ◦ (I − γ∇f2)

)
(x?).

Consequence: equivalent to finding fixed-point for:

proxγf1 ◦ (I − γ∇f2).

83/88

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f1 and f2,

min
x∈X

f1(x) + f2(x)

Crucial example:

I f1(x) = ıΩ(x) for convex Ω ⊂ X
I f2 any convex function (our previous f).

Case of differentiable convex f2: with L-Lipschitz gradient ∇f2 (f1 only convex).
Then:

x? ∈ argminx∈X {f1(x) + f2(x)} ⇔ 0 ∈ ∂f1(x?) +∇f2(x?)

⇔ 0 ∈ γ∂f1(x?) + γ∇f2(x?)

⇔ x? ∈ x? + γ∂f1(x?) + γ∇f2(x?)

⇔ x? − γ∇f2(x?) ∈ x? + γ∂f1(x?)

⇔ x? = proxγf1 ((I − γ∇f2)(x?))

⇔ x? =
(
proxγf1 ◦ (I − γ∇f2)

)
(x?).

Consequence: equivalent to finding fixed-point for:

proxγf1 ◦ (I − γ∇f2).

83/88

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f1 and f2,

min
x∈X

f1(x) + f2(x)

Crucial example:

I f1(x) = ıΩ(x) for convex Ω ⊂ X
I f2 any convex function (our previous f).

Case of differentiable convex f2: with L-Lipschitz gradient ∇f2 (f1 only convex).
Then:

x? ∈ argminx∈X {f1(x) + f2(x)} ⇔ 0 ∈ ∂f1(x?) +∇f2(x?)

⇔ 0 ∈ γ∂f1(x?) + γ∇f2(x?)

⇔ x? ∈ x? + γ∂f1(x?) + γ∇f2(x?)

⇔ x? − γ∇f2(x?) ∈ x? + γ∂f1(x?)

⇔ x? = proxγf1 ((I − γ∇f2)(x?))

⇔ x? =
(
proxγf1 ◦ (I − γ∇f2)

)
(x?).

Consequence: equivalent to finding fixed-point for:

proxγf1 ◦ (I − γ∇f2).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive.

Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive. Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive. Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive. Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive. Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting?

Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive. Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

84/88

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

proxγf1 ◦ (I − γ∇f2)

must be firmly non-expansive. Only true if γ < 1
L

!

Theorem (Forward-Backward Splitting algorithm)
For f1, f2 : X → R convex with f2 differentiable and with L-Lipschitz gradient, let

x1 ∈ X
xk+1 = proxγf1 (xk − γ∇f2(xk)) , k ≥ 1.

Then, as k →∞,

xk → x? ∈ argminx∈X {f1(x) + f2(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xk to x̃k ≡ xk − γ∇f2(xk), i.e., gradient descent step on f2 (forward
progression to minimizing f2);

2. move from x̃k to xk+1 = proxγf1 (x̃k), i.e., “backward” move from x̃k to

xk+1 = (I + ∂f1)−1(x̃k).

85/88

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable f = f2 under convex
constraints given by f1,

e.g.,

min
x∈Ω

f (x) ⇔ min
x∈X

ıΩ(x) + f (x)

Main advantage: constrained minimization turned into a much simpler unconstrained
minimization of two functions.

85/88

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable f = f2 under convex
constraints given by f1, e.g.,

min
x∈Ω

f (x)

⇔ min
x∈X

ıΩ(x) + f (x)

Main advantage: constrained minimization turned into a much simpler unconstrained
minimization of two functions.

85/88

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable f = f2 under convex
constraints given by f1, e.g.,

min
x∈Ω

f (x) ⇔ min
x∈X

ıΩ(x) + f (x)

Main advantage: constrained minimization turned into a much simpler unconstrained
minimization of two functions.

85/88

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable f = f2 under convex
constraints given by f1, e.g.,

min
x∈Ω

f (x) ⇔ min
x∈X

ıΩ(x) + f (x)

Main advantage: constrained minimization turned into a much simpler unconstrained
minimization of two functions.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2:

Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x)

⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).

Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations;

does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

86/88

Non-differentiable optimization: sum of two functions

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

(2proxγf2 − I) ◦ (2proxγf1 − I).

Why? Follows from:

x = (2proxγf2 − I) ◦ (2proxγf1 − I)(x) ⇔ x = 2proxγf2 (2x̃ − x)− (2x̃ − x)

where x̃ ≡ proxγf1 (x) (i.e., x − x̃ ∈ γ∂f1(x̃)).
Further equivalent to

⇔ 0 = proxγf2 (2x̃ − x)− x̃

⇔ 2x̃ − x ∈ (γ∂f2 + I)(x̃)

⇔ x̃ − x ∈ γ∂f2(x̃)

⇔ 0 ∈ γ∂f1(x) + γ∂f2(x)

(last line uses x − x̃ ∈ γ∂f1(x̃)).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra ρ ∈ (0, 1) in algorithm steps.

87/88

Non-differentiable optimization: sum of two functions

Theorem (Douglas-Rachford Splitting)
Let f1, f2 : X → R convex. For x0 ∈ X , λ > 0, ρ ∈ (0, 1), and k ≥ 1, let

x̃k = proxγf1 (xk)

xk+1 = xk + 2ρ
(
proxγf2 (2x̃k − xk)− x̃k

)
.

Then, as k →∞,

xk → x? ∈ argminx∈X f1(x) + f2(x).

87/88

Non-differentiable optimization: sum of two functions

Theorem (Douglas-Rachford Splitting)
Let f1, f2 : X → R convex. For x0 ∈ X , λ > 0, ρ ∈ (0, 1), and k ≥ 1, let

x̃k = proxγf1 (xk)

xk+1 = xk + 2ρ
(
proxγf2 (2x̃k − xk)− x̃k

)
.

Then, as k →∞,

xk → x? ∈ argminx∈X f1(x) + f2(x).

88/88

The End.

	Motivation
	Basics of Convex Optimization
	Convex Sets
	Convex Functions

	Basic Algorithms for Convex Optimization
	Descent methods and gradient descent
	Inequality Constraints and Barrier Methods

	Constrained Optimization and Duality
	Linearly Equality-Constrained Optimization
	Generalization to Equality and Inequality Constraints

	Advanced Methods
	Non-Differentiable Convex Functions
	The Proximal Operator Approach
	Minimization of the Sum of Two Functions

