Introduction to Optimization

Romain Couillet and Ronald Phlypo

December 3, 2020

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization
Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization

Generalization to Equality and Inequality Constraints
Advanced Methods

Non-Differentiable Convex Functions

The Proximal Operator Approach

Minimization of the Sum of Two Functions

«Or «Fr «

1PN G4 3/88

Main objective

Objective of the class: solve the problem
Find x* € argmin, cqcx f(x)

for some function f : X - R U {+o0}.

&

Main objective

Objective of the class: solve the problem
Find x* € argmin, cqcx f(x)

for some function f : X - R U {+o0}.

Remark

argmin, cqcx f(x) is a subset of X (may be empty, a singleton, a discrete set, an
uncountable set).

&

Main objective

Objective of the class: solve the problem
Find x* € argmin, cqcx f(x)
for some function f : X - R U {+o0}.

Remark

argmin, cqcx f(x) is a subset of X (may be empty, a singleton, a discrete set, an
uncountable set).

» f is the cost, penalty, or objective function;
> Q=8N X is the set of constraints S restricted to X.

&

Specifying f

U S=0
gradient descent, Newton

inequality constraints . . .
interior point

S constrained dual, Lagrange multipliers
equality constraints

f non differentiable generic f
subgradient
C: proximal methods

f = fi + f2 “convenient”

f differentiable

argmingex {f(2)}

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:
> n assets;
> at time t, return [x;]; for asset i, with E[x¢] = p and Cov[x;] = C;

> investment of wealth 1 across assets [w]y,. .., [w]s, D7 [w]; = 1.

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:
> n assets;
> at time t, return [x;]; for asset i, with E[x¢] = p and Cov[x;] = C;

> investment of wealth 1 across assets [w]y,. .., [w]s, D7 [w]; = 1.
Objective:

» Optimal expected gain:

n
argmax,, cgn E[w"x:] = w' s, such that Z[w],— =1.
i=1

Examples: the Lab Sessions
Example (1. Portfolio Optimization)
Setting:
> n assets;
> at time t, return [x;]; for asset i, with E[x¢] = p and Cov[x;] = C;

> investment of wealth 1 across assets [w]y,. .., [w]s, D7 [w]; = 1.

Objective:
» Optimal expected gain:

n
argmax,, cgn E[w"x:] = w' s, such that Z[w],— =1.
i=1

» Risk minimization:

n
argmin,, cgn E[|wT (xt — u)[?], such that Z[W],’ =1.
i=1

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Setting:
> n assets;
> at time t, return [x;]; for asset i, with E[x¢] = p and Cov[x;] = C;

> investment of wealth 1 across assets [w]y,. .., [w]s, D7 [w]; = 1.

Objective:
» Optimal expected gain:

n
argmax,, cgn E[w"x:] = w' s, such that Z[w],— =1.
i=1

» Risk minimization:

n
argmin,, cgn E[|wT (xt — u)[?], such that Z[W],’ =1.
i=1

» Risk minimization under constrained expected gain g:

n
argmin,, cgn E[|wT(xe — 1)|?], such that Z[w]; =1and E[w'x] > g.
i=1

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Objective:

» Risk minimization with non-negativity constraint:

n
argmin,, cpn E[|w' (xt — u)|?], such that Z[w],— =1and Vi, [w]; >0.
i=1

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Objective:

» Risk minimization with non-negativity constraint:

n
argmin D E[wT (xe — o 2], such that w]; =1 and Vi, [w]; > 0.
weR
i=1

Overview:
» Without inequality constraint, Lagrange multipliers give the solution:

_Ccl,
T 1Tc-11,”

w*

Examples: the Lab Sessions

Example (1. Portfolio Optimization)
Objective:

» Risk minimization with non-negativity constraint:

n
argmin,, cpn E[|w' (xt — u)|?], such that Z[W]; =1and Vi, [w]; >0.
i=1

Overview:
» Without inequality constraint, Lagrange multipliers give the solution:

_Ccl,
T 1Tc-11,”

w*

> With inequality constraint, interior point method (Lab Session 1), or proximal
point method (Lab Session 2).

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:

»> Data points and labels
(x1,31), -5 (xm, ym) € R? x {£1};
> Separating hyperplane of R” of the form
H={x| x"w* + b*

=0}.

parating hyperplane

DA g/gg

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:

»> Data points and labels

parating hyperplane

(x1s¥1); -+ -5 (Xm, ym) € R? x {£1};
> Separating hyperplane of R” of the form
H={x|xTw*+b* =

=0}.

Objective: Maximize hyperplane “margin”,

DA g/gg

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:

»> Data points and labels

parating hyperplane

(x1s¥1); -+ -5 (Xm, ym) € R? x {£1};
> Separating hyperplane of R” of the form
H={x| x"w* + b*

=0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w*, b™) € argmin,, egn {llw|[?} such that y;(w"x; + b) > 1.

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:

»> Data points and labels

parating hyperplane

(x1s¥1); -+ -5 (Xm, ym) € R? x {£1};
> Separating hyperplane of R” of the form
H={x| x"w* + b*

=0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w*, b™) € argmin,, egn {llw|[?} such that y;(w"x; + b) > 1.
Why? Distance between “supporting” hyperplanes H41 : x'w* 4+ b* = +1 for all
HX+1 — X—le X1 € Har: implies (X+1 — X_1

)T

w* = 2. Distance max for ||w*|| min.

DA

8/88

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:

»> Data points and labels

parating hyperplane

(x1,1)5 -5 (xmy ym) € R x {£1};
> Separating hyperplane of R” of the form
H={x|xTw*+b* =

=0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w*, b™) € argmin,, egn {||w||2} such that y;(w'x; 4+ b) > 1.
Why? Distance between “supporting” hyperplanes H41 : x'w* 4+ b* = +1 for all

But argmin can be empty! Relaxation to “soft-margin” SVM:

(w*, b*) € argmin,, pcrp {

Ix11 — x_1]|, x41 € H41: implies (x;1 — x_1)Tw* = 2. Distance max for ||w*|| min
for some A > 0.

i=1

1 m
— > max(0,1— yilwx; + b]) + Awll

|

Examples: the Lab Sessions

Example (2. Support Vector Machines)
Setting:

»> Data points and labels

eparating hyperplane

(x1,1)5 -5 (xmy ym) € R x {£1};
> Separating hyperplane of R” of the form
H={x| x"w* + b*

=0}.

Objective: Maximize hyperplane “margin”, or equivalently

(w*, b™) € argmin,, egn {llw|[?} such that y;(w"x; + b) > 1.

Why? Distance between “supporting” hyperplanes H41 : x'w* 4+ b* = +1 for all
But argmin can be empty! Relaxation to “soft-margin” SVM:

(w*, b*) € argmin,, pcrp {

Ix11 — x_1]|, x41 € H41: implies (x;1 — x_1)Tw* = 2. Distance max for ||w*|| min
for some A > 0.

i=1

1 m
— > max(0,1— yilwx; + b]) + Awll

|

Solution: Interior point or proximal methods.

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

> retrieve x € R"” from y = Ax € RP, p < n, with x a sparse vector;

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:
> retrieve x € R"” from y = Ax € RP, p < n, with x a sparse vector;

Objective: Maximize sparsity via “/;1-relaxation”

x* € argmin, cpn ||x||1 such that y = Ax

with [|x|[x = 37, |[x]il-

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:
> retrieve x € R"” from y = Ax € RP, p < n, with x a sparse vector;

Objective: Maximize sparsity via “/;1-relaxation”
x* € argmin, cpn ||x||1 such that y = Ax

with [|x|[x = 37, |[x]il-

Remark 1: || - ||1 is not differentiable.

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:
> retrieve x € R"” from y = Ax € RP, p < n, with x a sparse vector;

Objective: Maximize sparsity via “/;1-relaxation”
x* € argmin, cga [|Ix||1 such that y = Ax

with [[x|ls =327 [Ix]il-
Remark 1: || - ||1 is not differentiable.

Remark 2: Denoting 10(x) = 0 if x € Q and 1q(x) = +oo if x ¢ Q,

x* € argmin, cgn {lIxl1 + 1gy—ax} }

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:
> retrieve x € R"” from y = Ax € RP, p < n, with x a sparse vector;

Objective: Maximize sparsity via “/;1-relaxation”
x* € argmin, cpn ||x||1 such that y = Ax
with [[x[l1 = 32y |[x]il-
Remark 1: || - ||1 is not differentiable.
Remark 2: Denoting 10(x) = 0 if x € Q and 1q(x) = +oo if x ¢ Q,
x* € argmin, cgn {Ix[l1 + 1yy—ax} } = argmin, cgn {A(x) + f(x)}

with fi, f> convex non-differentiable.

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:
> retrieve x € R"” from y = Ax € RP, p < n, with x a sparse vector;
Objective: Maximize sparsity via “/;1-relaxation”
x* € argmin, cga [|Ix||1 such that y = Ax
with [[x|ls =327 [Ix]il-
Remark 1: || - ||1 is not differentiable.
Remark 2: Denoting 10(x) = 0 if x € Q and 1q(x) = +oo if x ¢ Q,
x* € argmincn { X111 + 1(yax) } = argmin,cp {£(x) + H(x)}
with fi, f> convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

Outline

Motivation

Basics of Convex Optimization
Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent

Inequality Constraints and Barrier Methods
Constrained Optimization and Duality

Linearly Equality-Constrained Optimization

Generalization to Equality and Inequality Constraints
Advanced Methods

Non-Differentiable Convex Functions
The Proximal Operator Approach

Minimization of the Sum of Two Functions

«0)» «F»

a

DA

10/88

Outline

Basics of Convex Optimization
Convex Sets

Convex Sets

Definition (Convex Set)
C C X convex iif Vx,y € C and VX € [0, 1],

1-=XNx+Xxy=x+ Ay —x) €C.

Convex Sets

Definition (Convex Set)
C C X convex iif Vx,y € C and VX € [0, 1],

1-=XNx+Xxy=x+ Ay —x) €C.

A DI <

Figure: Convex sets and non-convex sets (stroke out).

Convex Sets: basic properties

Remark (Ensemble manipulations on convex sets)
For convex sets C1, Ca,

» C; can be open, closed, bounded, unbounded.

» C1NCy is convex.

» C1 UCsy is not necessarily convex.

Convex Sets: basic properties

Remark (Ensemble manipulations on convex sets)
For convex sets C1, Ca,

» C; can be open, closed, bounded, unbounded.

» C1NCy is convex.

» C1 UCsy is not necessarily convex.

Remark (List of convex sets)
The following ensembles are convex:
» line, segment, half-line, R"
» a vector subspace
> hyperplanes {x, x'a = b}, half-spaces {x, x'a < b}
> balls B(xc; r) = {x, [|x — xc|| < r} and ellipsoids {x, (x — xc)TP~(x — xc) < r}.

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that B(xc;r) = {x, ||x — xc|| < r} is convex.

Convex Sets: basic properties
Exercise (1. Ball convexity)
Show that B(xc; r) = {x, ||x — xc|| < r} is convex.

Proof of ball convexity.
Let x,y € B(xc; r). Then,

[Ax+(1=A)y = x| = [[A(x=xc) + (1= A)(y =x)l

Convex Sets: basic properties

Exercise (1. Ball convexity)

Show that B(xc; r) = {x, ||x — xc|| < r} is convex.

Proof of ball convexity.
Let x,y € B(xc; r). Then,

[Ax+ (1= A)y =Xe|l = [|A(x = xc) + (L= A)(y =x) | < Allx—=xe|[+ (1 =A)ly =xc[| < r-
O

Convex Sets: basic properties

Exercise (1. Ball convexity)

Show that B(xc; r) = {x, ||x — xc|| < r} is convex.

Proof of ball convexity.
Let x,y € B(xc; r). Then,

[Ax+ (1= A)y =Xe|l = [|A(x = xc) + (L= A)(y =x) | < Allx—=xe|[+ (1 =A)ly =xc[| < r-
O

Exercise (2. Polyhedron convexity)

For Ac R'*", B€ R™" and be R/, d € R™, . P --1d
show the convexity of polyhedron A

P={x, Ax< b, Cx=d}.

o
&
&

Figure: A polyhedron.

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1,...,x, € S is the set

k
{91X]_+‘..+09kxk ‘ Z@,‘Zl, 91,...,9/(20}.
i=1

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1,...,x, € S is the set

k
{01X]_+‘..+9kxk ‘ 29,':1, 91,...,9/(20}.
i=1

This is a convex set.

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1,...,x, € S is the set

k
{91X]_+‘..+09kxk ‘ Z@,‘Zl, 91,...,9/(20}.

i=1

This is a convex set.

The polyhedron (Figure 2) is the set of convex combinations of xi, ..

.y Xs5.

Basic properties

Definition (Convex combinations)
The set of convex combinations of x1,...,x, € S is the set

k
{91X]_+‘..+09kxk ‘ ZO,‘ZL 91,...,9/(20}.
i=1

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of xi, ..., xs.

Definition (Convex hull)
The convex hull conv(X) is the set of all convex combinations of points in X,
k

COHV(X)={91X1+...+9ka| 29;21, 01,...,0k >0, x1,...,xx € X, k>0}.
i=1

Basic properties

Definition (Convex combinations)

The set of convex combinations of x1,...,x, € S is the set

k
{91X]_+‘..+09kxk ‘ ZO,‘ZL 91,...,9/(20}.
i=1

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of xi, ..., xs.

Definition (Convex hull)

The convex hull conv(X) is the set of all convex combinations of points in X,

k
COHV(X)={91X1+...+9ka| 29;21, 01,...,0k >0, x1,...,xx € X, k>0}.
i=1

Property (Convex sets and convex hulls)

conv(X) is the smallest convex set containing X: X is convex iif X = conv(X).

Outline

Basics of Convex Optimization

Convex Functions

Convex Function

Definition (Epigraph of a function)
The epigraph of f : X — R is the set

epi(f) = {(x,c) € X xR, f(x) <c}.

f epi(/f) /\

|

Figure: Epigraph of a function f : R — R.

Convex Function

Definition (Epigraph of a function)
The epigraph of f : X — R is the set

epi(f) = {(x,c) € X xR, f(x) <c}.

f epi(/f) /\

|

Figure: Epigraph of a function f : R — R.

Definition (Convex function)
A function f : X — R U {400} is convex iif epi(f) is a convex set.

Convex Function

Property (Convex function)
f: X — RU{+oo} is convex iif, for all x,y € X and X € [0,1],

FOX 4 (1= N)y) < AF(x) + (1= A)F(y).

Convex Function

Property (Convex function)
f: X — RU{+oo} is convex iif, for all x,y € X and X € [0,1],

FOX 4 (1= N)y) < AF(x) + (1= A)F(y).

A0

Af() + (1 =N/ (y)

: fOx+ (1= Ny)

Convex Function

Property (Convex function)
f: X — RU{+oo} is convex iif, for all x,y € X and X € [0,1],

FOX 4 (1= N)y) < AF(x) + (1= A)F(y).

A0

Af() + (1 =N/ (y)

: fOx+ (1= Ny)

Proof.
= Let x,y € X. Then (x, f(x)), (v, f(y)) € epi(f).

Convex Function

Property (Convex function)
f: X — RU{+oo} is convex iif, for all x,y € X and X € [0,1],

FOX 4 (1= N)y) < AF(x) + (1= A)F(y).

A0

Af() + (1 =N/ (y)

: fOx+ (1= Ny)

Proof.
= Let x,y € X. Then (x, f(x)), (v, f(y)) € epi(f).
Thus so is (Ax + (1 — Xy, Af(x) + (1 — X)f(y)).

Convex Function

Property (Convex function)
f: X — RU{+oo} is convex iif, for all x,y € X and X € [0,1],

FOX 4 (1= N)y) < AF(x) + (1= A)F(y).

A0

Af() + (1 =N/ (y)

: fz+(1=Ny)

Proof.

= Let x,y € X. Then (x, f(x)), (v, f(y)) € epi(f).

Thus so is (Ax + (1 — Xy, Af(x) + (1 — X)f(y)).

By definition of epi(f), this implies Af(x) + (1 — A)f(y) > f(Ax + (1 — A)y).

Convex Function

Property (Convex function)
f: X — RU{+oo} is convex iif, for all x,y € X and X € [0,1],

FOX 4 (1= N)y) < AF(x) + (1= A)F(y).

A0

Af() + (1 =N/ (y)

: fz+(1=Ny)

Proof.

= Let x,y € X. Then (x, f(x)), (v, f(y)) € epi(f).

Thus so is (Ax + (1 — Xy, Af(x) + (1 — X)f(y)).

By definition of epi(f), this implies Af(x) + (1 — A)f(y) > f(Ax + (1 — A)y).

< For x,y € X, (Ax+ (1 = ANy, AMf(x) + (1 — A)f(y)) € epi(f) and so epi(f) is
convex.

[

Differentiable convex function

Reminder. For f differentiable at x, Vf(x) = {%(x)}" r
i i=

Differentiable convex function

Reminder. For f differentiable at x, Vf(x) = {%(x)}" r
i i—

Definition (Domain of a function)
The domain of f : X — R U {+o0} is the set dom(f) = {x, f(x) < +oo}.

Differentiable convex function

Reminder. For f differentiable at x, Vf(x) = {%(x)}" r
i i—

Definition (Domain of a function)
The domain of f : X — R U {+o0} is the set dom(f) = {x, f(x) < +oo}.

Theorem (First order conditions)
For f : X — R U {+oo} differentiable in its domain, f convex iif, Vx,y € dom(f),

f(y) > f(x) + VF(x)T(y — x).

Differentiable convex function .
Reminder. For f differentiable at x, Vf(x) = {%(x)}_l

Definition (Domain of a function)

The domain of f : X — R U {+o0} is the set dom(f) = {x, f(x) < +oo}.

Theorem (First order conditions)
For f : X — R U {+oo} differentiable in its domain, f convex iif, Vx,y € dom(f),

f(y) > f(x) + VF(x)T(y — x).

Differentiable f: f convex iif all tangent hyperplanes of epi(f) are below the epigraph.

\ / (y, f(x) ¥ Vf(2)T(y —)

Differentiable convex function

Proof.
= f convex implies, for A € [0,1], x,y € X,

fFAx+ (1= A)y) =y + Ax = y)) S A(x) + (1 = A)f(y) = Af(x) = £(¥)) + f(¥)

Differentiable convex function

Proof.
= f convex implies, for A € [0,1], x,y € X,
fAx+ (1= N)y) =fly + Mx = y)) < M (x) + (1 = Nf(y) = Af(x) — f(y)) + f(y)

or equivalently

fly + Mx—y))—fly)
hy

< F(x) = f(y).

Differentiable convex function

Proof.
= f convex implies, for A € [0,1], x,y € X,
fAx+ (1= N)y) =fly + Mx = y)) < M (x) + (1 = Nf(y) = Af(x) — f(y)) + f(y)

or equivalently

fly + Mx—y))—fly)
hy

< F(x) = £(y)
Taking the limit y | 0

V() (x — y) < f(x) — f(y).

Differentiable convex function

Proof.
= f convex implies, for A € [0,1], x,y € X,

X+ (1= A)y) =y + Ax —y)) S M) + (1 = Nf(y) = AMFf(x) = F(y) + ()
or equivalently

fly + Mx—y))—fly)
hy

< F(x) = £(y)
Taking the limit y | 0
V() (x = y) < f(x) = £(y).

< For z=MAx+ (1 =Ny,

() f(x)

> f(z) + VF(z)T(x — 2)
(xx) fy) = f

(2) + Vi) (y — 2).

Differentiable convex function

Proof.
= f convex implies, for A € [0,1], x,y € X,

X+ (1= A)y) =y + Ax —y)) S M) + (1 = Nf(y) = AMFf(x) = F(y) + ()
or equivalently

fly + Mx—y))—fly)
hy

< F(x) = £(y)
Taking the limit y | 0
V() (x = y) < f(x) = £(y).

< For z=MAx+ (1 =Ny,

(x) f(x)>
(%) fy) >

Then A(x) + (1 — \)(*x) gives

f(z) + Vi(2)T(x - 2)
f(2) + VF(2)'(y - 2).

AF() + (1= A)f(y) = f(2) = F(Ax+ (1 = A)y).

Differentiable convex function

FOA

\'H: W (y.c)) +C =0
fw) o

w=(f"(x),~1)

Detailed derivation of the first order conditions for n = 1:

«40>» «Fr» «E» <

3

DA 21/88

Differentiable convex function

FOA

Detailed derivation of the first order conditions for n = 1:

> hyperplane H equation given by wT(y, cy) + C = 0, with (x, f(x)) € H

Differentiable convex function

FOA

Detailed derivation of the first order conditions for n = 1:
> hyperplane H equation given by wT(y, cy) + C = 0, with (x, f(x)) € H
> hence C = f(x) — f'(x)x (because (f'(x), —1)"(x,f(x)) + C =0)

Differentiable convex function

FOA

Detailed derivation of the first order conditions for n = 1:
> hyperplane H equation given by wT(y, cy) + C = 0, with (x, f(x)) € H
> hence C = f(x) — f/(x)x

> using ¢, < f(y), one retrieves the first order conditions.

Differentiable convex function

Important consequence: Fermat’s rule,

Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.
= Assume Vf(x*) # 0.

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.
= Assume Vf(x*) # 0.
Then, for h€ X and ¢ > 0,

F(x* 4 eh) = f(x*) + eVF(x*)Th+ O(?)
f(x* —eh) = f(x*) — eVF(x*)Th + O(e?).

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.
= Assume Vf(x*) # 0.
Then, for h€ X and ¢ > 0,

F(x* 4 eh) = f(x*) + eVF(x*)Th+ O(?)
f(x* —eh) = f(x*) — eVF(x*)Th + O(e?).

If VF(x*)Th # 0, contradiction as ¢ — 0!

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.

= Assume Vf(x*) # 0.

Then, for h € X and € > 0,
f(x* 4 eh) = f(x*) + eVF(x*)Th 4+ O(e?)
f(x* —eh) = f(x*) — eVF(x*)Th + O(e?).

If VF(x*)Th # 0, contradiction as ¢ — 0!
So Vf(x*)Th=0.

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.
= Assume Vf(x*) # 0.
Then, for h€ X and ¢ > 0,

f(x* 4 eh) = f(x*) + eVF(x*)Th 4+ O(e?)
f(x* —eh) = f(x*) — eVF(x*)Th + O(e?).
If VF(x*)Th # 0, contradiction as ¢ — 0!

So Vf(x*)Th=0.
True for all h: this implies Vf(x*) = 0.

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.
= Assume Vf(x*) # 0.
Then, for h€ X and ¢ > 0,

f(x* 4 eh) = f(x*) + eVF(x*)Th 4+ O(e?)
f(x* —eh) = f(x*) — eVF(x*)Th + O(e?).
If VF(x*)Th # 0, contradiction as ¢ — 0!
So Vf(x*)Th=0.
True for all h: this implies Vf(x*) = 0.
< If VFf(x*) = 0 with f convex, Vx € X,

f(x) > f(x*)+ Vf(x*)T(x —x*) = f(x*)

Differentiable convex function

Important consequence: Fermat’s rule,
Theorem (Fermat's rule)
x* € X minimizes f : X — R U {+o0o} convex iif Vf(x*) = 0.

Proof.
= Assume Vf(x*) # 0.
Then, for h€ X and ¢ > 0,

f(x* 4 eh) = f(x*) + eVF(x*)Th 4+ O(e?)
f(x* —eh) = f(x*) — eVF(x*)Th + O(e?).
If VF(x*)Th # 0, contradiction as ¢ — 0!
So Vf(x*)Th=0.
True for all h: this implies Vf(x*) = 0.
< If VFf(x*) = 0 with f convex, Vx € X,
f(x) > f(x*)+ Vf(x*)T(x —x*) = f(x*)

so x* minimizes f.

Twice-differentiable convex function

n

Reminder: For f twice-differentiable at x, Hessian V?f(x) = {% et
O i,

Twice-differentiable convex function

.) S . . 2 . 92f n
Reminder: For f twice-differentiable at x, Hessian V*f(x) = {78[4_6[)(], =1
9]y i,
Theorem (Second order conditions)

For f : X = R U {400} twice differentiable, f is convex on its domain iif V>f(x) is
semi-definite positive for all x € dom(f).

Twice-differentiable convex function

n

i . ice-di i ; 2 _ 9%f
Reminder: For f twice-differentiable at x, Hessian V*f(x) = {8[x]-6[x]- izt
19 i

Theorem (Second order conditions)

For f : X = R U {400} twice differentiable, f is convex on its domain iif V>f(x) is
semi-definite positive for all x € dom(f).

Remark (Case n =1)
For n=1, V?f(x) = f"(x).

Twice-differentiable convex function

n

i . ice-di i ; 2 _ 9%f
Reminder: For f twice-differentiable at x, Hessian V*f(x) = {8[x]-6[x]- izt
19 i

Theorem (Second order conditions)

For f : X = R U {400} twice differentiable, f is convex on its domain iif V>f(x) is
semi-definite positive for all x € dom(f).

Remark (Case n =1)

For n =1, V2f(x) = f"(x). Thus, f convex iif f"'(x) > 0 (or equivalently f’(x)
non-decreasing).

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

Why? 1D Taylor-Lagrange by differentiating g : € — f(x + €h).

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

Why? 1D Taylor-Lagrange by differentiating g : € — f(x + €h).
But by convexity,

f(x +eh) > f(x) 4+ eVF(x)Th

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

Why? 1D Taylor-Lagrange by differentiating g : € — f(x + €h).
But by convexity,

f(x+eh) > f(x) +eVF(x)Th = VYhe X, h' [V*f(x+~h)] h>0.

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

Why? 1D Taylor-Lagrange by differentiating g : € — f(x + €h).
But by convexity,

f(x+eh) > f(x) +eVF(x)Th = VYhe X, h' [V*f(x+~h)] h>0.

With € | 0, we obtain Vh € X, hT [V2f(x)] h >0, i.e., V2f = 0.

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

But by convexity,
f(x+eh) > f(x) +eVF(x)Th = VYhe X, h' [V*f(x+~h)] h>0.

With € | 0, we obtain Vh € X, hT [V2f(x)] h >0, i.e., V2f = 0.
<« Define g : [0,1] = RU {+o0}, g(t) = f(tx + (1 — t)y).

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

Why? 1D Taylor-Lagrange by differentiating g : € — f(x + €h).
But by convexity,

f(x+eh) > f(x) +eVF(x)Th = VYhe X, h' [V*f(x+~h)] h>0.
With € | 0, we obtain Vh € X, hT [V2f(x)] h >0, i.e., V2f = 0.
<« Define g : [0,1] = RU {+o0}, g(t) = f(tx + (1 — t)y).

By chain rule (g/(t) = > ", -~ dEi(e) it g(t) = f(z(t)), and similarly for g”’(t))

4~i=1 9[z]; dt

g'(t)=(x—y)T [V*F(tx+ (1 —t)y)] (x —y) >0 (since V2f = 0).

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

But by convexity,
f(x+eh) > f(x) +eVF(x)Th = VYhe X, h' [V*f(x+~h)] h>0.

With € | 0, we obtain Vh € X, hT [V2f(x)] h >0, i.e., V2f = 0.

<« Define g : [0,1] = RU {+o0}, g(t) = f(tx + (1 — t)y).
By chain rule

g'(t)=(x—y)T [V*F(tx+ (1 —t)y)] (x —y) >0 (since V2f = 0).
By Taylor-Lagrange, we then have, for some (x, ¢, € [0, 1],
(*) f(y) = g(0) = g(t) + (0 — t)g’(t) + = t2 g"(¢y) > g(t) — tg'(t)

() f(x) = g(1) = g(t) + (1 — t)g’(t) + 5t2g"(<x) >g(t)+(1-1)g'(1).

Twice-differentiable convex function

Proof.
= By Taylor-Lagrange, Vh € X and Ve > 0,

Iy € (0, €), F(x + eh) = F(x) + ehT VF(x) + hTV2F(x + vh)h

But by convexity,
f(x+eh) > f(x) +eVF(x)Th = VYhe X, h' [V*f(x+~h)] h>0.

With € | 0, we obtain Vh € X, hT [V2f(x)] h >0, i.e., V2f = 0.

<« Define g : [0,1] = RU {+o0}, g(t) = f(tx + (1 — t)y).
By chain rule

g"(t) = (x—y)" [V*F(tx+ (1 — t)y)] (x —y) >0 (since V*f = 0).
By Taylor-Lagrange, we then have, for some (x, ¢, € [0, 1],
(*) f(v) = g(0) = g(t) + (0 — t)g'(t) + 3 t2 g" (&) > g(t) — tg' (1)
(%) f(x) = g(1) = g(t) + (1 - t)g'(t) + Eth"(gx) > g(t) + (1= t)g’ ().

Using (1 — t)(*) + t(*x), we conclude tf(x) + (1 — t)f(y) > g(t) = f(tx + (1 — t)yé

Outline

Motivation
Basics of Convex Optimization
Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization

Generalization to Equality and Inequality Constraints
Advanced Methods

Non-Differentiable Convex Functions
The Proximal Operator Approach

Minimization of the Sum of Two Functions

«0)» «F»

a

DA 5/88

Outline

Basic Algorithms for Convex Optimization
Descent methods and gradient descent

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve
x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve
x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.
Algorithm terminates when either:

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.
Algorithm terminates when either:

> ||xk+1 — xk|| < € the algorithm no longer progresses in X;

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.
Algorithm terminates when either:

> ||xk+1 — xk|| < € the algorithm no longer progresses in X;

> |f(xk+1) — f(xk)| < € the cost no longer progresses

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.
Algorithm terminates when either:

> ||xk+1 — xk|| < € the algorithm no longer progresses in X;

> |f(xk+1) — f(xk)| < e the cost no longer progresses (#- x, converges!);

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.
Algorithm terminates when either:

> ||xk+1 — xk|| < € the algorithm no longer progresses in X;
> |f(xk+1) — f(xk)| < e the cost no longer progresses (#- x, converges!);
> ||VFf(x)|| < e: cost almost flat

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

x* € argmin, cqc 2 {f(x)}.

Assumption (Unconstrained , differentiable)

> f differentiable everywhere on X;
» Q unbounded.

Definition (lterative algorithms)

Sequentially evaluate f at positions xi, x2, ... with x,1 a function of x.
Algorithm terminates when either:

> ||xk+1 — xk|| < € the algorithm no longer progresses in X;
> |f(xk+1) — f(xk)| < e the cost no longer progresses (#- x, converges!);
> ||VFf(xk)|| < e cost almost flat (close to Vf(x*) = 0 but maybe far from x*).

Convex optimization algorithms: descent methods

Definition (Descent Method)

Descent method is an algorithm outputing x1, x2,... € X of the form

Xk4+1 = Xk + tyAxy, step size t, >0, increment Axy

such that f(xk1) < f(xk) if xk & argmin f and f(xx11) = f(xk) if xx € argmin f.

8 8
- N =
= = Oy

DA /88

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

> too slow descent: we may have limy f(xx) > f(x*);

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

> too slow descent: we may have limy f(xx) > f(x*);

> f(xk) — f(x*) does not imply that x; converges at all (periodic behavior of x;!).

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not
necessarily to local minimum:

> too slow descent: we may have limy f(xx) > f(x*);
> f(xk) — f(x*) does not imply that x; converges at all (periodic behavior of x;!).

Descent sequences either not converging (top) or not reaching minimum (bottom).

U

ry E2)
T3 e

Convex optimization algorithms: descent methods

Important property: for x, xx11 € X, by first order condition

f(Xk + tkAXk) > f(Xk) + thf(Xk)TAXk.

Convex optimization algorithms: descent methods

Important property: for x, xx11 € X, by first order condition
f(xk + tkDxy) > f(xk) + thf(Xk)TAXk.
As such, letting x1, x2, . .. defined by
Xk+1 = Xk + tkAxg,
we have

f(Xk+1) > f(Xk) + Vf(Xk)T(Xk+1 — Xk) = f(Xk) + thf(xk)TAxk.

Convex optimization algorithms: descent methods

Important property: for x, xx11 € X, by first order condition
f(xk + tkDxy) > f(xk) + thf(Xk)TAXk.
As such, letting x1, x, . .. defined by
Xk+1 = Xk + tkAxg,
we have
F(xrp1) > F(x) + V()T egr — xi) = Fx) + eV F(xi) T Axg.

and thus x1, x2, ... cannot be a descent method sequence unless V£ (x)T Ax; < 0.

Convex optimization algorithms: descent methods

Important property: for x, xx11 € X, by first order condition
f(xk + tkDxy) > f(xk) + thf(Xk)TAXk.
As such, letting x1, x, . .. defined by
Xk+1 = Xk + tkAxg,
we have
f(xkt1) > F(xk) + Vf(xk)T(xk+1 —xx) = f(xk) + thf(xk)TAxk.

and thus x1, x2, ... cannot be a descent method sequence unless V£ (x)T Ax; < 0.

Property (Descent direction)

Necessary condition for x1,x2, ... to be a descent sequence,
VF(xk)TAxe <0

where Axy = xx4+1 — Xk, and equality reached iif x, € arg min f.

Convex optimization algorithms:

descent methods
The condition is not sufficient!

Function f(x) = [x]2 + [x]3.
Initialized at x; = [1,1].

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f(x) = [x]2 + [x]3.

Initialized at x; = [1,1].

Although Ax; = [—1, 1/2] has acute an-
gle with —Vf(x1),

x2 =1[0,3/2] = x1 + Axy

increases rather than decreases f.

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f(x) = [x]2 + [x]3.

Initialized at x; = [1,1].

Although Ax; = [—1, 1/2] has acute an-
gle with —Vf(x1),

x2 =1[0,3/2] = x1 + Axy

increases rather than decreases f.

Yet, for small t, x; + tAx; is descent direction (red circle).

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function f(x) = [x]2 + [x]3.
Initialized at x; = [1,1].

Although Ax; = [—1, 1/2] has acute an-
gle with —Vf(x1),

x2 =[0,3/2] = x1 + Axy

increases rather than decreases f.

Yet, for small t, x; + tAx; is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f(xkr1) = FOxi) + 5V F(xi) T Axic + O(2 [Axic[1?)

Convex optimization algorithms: descent methods

The condition is not sufficient!
Function f(x) = [x]2 + [x]3.
Initialized at x; = [1,1].

Although Ax; = [—1, 1/2] has acute an-
gle with —Vf(x1),

x2 =[0,3/2] = x1 + Axy

increases rather than decreases f.

Yet, for small t, x; + tAx; is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

f(xkr1) = FOxi) + 5V F(xi) T Axic + O(2 [Axic[1?)

so that, Vt, > 0 small, f(xx11) < f(xk).

Convex optimization algorithms: descent methods

The condition is not sufficient!
Function f(x) = [x]2 + [x]3.
Initialized at x; = [1,1].

Although Ax; = [—1, 1/2] has acute an-
gle with —Vf(x1),

x2 =[0,3/2] = x1 + Axy

increases rather than decreases f.

Yet, for small t, x; + tAx; is descent direction (red circle).

The condition is “locally sufficient” with small steps and f locally
twice-differentiable; indeed, by Taylor

F(xir1) = F(x) + 8V F(x) T Axi + O(t7]| Axi]|?)
so that, Vt, > 0 small, f(xx11) < f(xk).

= Careful control of step sizes needed!

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f(xx+1) — f(xk)| maximal when
Vf(xx)T Ax, both negative and of maximal absolute value.

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f(xk+1) — f(xx)| maximal when
Vf(xx)T Ax, both negative and of maximal absolute value.

For ||Axk|| = 1, optimal when

Vf(xk)

Ax = —————.
IVl

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f(xk+1) — f(xx)| maximal when
Vf(xx)T Ax, both negative and of maximal absolute value.

For ||Axk|| = 1, optimal when

Vf(xk)

Ax = —————.
IVl

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm)
x1 € X and, for all kK > 1,

Xep1 = Xk — t,VF(xi), t1,t2,...>0.

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain |f(xk+1) — f(xx)| maximal when
Vf(xx)T Ax, both negative and of maximal absolute value.

For ||Axk|| = 1, optimal when

Vf(xk)

Ax = —————.
IVl

Leads to popular gradient descent algorithm.
Definition (Gradient Descent Algorithm)
x1 € X and, for all k > 1,

Xp+1 = Xk — thf(xk), t1, t2,...>0.

Remark: Often, constant step, i.e., t, = t constant:
P easy: does not request fine-tuning of ty,

» but suboptimal.

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(xk + teDxy) < f(xk) + Octhf(Xk)TAXk.

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(xk + teDxy) < f(xk) + Octhf(Xk)TAXk.

Remark: a descent sequence xi, x2,

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(xk + teDxy) < f(xk) + Octhf(Xk)TAXk.

Remark: a descent sequence xi, x2,

Remark (On step size)

> [Line search]

te € argmin,y o f(xx + tAxy)

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(Xk + tkAXk) < f(Xk) + Octhf(Xk)TAXk.

Remark: a descent sequence xi, x2,

Remark (On step size)

> [Line search]
te € argmin,y o f(xx + tAxy)

But can be expensive (second optimization or full line search).

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(Xk + tkAXk) < f(Xk) + Octhf(Xk)TAXk.

Remark: a descent sequence xi, x2,

Remark (On step size)

> [Line search]
te € argmin,y o f(xx + tAxy)
But can be expensive (second optimization or full line search).

> [Backtrackir_lg] simplified line search: t(©) =1 and, for some 0 < o, 8 < 1,
tU+D) = B¢U) until

F(xie + tY Ax) < FOx) + atUtDVE(x) T Axg.

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(Xk + tkAXk) < f(Xk) + Octhf(Xk)TAXk.

Remark: a descent sequence xi, x2,

Remark (On step size)

> [Line search]
te € argmin,y o f(xx + tAxy)
But can be expensive (second optimization or full line search).

> [Backtrackir_lg] simplified line search: t(©) =1 and, for some 0 < o, 8 < 1,
tU+D) = B¢U) until

F(xie + tY Ax) < FOx) + atUtDVE(x) T Axg.

Remark: meets Armijo-Goldstein condition!

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Axy with ||Axk|| = 1 and Vf(xx)TAxx <0, and a € (0, 1), t, satisfies
Armijo-Goldstein condition if

f(Xk + tkAXk) < f(Xk) + Octhf(Xk)TAXk.

Remark: a descent sequence xi, x2,

Remark (On step size)

> [Line search]
te € argmin,y o f(xx + tAxy)
But can be expensive (second optimization or full line search).

> [Backtrackir_lg] simplified line search: t(©) =1 and, for some 0 < o, 8 < 1,
tU+D) = B¢U) until

F(xie + tY Ax) < FOx) + atUtDVE(x) T Axg.

Remark: meets Armijo-Goldstein condition!
Always achievable: as t) — 0,

F(xie + tUD Ax) ~ F(xi) + tDV () TAxe < F(xi) + atUTDTF ()T Ax.

Convex optimization algorithms: convergence of gradient descent

Theorem (Convergence of Gradient Descent with Constant Step Size)
f: X — RU{+oo} convex, twice continuously differentiable, with L-Lipschitz Vf:

Vx,y e X |[VF(x) = V()| < Llix =yl
Then gradient descent with constant step size t < % convergences to a minimum of f:

Xk — x* € argmin, f(x).

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on V£ implies V2f(x) < Ll

Convex optimization algorithms: convergence of gradient descent

Proof.
1. Prelim. Lipschitz condition on V£ implies V2f(x) < Ll,: for x,u € X

1
f(x +eu)=f(x)+eVi(x)Tu+ §e2uTV2f(x)u + o(€?)

f(x) = f(x +eu) —eVi(x+eu)Tu+ %ezuTvzf(x + eu)u + o(€?).

Convex optimization algorithms: convergence of gradient descent
Proof.
1. Prelim. Lipschitz condition on V£ implies V2f(x) < Ll,: for x,u € X
1
f(x +eu)=f(x)+eVi(x)Tu+ §e2uTV2f(x)u + o(€?)
1
f(x) = f(x +eu) —eVi(x+eu)Tu+ EezuTvzf(x + eu)u + o(€?).

Summing and dividing by €2:

(VF(x +eu) — VF(x)Tu

= %UT(V2f(X) + V2f(x 4 eu))u + o(1).

Convex optimization algorithms: convergence of gradient descent
Proof.
1. Prelim. Lipschitz condition on V£ implies V2f(x) < Ll,: for x,u € X
1
f(x +eu)=f(x)+eVi(x)Tu+ §e2uTV2f(x)u + o(€?)
1
f(x) = f(x +eu) —eVi(x+eu)Tu+ EEZUTV2f(X + eu)u + o(€?).

Summing and dividing by €2:

(VF(x +eu) — VF(x)Tu

= %UT(V2f(X) + V2f(x 4 eu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,
IVf(x + eu) — VF(x)|[]ull

€

%J(v%(x) + VP F(x + eu))u + o(1) < < LfJulP.

Convex optimization algorithms: convergence of gradient descent
Proof.
1. Prelim. Lipschitz condition on V£ implies V2f(x) < Ll,: for x,u € X
1
f(x +eu)=f(x)+eVi(x)Tu+ §e2uTV2f(x)u + o(€?)
1
f(x) = f(x +eu) —eVi(x+eu)Tu+ EEZUTV2f(X + eu)u + o(€?).

Summing and dividing by €2:

(VF(x +eu) — VF(x)Tu

= %UT(V2f(X) + V2f(x 4 eu))u + o(1).

By Cauchy-Schwarz and the Lipschitz condition,
IVf(x + eu) — VF(x)|[]ull

€

%J(v%(x) + VP F(x + eu))u + o(1) < < LfJulP.

So, as € — 0,

uTVAf(x)u < Ll|ul?, Vue X.

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (*) and V2f(x) < LI, (%), for x,y € X,

() F3) 2) + 97Ty)
() Fl¥) = £+ VAT =) + 50 =TV =)
< F0)+ V)T (=) + Ll = 5l

(¢ = x+ Ay — x) for some X € [0,1]).

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (*) and V2f(x) < LI, (%), for x,y € X,

() F3) 2) + 97Ty)
() Fl¥) = £+ VAT =) + 50 =TV =)
< F0)+ V)T (=) + Ll = 5l

(¢ = x+ Ay — x) for some X € [0,1]).
From (sx),

1
FOut1) < FOk) + V(i) O — xi) + 5 Lllxers — xll?
1
= f(x) — t| V(x> + ELtZHVf(Xk)HZ

= 1)~ (1 3L) eITFGIP

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (*) and V2f(x) < LI, (%), for x,y € X,

() F3) 2) + 97Ty)
() Fl¥) = £+ VAT =) + 50 =TV =)
< F0)+ V)T (=) + Ll = 5l

(¢ = x+ Ay — x) for some X € [0,1]).
From (sx),

1
FOut1) < FOk) + V(i) O — xi) + 5 Lllxers — xll?
1
= f(x) — t| V(x> + ELtZHVf(Xk)HZ
1
= f(xx) — (1 - 5Lt) IV F () |]2-
We now use t < 1/L:

f(xk1) < Flx) — %HVf(Xk)HZ(S f(xx)) ()

with equality iif Vf(xx) =0

Convex optimization algorithms: convergence of gradient descent

Proof.
2. Core of Proof. Since f convex (*) and V2f(x) < LI, (%), for x,y € X,

() F3) 2) + 97Ty)
() Fl¥) = £+ VAT =) + 50 =TV =)
< F0)+ V)T (=) + Ll = 5l

(¢ = x+ Ay — x) for some X € [0,1]).
From (sx),

1
FOut1) < FOk) + V(i) O — xi) + 5 Lllxers — xll?
1
= f(x) — t| V(x> + ELtZHV"(Xk)H2
1
= f(xx) — (1 - 5Lt) t|VF(xk)]2
We now use t < 1/L:

f(xk1) < Flx) — %HVf(Xk)HZ(S f(xx)) ()

with equality iif Vf(xx) = 0 = gradient descent /s a descent algorithm.

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,

f(x*) > f(x)+ Vf(x)T(x* —x)

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,

f(x*) > f(x)—i—Vf(x)T(x* —-x) & f(x)< f(x*)—i—Vf(x)T(x—x*).

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,
f(x*) > f(x)—i—Vf(x)T(x* —-x) & f(x)< f(x*)—i—Vf(x)T(x—x*).

So in particular, from (2), (f(x1) < F(x) — V() ?)

F(x1) < FO) = 2|V Gl

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,
f(x*) > f(x)—i—Vf(x)T(x* —-x) & f(x)< f(x*)—i—Vf(x)T(x—x*).

So in particular, from (2), (f(x1) < F(x) — V() ?)

Fx1) < F(x0) = SIVFI < FO) 4+ V000 = x°) = 2 IVFGx)IP

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,
f(x*) > f(x)—i—Vf(x)T(x* —-x) & f(x)< f(x*)—i—Vf(x)T(x—x*).
So in particular, from (2),
t t
(1) < Fxi) — EHVf(Xk)H2 < (M) + V)T — x*) = §||Vf(><k)\|2-

We need to relate V£(xx)T(xx — x*) to t|| V£ (xk)||*:

[— x* = tVF0a)[1? = [— x* 1> + I VF(x) I — 26V F () T (i — x*)

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,
Fx*) > F(x) + V)T (x* —x) & f(x) < F(x*)+ VFAx)T (x — x*).
So in particular, from (2),
Fx1) < Fl) = SIVFIP < F0) + TF0) T 0 = x7) = 2 IV A0
We need to relate V£(xx)T(xx — x*) to t|| V£ (xk)||*:
lIxk = x* = eV FOa)lIP = [Ixe = x* |17 + IV ()1 = 26V F (i) T — x*)

which yields

* 1 * *
FOen) < FO) + o (I = 1P = [l = 97 00) =),
R Y

Xk+1

Convex optimization algorithms: convergence of gradient descent
Proof.

3. Convergence to minimum. From (x), for any x* € argminf and x € X,
Fx*) > F(x) + V)T (x* —x) & f(x) < F(x*)+ VFAx)T (x — x*).
So in particular, from (2),
Fx1) < Fl) = SIVFIP < F0) + TF0) T 0 = x7) = 2 IV A0
We need to relate V£(xx)T(xx — x*) to t|| V£ (xk)||*:
lIxk = x* = eV FOa)lIP = [Ixe = x* |17 + IV ()1 = 26V F (i) T — x*)

which yields

* 1 * *
FOxs1) < FOx) + oo (Il = X 1P = o = £VFGa) =x*|2).
R Y

2t

Xk+1

Summing for k =1,..., K, RHS telescopes:

K

1
D fluen) = F(x) < <% (HX1 =XM1 = lxk = x*11%) < 5l —x*%
k=1

ZK(f) —F(x*))

Convex optimization algorithms: convergence of gradient descent

Proof.

So finally, as K — oo

1
) = F(x") < Sl —x*|? =0

Convex optimization algorithms: convergence of gradient descent

Proof.

So finally, as K — oo
Floac) — F(x*) < ——lx1 — x*|2 = 0
K = 2Kt

Xk may not converge, but f(xx) — f(x*).

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

> simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)
> simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

» quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)
> simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

» quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

» ensured convergence for fixed steps: “no” step size adaptation required;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)
> simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

» quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

» ensured convergence for fixed steps: “no” step size adaptation required;

» BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

>

simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

ensured convergence for fixed steps: “no” step size adaptation required;

BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

strong constraints on f: bounded V2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

>

v

simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

ensured convergence for fixed steps: “no” step size adaptation required;

BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

strong constraints on f: bounded V2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

f needs be everywhere differentiable for gradient to be evaluated;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

>

simple to implement: for f not easily differentiable, gradient approximation
{(F(xk + eej) — F(xk))/e}r_; with [ej]j = & i-th canonical vector;

quite flexible, generalizes in many ways: when f not perfectly known, stochastic
gradient descent (averages well on the long run);

ensured convergence for fixed steps: “no” step size adaptation required;

BUT requires small steps (< 1/L): in most cases, difficult to evaluate;

strong constraints on f: bounded V2f bounded (f cannot be super-quadratic),
risk of “bouncing or diverging steps”;

f needs be everywhere differentiable for gradient to be evaluated;

needs unbounded Q: xi + tVf(xx) remains within the domain of f.

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

1
F) = Fx) < 5l — x|

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least
F) = F() < o lba = X2
~ 2kt

i.e., 100 steps lead to 1% error:

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least
F) = F() < o lba = X2
~ 2kt

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least
F) = F() < o lba = X2
~ 2kt

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least
F) = F() < o lba = X2
~ 2kt

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f: X = RU{+oo} convex, twice continuously differentiable, and Vx € X,

I, < V?f(x) < Ll,, for some L> > 0.
Then, ofr gradient descent algorithm with step size t < %

f(x) — f(x*) <aCk, C<1.

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least
F) = F() < o lba = X2
~ 2kt

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!

Theorem (Linear Convergence of Gradient Descent)
f: X = RU{+oo} convex, twice continuously differentiable, and Vx € X,

I, < V?f(x) < Ll,, for some L> > 0.
Then, ofr gradient descent algorithm with step size t < %

f(x) — f(x*) <aCk, C<1.

Convergence is said linear.

Convex optimization algorithms: convergence speed of gradient descent
Proof.

We already know, since t < %

k) < FOo) = S HIVFCx0) P

Convex optimization algorithms: convergence speed of gradient descent
Proof.

We already know, since t < %
1 2
f(xkt1) < Fx) — §t||Vf(Xk)”

from which

) = FO*) < FO) = F) = S eIV FGe0) |7 3)

Convex optimization algorithms: convergence speed of gradient descent
Proof.

We already know, since t < %
1 2
f(xkt1) < Fx) — §t||Vf(Xk)”

from which

f(xis1) = F(x7) < Fxi) = F(x7) — %fIIVf(Xk)IIZ- 3)

Also, by Taylor expansion: Vx,y € X,

F(3) = FOHF ()T (x5 (=) Ay —x)

Convex optimization algorithms: convergence speed of gradient descent
Proof.

We already know, since t < %
1 2
f(xkt1) < Fx) — §t||Vf(Xk)”

from which

f(xis1) = F(x7) < Fxi) = F(x7) — %fIIVf(Xk)IIZ- 3)

Also, by Taylor expansion: Vx,y € X,

fly) = f(X)+Vf(X)T(y—X)+%(y—X)Tsz(C)(y—X) > f(X)+Vf(X)T(y—X)+éIIy—X||2

Convex optimization algorithms: convergence speed of gradient descent
Proof.

We already know, since t < %
1 2
f(xkt1) < Fx) — §t||Vf(Xk)”
from which

flxkr1) — F(x7) < Fa) — F(x*) — %tIIVf(Xk)IIZ- (3)
Also, by Taylor expansion: Vx,y € X,
fly) = f(X)+Vf(X)T(y—X)+%(y—X)Tsz(C)(y—X) > f(X)+Vf(X)T(y—X)+éIIy—X||2

Right-hand side minimized for y = x — %Vf(x) (differentiate along y): Vx,y € X,

F() > F6) — o IV A

Convex optimization algorithms: convergence speed of gradient descent
Proof.

We already know, since t < %
1 2
f(xkt1) < Fx) — §f||Vf(Xk)||

from which

) = FO*) < FO) = F) = S eIV FGe0) |7 (3)

Also, by Taylor expansion: Vx,y € X,
fly)=f FOOT(y =)+ = (y—x) T2 A () (y—x) > FOOT ()4 L lly—x]?
() = FO)FVE) (y=x)+5 (y=x) V(O (y=x) 2 FE)+VF(x) (y—x)+ S ly—x|
Right-hand side minimized for y = x — %Vf(x) CVx,y € X,
1 2
Fly) 2 £0x) = S IVFCII

Applied to y = x* and x = x,

—%HW(Xk)H2 S H(f(x") = £ ()

Convex optimization algorithms: convergence speed of gradient descent

Proof.
Back to (3), this implies

f(xke1) — F(x*) < (1 —tl) (F(xk) — F(x*)), 1—tl=C <1 (byassumption).

Convex optimization algorithms: convergence speed of gradient descent

Proof.
Back to (3), this implies

f(xke1) — F(x*) < (1 —tl) (F(xk) — F(x*)), 1—tl=C <1 (byassumption).
Applied to k =1,..., K, this is

Flxii1) — F(x*) < CK(F(xa) — F(x")).

Convex optimization algorithms: Newton's method

Intuition of Newton’s method: second-order Taylor expansion of f

f(x+h)=f(x)+VFx)Th+ %hTV2f(x)h +o([|Al?).

=F(x+h)

Convex optimization algorithms: Newton's method

Intuition of Newton’s method: second-order Taylor expansion of f

f(x+h)=f(x)+VFx)Th+ %hTV2f(x)h +o([|Al?).

=F(x+h)
Idea:

> approximate f(x + h) by f(x + h) for every x € X

> solve local minimization of f(x + h) via minimization of f(x + h) for h, i.e., for

h=—[V?f(x)]71VFf(x).

Convex optimization algorithms: Newton's method

Intuition of Newton’s method: second-order Taylor expansion of f

f(x+h)=f(x)+VFx)Th+ %hTV2f(x)h +o([|Al?).

=F(x+h)
Idea:

> approximate f(x + h) by f(x + h) for every x € X

> solve local minimization of f(x + h) via minimization of f(x + h) for h, i.e., for

h=—[V?f(x)]71VFf(x).

Definition (Newton's Method)
For f twice-differentiable and V2f(x) > 0 for all x € X. Then Newton's method:

Axe = — [V2(x)] VF(xk).
ty =1

Convex optimization algorithms:

Newton's method

11\

Figure: (left) Gradient descent fast on hyperplane-shaped f; (right) Newton improves convergence
speed, while not following the steepest descent.

DA 44788

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)

Since V2f(x) = 0,
—VF(x)T [V2f(x)] VF(xk) <0

with equality for Vf(xx) = 0: Newton’s method is a valid descent method.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since V2f(x) = 0,
—VF(x)T [V2f(x)] VF(xk) <0

with equality for Vf(xx) = 0: Newton’s method is a valid descent method.

Remark

» linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {xc} is a Newton
descent on f,

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since V2f(x) = 0,
—VF(x)T [V2f(x)] VF(xk) <0

with equality for Vf(xx) = 0: Newton’s method is a valid descent method.

Remark

» linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {xc} is a Newton
descent on f, then yi11 = Axk4+1 is a Newton descent on g.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since V2f(x) = 0,
—VF(x)T [V2f(x)] VF(xk) <0

with equality for Vf(xx) = 0: Newton’s method is a valid descent method.

Remark

» linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {xc} is a Newton
descent on f, then yi11 = Axk4+1 is a Newton descent on g.
Not true for gradient descent!

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since V2f(x) = 0,
—VF(x)T [V2f(x)] VF(xk) <0

with equality for Vf(xx) = 0: Newton’s method is a valid descent method.

Remark

» linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {xc} is a Newton
descent on f, then yi11 = Axk4+1 is a Newton descent on g.
Not true for gradient descent!

> If V2f(x) almost singular, Newton's method can be very slow and even diverge.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since V2f(x) = 0,
—VF(x)T [V2f(x)] VF(xk) <0

with equality for Vf(xx) = 0: Newton’s method is a valid descent method.

Remark

» linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {xc} is a Newton
descent on f, then yi11 = Axk4+1 is a Newton descent on g.
Not true for gradient descent!

> If V2f(x) almost singular, Newton's method can be very slow and even diverge.

> For n>> 1, can be extremely costly (inversion of V?f(xy) for every k!).

Convex optimization algorithms: Newton's method

Solution: to avoid singular V2f, Newton with a step-size adaption,

Convex optimization algorithms: Newton's method

Solution: to avoid singular V2f, Newton with a step-size adaption,

Definition (Damped Newton's Method)

Damped Newton's method:

1
X1 = xk — t [V2F ()] VF(x)

with t, obtained by backtracking line search.

Convex optimization algorithms: Newton's method

Solution: to avoid singular V2f, Newton with a step-size adaption,

Definition (Damped Newton's Method)

Damped Newton's method:
-1
X1 = xk — t [V2F ()] VF(x)
with t, obtained by backtracking line search.
Theorem (Convergence of damped Newton's method)
Assume I, < V2 f(x) 2 LI, and V2f is M-Lipschitz, i.e.,
Vx,y, [[V2E(y) = V2£(x)|| < Mlly = x||.

Then damped Newton’s method converges sublinearly then quadratically as soon as
IVf(xk)|| < n for some small n > 0; besides, from this point on, t;, = 1.

Convex optimization algorithms: Newton's method
We only show the second part of the proof and take t, = 1.

Convex optimization algorithms: Newton's method
We only show the second part of the proof and take t, = 1.

Proof.

First write

IV F ()l = IV + Axie) =V (i) — V2 (i) A ||

=0

1
H/ (sz(xk + ulxg) — V2f(xk))Axkdu
0

A

M M _ M
< 182 = ZIT2F)] VAN < S5 IVFG)l

Convex optimization algorithms: Newton's method
We only show the second part of the proof and take t, = 1.

Proof.

First write

IV F ()l = IV + Axie) =V (i) — V2 (i) A ||

=0

1
H/ (sz(xk + ulxg) — V2f(xk))Axkdu
0

A

M axl? = Yo e (01 9 () 12 <
2 2

Multiplying both sides by M/(2/?),

2
S 197Gl < (197)

M
< SEIVIP.

Convex optimization algorithms: Newton's method
We only show the second part of the proof and take t, = 1.

Proof.

First write

IV F ()l = IV + Axie) =V (i) — V2 (i) A ||

=0

1
H/ (sz(xk + ulxg) — V2f(xk))Axkdu
0

A

M M _ M
FIAxE = VA1 T2 < 51902

Multiplying both sides by M/(2/?),

2
S 197Gl < (197)

Iterated over k = ko, ..., K,

IVF(a)ll < aC? "

. . 2
with € = JE [V ()|l < 1if [|VF(x)ll <1 = 37

Outline

Basic Algorithms for Convex Optimization

Inequality Constraints and Barrier Methods

Inequality constrained optimization
Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Inequality constrained optimization
Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Example: if we impose Vi, [x]; > 0, what if gradient descent points to [x]; < 0 ?

Inequality constrained optimization
Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Example: if we impose Vi, [x]; > 0, what if gradient descent points to [x]; < 0 ?

Example (Linear Programming)

mi}{\"{ch} such that Ax < b (Ax < b understood entry-wise)
x€

Inequality constrained optimization
Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Example: if we impose Vi, [x]; > 0, what if gradient descent points to [x]; < 0 ?

Example (Linear Programming)

mi{\n{ch} such that Ax < b (Ax < b understood entry-wise)
x€

This is equivalent to

min c'x
x€R", Ax<b

Inequality constrained optimization
Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Example: if we impose Vi, [x]; > 0, what if gradient descent points to [x]; < 0 ?

Example (Linear Programming)
m]ip? {cTx} such that Ax < b (Ax < b understood entry-wise)
xER"

This is equivalent to

. T : T
min c X < min ¢’ ' x +1 X).
xERN, Ax<b xERN {ax<p(X)

Inequality constrained optimization
Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Example: if we impose Vi, [x]; > 0, what if gradient descent points to [x]; < 0 ?

Example (Linear Programming)

m]il? {cTx} such that Ax < b (Ax < b understood entry-wise)
xERM

This is equivalent to

: T T
min c x < min ¢ X + 1 ax<pi(X).
xERN, Ax<b xERN {ax<p(X)

Solution: a corner point of Q!

Inequality constrained optimization

Setup: So far, 2 C X is unbounded. What if Q has strict boundaries?

Example: if we impose Vi, [x]; > 0, what if gradient descent points to [x]; < 0 ?
Example (Linear Programming)

m]ilg {cTx} such that Ax < b (Ax < b understood entry-wise)
xER"
This is equivalent to

min 'x &
x€RM, Ax<b

LT
min ¢’ ' x +1 X).
XERN {Axgb}()

Solution: a corner point of Q!

Tal w T, log(b — ala)

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

[m]

=

DA 49/

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢i(x) >0, i=1,...,m

xeR

T

where ¢;(x) = a; x — b; for some a;, b; € R".

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢i(x) >0, i=1,...,m

xeR

T

where ¢;(x) = a; x — b; for some a;, b; € R".

Generic solution: Interior point (or barrier) method:

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢i(x) >0, i=1,...,m

xeR

where ¢;(x) = aI.Tx — b; for some a;, b; € R".
Generic solution: Interior point (or barrier) method:

> relax f(x) via additional cost on barriers of constraint set.

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢i(x) >0, i=1,...,m

xeR

where ¢;(x) = aI.Tx — b; for some a;, b; € R".

Generic solution: Interior point (or barrier) method:

> relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for u > 0, let

Blxip) = () — 1> log(ci(x)-

i=1

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢i(x) >0, i=1,...,m

xeR

where ¢;(x) = aI.Tx — b; for some a;, b; € R".

Generic solution: Interior point (or barrier) method:

> relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for u > 0, let

Blxip) = () — 1> log(ci(x)-

i=1

» Start with xo(p) € X such that Vi, ¢j(xo(p)) > 0,

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢i(x) >0, i=1,...,m

xeR
where ¢;(x) = aI.Tx — b; for some a;, b; € R".
Generic solution: Interior point (or barrier) method:

> relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for u > 0, let

Blxip) = () — 1> log(ci(x)-

i=1

» Start with xo(p) € X such that Vi, ¢j(xo(p)) > 0,
P descent algorithm on

min ¢(x; 1)

with solution x*(u).

Inequality constrained optimization: the barrier method

Considered problem:

min f(x) such that ¢j(x) >0, i=1,...,m
xeR"

T

where ¢;(x) = a; x — b; for some a;, b; € R".

Generic solution: Interior point (or barrier) method:

> relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for u > 0, let

Blxip) = () — 1> log(ci(x)-

i=1

» Start with xo(p) € X such that Vi, ¢j(xo(p)) > 0,
P descent algorithm on

min ¢(x; 1)

with solution x*(u).

> decrease 1 and, starting from the previous x*(u), repeat.

Inequality constrained optimization: the barrier method

Figure: Barrier Method. (left) Level sets of f and constraint set: algorithm “stuck”; (right) Level
sets of — 1> ", log(ci(x)) and constraint set: algorithm finds approximation for x*.

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:

» descent directions may be invalid: line-search or backtrack necessary to stay in ;

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)
Far from ideal...:

» descent directions may be invalid: line-search or backtrack necessary to stay in ;
> costly double-iteration with refined p,; often difficult to handle:

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:
» descent directions may be invalid: line-search or backtrack necessary to stay in ;

> costly double-iteration with refined p,; often difficult to handle:

P initialization point in next j-step must be close to ji-step solution to avoid slow
descents (but too small p-updates slows convergence).

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:

» descent directions may be invalid: line-search or backtrack necessary to stay in ;
> costly double-iteration with refined p,; often difficult to handle:

P initialization point in next j-step must be close to ji-step solution to avoid slow
descents (but too small p-updates slows convergence).
P exacerbated for solutions near or at a constraint (solution hard to reach!).

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:
» descent directions may be invalid: line-search or backtrack necessary to stay in ;
> costly double-iteration with refined p,; often difficult to handle:
P initialization point in next j-step must be close to ji-step solution to avoid slow
descents (but too small p-updates slows convergence).

P exacerbated for solutions near or at a constraint (solution hard to reach!).
P on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:

» descent directions may be invalid: line-search or backtrack necessary to stay in ;
> costly double-iteration with refined p,; often difficult to handle:

P initialization point in next j-step must be close to ji-step solution to avoid slow
descents (but too small p-updates slows convergence).

P exacerbated for solutions near or at a constraint (solution hard to reach!).

P on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

» barrier method only valid for inequality constraints.

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:
» descent directions may be invalid: line-search or backtrack necessary to stay in ;

> costly double-iteration with refined p,; often difficult to handle:

P initialization point in next j-step must be close to ji-step solution to avoid slow
descents (but too small p-updates slows convergence).

P exacerbated for solutions near or at a constraint (solution hard to reach!).

P on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

» barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f.

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)

Far from ideal...:
» descent directions may be invalid: line-search or backtrack necessary to stay in ;

> costly double-iteration with refined p,; often difficult to handle:

P initialization point in next j-step must be close to ji-step solution to avoid slow
descents (but too small p-updates slows convergence).

P exacerbated for solutions near or at a constraint (solution hard to reach!).

P on stark barriers, step sizes need very thin adapting: avoid “jumps” over solution.

» barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f.

o) ¢(x;p2) Sa:ips)

o Lh+1

J A
a*(p1) / ’:1;* T L
z*(12)
z*(ps)

Figure: Barrier Method. (left) Sequence of ¢(x; 1) approx; (right) Difficulty raised by sharp
minima and “ping-ponging” effect.

Outline

Motivation
Basics of Convex Optimization
Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent

Inequality Constraints and Barrier Methods
Constrained Optimization and Duality

Linearly Equality-Constrained Optimization

Generalization to Equality and Inequality Constraints
Advanced Methods

Non-Differentiable Convex Functions
The Proximal Operator Approach

Minimization of the Sum of Two Functions

«0)» «F»

a

DA

53/88

Outline

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization

Linear constraints

min f(x) such that hj(x) =0, i=1,...,p. (4)
xEX

Linear constraints

min f(x) such that hj(x) =0, i=1,...,p.

Theorem
If x* solution to (4), then 31, ..., \p € R such that

P

VE(x*) = S (=) Vhi(x*).

i=1

4)

Linear constraints

Geometric Proof for p = 1.
1. Gradient orthogonal to level sets: level set /c(g) = {x|g(x) = c}.

Linear constraints

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set /c(g) = {x|g(x) = c}.
For h € X such that g(x) = g(x + h) = c and ||h|| — O,

0= (g(x + h) —g(x))/lIhll = Ve(x)T (h/|1All) + o(1)

Linear constraints

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set /c(g) = {x|g(x) = c}.
For h € X such that g(x) = g(x + h) = c and ||h|| — O,

0= (g(x + h) —g(x))/lIhll = Ve(x)T (h/|1All) + o(1)

Thus Vg(x) orthogonal to ¢.(g).

Linear constraints

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set /c(g) = {x|g(x) = c}.
For h € X such that g(x) = g(x + h) = c and ||h|| — O,

0= (g(x + h) —g(x))/lIhll = Ve(x)T (h/|1All) + o(1)
Thus Vg(x) orthogonal to ¢.(g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x*, so X such that Vf(x*) = AVh(x*).

Linear constraints

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set /c(g) = {x|g(x) = c}.
For h € X such that g(x) = g(x + h) = c and ||h|| — O,

0= (g(x + h) —g(x))/lIhll = Ve(x)T (h/|1All) + o(1)
Thus Vg(x) orthogonal to ¢.(g).

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for
x*, so X such that Vf(x*) = AVh(x*).

h(z) =0

[x]2 local minimum

3. When minimum of f coincides with h(x) = 0: formula still holds with A = 0.

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h;: find x
such that f(x) 4+ >_; Ajhi(x) has zero gradient for some A1,..., Ap.

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h;: find x
such that f(x) 4+ >_; Ajhi(x) has zero gradient for some A1,..., Ap.

Definition (Lagrange dual function)
For A € RP, Lagrange dual g of f is
A) = inf L(x; A
g(A) = inf L(x;)

P
L A) = £(x) + > Aihi(x).

i=1

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h;: find x
such that f(x) 4+ >_; Ajhi(x) has zero gradient for some A1,..., Ap.

Definition (Lagrange dual function)
For A € RP, Lagrange dual g of f is

g\ = Xig; L(x; \)
P
L A) = £(x) + > Aihi(x).
i=1

The coefficients A1,..., \p are called the Lagrange multipliers.

Linear constraints: Lagrange dual
Consequence: Necessary condition for extremum for f under the constraints h;: find x

such that f(x) 4+ >_; Ajhi(x) has zero gradient for some A1,..., Ap.

Definition (Lagrange dual function)
For A € RP, Lagrange dual g of f is

g\ = Xig; L(x; \)
P
L A) = £(x) + > Aihi(x).
i=1

The coefficients A1,..., \p are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x* solution, since h;(x*) = 0, we have for all A € RP,

g(N\) = XiggK L(x; A) < L(x*;) = f(x¥).

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h;: find x
such that f(x) 4+ >_; Ajhi(x) has zero gradient for some A1,..., Ap.

Definition (Lagrange dual function)
For A € RP, Lagrange dual g of f is

A) = inf L(x; A
g(A) = inf L(x;)
P
L(x; A) = F(x) + D> Aihi(x).
i=1
The coefficients A1,..., \p are called the Lagrange multipliers.
Property (Lagrange dual as lower bound)
For x* solution, since h;(x*) = 0, we have for all A € RP,
g(A\) = inf L(x;2) < L(x*;A) = f(x*).
xeX
In particular

sup g(\) < F(x*).
AERP

Linear constraints: Lagrange dual
Definition (Lagrange dual problem)

sup g(\) = sup { inf L(x;)\)}.
A€R? AeRP (XEX

Linear constraints: Lagrange dual
Definition (Lagrange dual problem)

sup g(A\) = sup { inf L(x;)\)}.

AERN AeRp (XEX

We denote A* € R" any point of argmax, g(\) (maybe empty).

Linear constraints: Lagrange dual
Definition (Lagrange dual problem)

sup g(A\) = sup { inf L(x;)\)}.

AERN AERP (x€X
We denote A* € R" any point of argmax, g(\) (maybe empty).

> g(A*) — f(x*) > 0 is the duality gap
g

Linear constraints: Lagrange dual
Definition (Lagrange dual problem)

sup g(A\) = sup { inf L(x;)\)}.
AeR" AeRP (XEX

We denote A* € R" any point of argmax, g(\) (maybe empty).

> g(A*) — f(x*) > 0 is the duality gap
> if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Linear constraints: Lagrange dual
Definition (Lagrange dual problem)

sup g(A\) = sup { inf L(x;)\)}.
AeR" AeRP (XEX

We denote A* € R" any point of argmax, g(\) (maybe empty).

> g(A*) — f(x*) > 0 is the duality gap
> if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property

Lagrange dual A\ — g()\) is concave, irrespective of f (convex or not!).

Linear constraints: Lagrange dual
Definition (Lagrange dual problem)

sup g(A\) = sup { inf L(x;)\)}.

AeR" XERP (XEX
We denote A* € R" any point of argmax, g(\) (maybe empty).
> g(A*) — f(x*) > 0 is the duality gap
> if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property

Lagrange dual A\ — g()\) is concave, irrespective of f (convex or not!).

Proof.
For A1, \2 € RP, a € [0, 1],

14 14
glod + (1 —a)ro) = inf, {a (f(x) +> /\1,-h,-(x)> +(1-a) (f(x) +> Ag,-h,-(x)) }

i=1 i=1

P P
> a inf {f(x) +3 Al,»h,(x)} +(1-a) inf {f(x) +3 Az,-h,-(x)}

i=1 =1
=ag(M)+ (1 —a)g(X2)

(inequality follows from inf,{fi(x) + fa(x)} > infx{fi(x)} + infx{f2(x)}). |

Linear constraints: strong duality
Remarks:

> inf) —g(A) convex: dual can be solved by standard unconstrained convex
optimization.

Linear constraints: strong duality
Remarks:

> inf) —g(A) convex: dual can be solved by standard unconstrained convex
optimization.

» if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f.

Linear constraints: strong duality
Remarks:

> inf) —g(A) convex: dual can be solved by standard unconstrained convex
optimization.

» if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f.

Theorem (Slater's condition for strong duality)
If 3x € X such that Vi, hij(x) =0 (feasibility), f is convex and h; affine
(hi(x) = al x + b;), then strong duality holds.

Proof. B
Let A € RP be such that VFf(x*) = 3% (=X;)Vhi(x*). Then

g = Jnf £(x)+ D Xihi(x) = £(x*).
i=1

Linear constraints: strong duality
Remarks:

> inf) —g(A) convex: dual can be solved by standard unconstrained convex
optimization.

» if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f.

Theorem (Slater's condition for strong duality)

If 3x € X such that Vi, hij(x) =0 (feasibility), f is convex and h; affine
(hi(x) = al x + b;), then strong duality holds.

Proof. B
Let A € RP be such that VFf(x*) = 3% (=X;)Vhi(x*). Then

g = nf, F() + > Aihi(x) = F(x*).
i=1

Indeed, x - f(x) + 3°P_; Xjh;(x) convex (h; affine), so minimal at zero gradient: true
for x having same cost as x*, i.e., f(x*)+ 3.0, Xihi(x*) = f(x*).

Linear constraints: strong duality
Remarks:
> inf) —g(A) convex: dual can be solved by standard unconstrained convex
optimization.
» if f not convex (min f difficult to solve), at least max g can be solved: lower
bounding min f.

Theorem (Slater's condition for strong duality)

If 3x € X such that Vi, hij(x) =0 (feasibility), f is convex and h; affine
(hi(x) = al x + b;), then strong duality holds.

Proof. B
Let A € RP be such that VFf(x*) = 3% (=X;)Vhi(x*). Then

g = nf, F() + > Aihi(x) = F(x*).
i=1

Indeed, x - f(x) + 3°P_; Xjh;(x) convex (h; affine), so minimal at zero gradient: true
for x having same cost as x*, i.e., f(x*)+ 3.0, Xihi(x*) = f(x*).
As a consequence,

g(\") = max g(3) > g(X) = f(x*)
g(\) < f(x¥)

so g(A*) = f(x*). O

Outline

Constrained Optimization and Duality

Generalization to Equality and Inequality Constraints

Equality and inequality constraints

mi; f(x) such that gij(x) <0, i=1,...,mand hj(x) =0, j=1,...,p. (5)
Xe

Equality and inequality constraints

r’réi/’rcf f(x) such that gij(x) <0, i=1,...,mand hj(x) =0, j=1,...,p. (5)
X

Method: For inequalities, additional multipliers.

Equality and inequality constraints

mig f(x) such that gij(x) <0, i=1,...,mand hj(x) =0, j=1,...,p. (5)
Xe

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

Equality and inequality constraints
to be positive.

n;i(r‘}f(x) such that gi(x) <0, i=1,...,mand hj(x) =0, j=1,...,p.
X

(5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed

local minimum

Equality and inequality constraints
to be positive.

rgigf(x) such that gi(x) <0, i=1,...,mand hj(x) =0, j=1,...,p.
X

(5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed

local minimum

> if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

Equality and inequality constraints

rgigf(x) such that gi(x) <0, i=1,...,mand hj(x) =0, j=1,...,p.
X

(5)

Method: For inequalities, additional multipliers. Main difference: multipliers imposed
to be positive.

local minimum

> if, at minimum, constraint enforced (minimum at edge), inequality becomes
equality: Lagrangian multiplier non zero and positive (see figure).

> if constraint not enforced (minimum within constraint set), then Lagrange
multiplier is zero.

o F

Equality and inequality constraints
Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

)\GjoafeRTg()\, v), g(A\v)= Xlgﬁ(L(x; A\, v)

m P
L(x; A\ v) = f(x) + Z vigi(x) + Z)‘jhj(x)'

i=1 j=1

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

ACRP. DeRT gv), g(hv) Ex'g; L(x; A, v)

m P
L(x; A\ v) = f(x) + Z vigi(x) + Z)‘jhj(x)'

i=1 j=1

Theorem (Slater’s Condition)

For f be convex, g; convex, hj affine, and 3x € X such that h;j(x) = 0 and gj(x) <0
for all i,j (feasibility). Then strong duality holds.

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

ACRP. DeRT gv), g(hv) Ex'g; L(x; A, v)

m P
L(x; A\, v) = f(x) + Z vigi(x) + Z)‘jhj(x)

i=1 j=1

Theorem (Slater’s Condition)
For f be convex, g; convex, hj affine, and 3x € X such that h;j(x) = 0 and gj(x) <0
for all i,j (feasibility). Then strong duality holds.
Remark:
> for g convex, G; = {x|gj(x) < 0} is convex.
> for h; affine, H; = {x|hj(x) = 0} also convex (but not if h; convex!).

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

ACRP. DeRT gv), g(hv) Ex'g; L(x; A, v)

m P
L(x; A\ v) = f(x) + Z vigi(x) + Z)‘jhj(x)'

i=1 j=1

Theorem (Slater’s Condition)
For f be convex, g; convex, hj affine, and 3x € X such that h;j(x) = 0 and gj(x) <0
for all i,j (feasibility). Then strong duality holds.
Remark:
> for g convex, G; = {x|gj(x) < 0} is convex.

> for h; affine, H; = {x|hj(x) = 0} also convex (but not if h; convex!).
» Hence,
*=arg min f(x)

xn(N; 6)n(N; H)

i.e., minimising convex f over convex set.

Outline

Motivation

Basics of Convex Optimization
Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization

Generalization to Equality and Inequality Constraints
Advanced Methods

Non-Differentiable Convex Functions

The Proximal Operator Approach

Minimization of the Sum of Two Functions

«0Or «Fr «

it
v
i
v

DA 63788

Outline

Advanced Methods
Non-Differentiable Convex Functions

Non-differentiable optimization

Setup: f convex but not everywhere differentiable.

Non-differentiable optimization

Setup: f convex but not everywhere differentiable.

f(z)

+00

x

[2]2

x

[z]

Figure: Examples of not-everywhere differentiable convex functions

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable f : X — R U {400},

Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable f : X — R U {+o0},
Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).

— can be used to define Vf for convex f: only linear function satisfying inequality.

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable f : X — R U {+o0},
Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).
— can be used to define Vf for convex f: only linear function satisfying inequality.

Generalization: subdifferential of convex f:

Definition (Subdifferential)
Let f : X — R. The subdifferential Of of f is

of + X — 2%

Xr—>{u€X|VZ€X, f(x)gf(z)+uT(xfz)}.

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X — R U {+o0},

Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).
— can be used to define Vf for convex f: only linear function satisfying inequality.

Generalization: subdifferential of convex f:

Definition (Subdifferential)
Let f : X — R. The subdifferential Of of f is

of + X — 2%

Xr—>{u€X|VZ€X, f(x)gf(z)+uT(xfz)}.

Careful: Of(x) is a set-valued function: members of the set are the subderivatives.

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X — R U {+o0},
Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).
— can be used to define Vf for convex f: only linear function satisfying inequality.

Generalization: subdifferential of convex f:

Definition (Subdifferential)
Let f : X — R. The subdifferential Of of f is

of + X — 2%

Xr—>{u€X|VZ€X, f(x)gf(z)+uT(xfz)}.

Careful: Of(x) is a set-valued function: members of the set are the subderivatives.

Property

For convex f, Of (x) at those x where f is differentiable is a singleton:

If(x) = {VF(x)}.

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X — R U {+o0},
Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).
— can be used to define Vf for convex f: only linear function satisfying inequality.

Generalization: subdifferential of convex f:

Definition (Subdifferential)
Let f : X — R. The subdifferential Of of f is

of + X — 2%

Xr—>{u€X|VZ€X, f(x)gf(z)+uT(xfz)}.

Careful: Of(x) is a set-valued function: members of the set are the subderivatives.

Property

For convex f, Of (x) at those x where f is differentiable is a singleton:

If(x) = {VF(x)}.

Proof.

Let u € Of(x), hence x € arg min cx f(z) — u' z.i

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable f : X — R U {+o0},
Vx,z € dom(f), f(z) > f(x) + VF(x)T(z — x).
— can be used to define Vf for convex f: only linear function satisfying inequality.

Generalization: subdifferential of convex f:

Definition (Subdifferential)
Let f : X — R. The subdifferential Of of f is

of + X — 2%

Xr—>{u€X|VZ€X, f(x)gf(z)+uT(xfz)}.

Careful: Of(x) is a set-valued function: members of the set are the subderivatives.
Property

For convex f, Of (x) at those x where f is differentiable is a singleton:

If(x) = {VF(x)}.

Proof.

Let u € Of(x), hence x € arg min cx f(z) — u' z.i
Since f differentiable at x, first order condition gives Vf(x) = u.

Non-differentiable optimization:

subgradient

+
1) T r) >
) = 0f(z) /

Non-differentiable optimization: subgradient

+
1) T f(a) ™
= 0f(z) = df(z)

Property (Subdifferential as a convex set)

Of (x) is a nonempty convex compact set.

Non-differentiable optimization: subgradient

+
1) T f(a) ™
= 0f(z) = df(z)

Property (Subdifferential as a convex set)

Of (x) is a nonempty convex compact set.

Property (Subdifferential as union of supporting hyperplanes)
Of (x) consists of the hyperplanes that support epi(f) at (x, f(x)).

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For f : X — R convex,

x* € argmin,c x f(x) < 0 € Of (x*).

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For f : X — R convex,

x* € argmin, ¢y f(x) < 0 € Of (x*).

Proof.

=. Of(x*) must (at least) contain 0, since x* € argmin ¢y f(x) + 07 x.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For f : X — R convex,

x* € argmin, ¢y f(x) < 0 € Of (x*).

Proof.

=. Of(x*) must (at least) contain 0, since x* € argmin ¢y f(x) + 07 x.

<. 0 € 9f(x) = x € argmin,cx f(z), but then x must be a solution.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For f : X — R convex,

x* € argmin, ¢y f(x) < 0 € Of (x*).

Proof.
=. Of(x*) must (at least) contain 0, since x* € argmin ¢y f(x) + 07 x.
<. 0 € 9f(x) = x € argmin,cx f(z), but then x must be a solution.

Careful: looking for 0 in one of the sets 9f(x), x € X, different from looking for
singleton {0} among the sets 9f(x), x € X.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For f : X — R convex,

x* € argmin, ¢y f(x) < 0 € Of (x*).

Proof.
=. Of(x*) must (at least) contain 0, since x* € argmin ¢y f(x) + 07 x.
<. 0 € 9f(x) = x € argmin,cx f(z), but then x must be a solution.

Careful: looking for 0 in one of the sets 9f(x), x € X, different from looking for
singleton {0} among the sets 9f(x), x € X.

Definition (Subgradient algorithm)

Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. Xpp1 = Xk — trug, for any uy € 8f(Xk)

2. fbk;]t- = min{ftfest’ f(Xk+1)}-

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For f : X — R convex,

x* € argmin, ¢y f(x) < 0 € Of (x*).

Proof.
=. Of(x*) must (at least) contain 0, since x* € argmin ¢y f(x) + 07 x.
<. 0 € 9f(x) = x € argmin,cx f(z), but then x must be a solution.

Careful: looking for 0 in one of the sets 9f(x), x € X, different from looking for
singleton {0} among the sets 9f(x), x € X.

Definition (Subgradient algorithm)

Under conditions of gradient descent theorem, with all Lipschitz subgradients,
subgradient algorithm:

1. Xpp1 = Xk — trug, for any uy € 8f(Xk)
k+1 .
2. fib = min{fk ., f(xks1)}

Remark: 2nd step underlies major weakness of the method (rarely used in practice):
algorithm is not a descent method.

Outline

Advanced Methods

The Proximal Operator Approach

From subgradient to proximal

Exercise (The Projection Operator)

For Q a convex set and 1 the set indicator (1q(x) = 0 if x € Q and = +o0 if not),
define

1 2
min S flx =yl + e (x).

From subgradient to proximal

Exercise (The Projection Operator)
For Q a convex set and 1 the set indicator (1q(x) = 0 if x € Q and = +o0 if not),
define

1 2
min S flx =yl + e (x).

Show that x* is the (Euclidean) projection of y onto QN X.

From subgradient to proximal

Exercise (The Projection Operator)

For Q a convex set and 1 the set indicator (1q(x) = 0 if x € Q and = +o0 if not),
define

1 2
min S flx =yl + e (x).

Show that x* is the (Euclidean) projection of y onto QN X.

Projection and proximity: x* is the “proximal” point of y:

From subgradient to proximal

Exercise (The Projection Operator)

For Q a convex set and 1 the set indicator (1q(x) = 0 if x € Q and = +o0 if not),
define

1 2
min S flx =yl + e (x).

Show that x* is the (Euclidean) projection of y onto QN X.
Projection and proximity: x* is the “proximal” point of y:

> stays close to x (through || - —y||? term)

From subgradient to proximal

Exercise (The Projection Operator)

For Q a convex set and 1 the set indicator (1q(x) = 0 if x € Q and = +o0 if not),
define

1 2
min S flx =yl + e (x).

Show that x* is the (Euclidean) projection of y onto QN X.
Projection and proximity: x* is the “proximal” point of y:
> stays close to x (through || - —y||? term)
» simultaneously (approximately) minimizes objective function, here 1.

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For f : X — R convex, proximal operator prox; of f is
proxs : X — X

i 1
X+ argmin {f(y) + =y *X||2}~
yex 2

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For f : X — R convex, proximal operator prox; of f is
proxs : X — X

i 1
X+ argmin {f(y) + =y *X||2}~
yex 2

x proxg(w)

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For f : X — R convex, proximal operator prox; of f is
proxs : X — X

i 1
X+ argmin {f(y) + =y *X||2}~
yex 2

(@) FO+ Sl =1/

x proxg(w)

Remark: proximal point operator is single-valued.

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For f : X — R convex, proximal operator prox; of f is
proxs : X — X

i 1
X+ argmin {f(y) + =y *XH2}~
yex 2

x proxg(w)

Remark: proximal point operator is single-valued. Not obvious! See next!

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy, € D(y) => (dy —dx)" (y —x) > 0.

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy € D(y) = (dy —dx)T (y —x) > 0.

Strictly monotone: equality only for x = y.

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy € D(y) = (dy —dx)T (y —x) > 0.

Strictly monotone: equality only for x = y.

f x ZZ‘ x

Figure: Monotone (left) and strictly monotone (right) operators.

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy € D(y) = (dy —dx)T (y —x) > 0.

Strictly monotone: equality only for x = y.

f x ZZ‘ x

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)

Inverse of the strictly monotone operator is single-valued.

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy € D(y) = (dy —dx)T (y —x) > 0.

Strictly monotone: equality only for x = y.

f x ZZ‘ x

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.

Proof.
Proof by contradiction. Let x € X’ with §x € D(x). Suppose 3x" with 6x € D(x’).

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy € D(y) = (dy —dx)T (y —x) > 0.

Strictly monotone: equality only for x = y.

f x ZZ‘ x

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)

Inverse of the strictly monotone operator is single-valued.
Proof.

Proof by contradiction. Let x € X’ with §x € D(x). Suppose 3x" with 6x € D(x’).
But, by strict monotonicity, 0 < (dx — dx)T(x — x’) = 0:

Non-differentiable optimization: proximal methods

Definition ((Strictly) Monotone operator)
Operator D : X — 2% is monotone if

Vx,y € X,D : dy € D(x),dy € D(y) = (dy —dx)T (y —x) > 0.

Strictly monotone: equality only for x = y.

f x Zz‘ x

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)

Inverse of the strictly monotone operator is single-valued.

Proof.

Proof by contradiction. Let x € X’ with §x € D(x). Suppose 3x" with 6x € D(x’).
But, by strict monotonicity, 0 < (dx — 6X)T(X —x')=0:

by contradiction, inverse of D is single-valued.

Non-differentiable optimization: proximal methods

Property

The operator proxy is single-valued (and thus well-defined).

Non-differentiable optimization: proximal methods

Property

The operator proxy is single-valued (and thus well-defined).

Proof.
Idea. Of is a monotone operator: Vdy € 9f(x), dy, € df(y),

(dy —d)T(y =x) >0 .

Non-differentiable optimization: proximal methods

Property
The operator proxy is single-valued (and thus well-defined).

Proof.
Idea. Of is a monotone operator: Vdy € 9f(x), dy, € df(y),

(dy —dx)T(y —x) >0 .

Follows from summing f(x) > f(y) + d;,r(x —y)and f(y) > f(x) + dT(y — x) (1st

order relations).

Non-differentiable optimization: proximal methods

Property

The operator proxy is single-valued (and thus well-defined).

Proof.
Idea. Of is a monotone operator: Vdy € 9f(x), dy, € df(y),

(dy =) (y=x) 20 .
Follows from summing f(x) > f(y) + d;,r(x —y)and f(y) > f(x) + dT(y — x) (1st

order relations).
Implies | + Of strictly monotone operator:

(v +dy) = (x +d)T(y = x) = (dy = d)T(y =) + |y =x[I> >0 .

Non-differentiable optimization: proximal methods

Property

The operator proxy is single-valued

Proof.
Idea. Of is a monotone operator: Vdy € 9f(x), dy, € df(y),

(dy —dx)T(y —x) >0 .
Follows from summing f(x) > f(y) + d,] (x — y) and f(y) > f(x) + d} (y — x)
Implies | + Of .strictly monotone operator:
(v +dy) = (x +d)T(y = x) = (dy = d)T(y =) + |y =x[I> >0 .
For y € proxs(x) (= argmin, f(z) + %Hz — x||?), 1st order optimality says

0€df(y)+y—x=(+0f)y)—x & ye(+0f) ().

Non-differentiable optimization: proximal methods

Property

The operator proxy is single-valued

Proof.
Idea. Of is a monotone operator: Vdy € 9f(x), dy, € df(y),

(dy —dx)T(y —x) >0 .
Follows from summing f(x) > f(y) + d,] (x — y) and f(y) > f(x) + d} (y — x)
Implies | + Of .strictly monotone operator:
(v +dy) = (x+d)T(y —x) = (dy =) (v =x) + ly =x||* >0 .
For y € proxs(x) (= argmin, f(z) + %Hz — x||?), 1st order optimality says
0€df(y)+y—x=(+0y)—x < ye(+af) " x).

But inverse of strictly monotone | + Of single-valued!

Non-differentiable optimization: proximal methods

Property

The operator proxy is single-valued

Proof.
Idea. Of is a monotone operator: Vdy € 9f(x), dy, € df(y),

(dy —d)T(y =x) >0 .
Follows from summing f(x) > f(y) + d,] (x — y) and f(y) > f(x) + d} (y — x)
Implies | + Of .strictly monotone operator:
(v +dy) = (x+d)T(y —x) = (dy =) (v =x) + ly =x||* >0 .
For y € proxs(x) (= argmin, f(z) + %Hz — x||?), 1st order optimality says
0€df(y)+y—x=(+0)y)—x & ye(+f) " (x)
But inverse of strictly monotone | + Of single-valued! O

Consequence. Uniqueness of prox; makes optimization simpler: f may have multiple
minima, proxs(x) always unique.

Non-differentiable optimization: proximal methods

Remark (Properties of prox;)
For A > 0,

. 1
proxs(x) = argmin {f(y) SN —yHZ} .
yeEX 2\

Non-differentiable optimization: proximal methods

Remark (Properties of prox;)
For A > 0,

. 1
prox¢(x) = argmin {f(}’) + < lix *YHZ} :
yeEX 2\

For differentiable f,

y =proxys(x) = x — AVf(y) <= y+ Vf(y)=x.

Non-differentiable optimization: proximal methods

Remark (Properties of prox;)
For A > 0,

. 1
proxas(x) = argmin {f<y) SN —yHZ} .
yeEX 2\

For differentiable f,
y =proxys(x) = x — AVf(y) <= y+ Vf(y)=x.

Consequence. lterating prox; (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point

Non-differentiable optimization: proximal methods

Remark (Properties of prox;)
For A > 0,

. 1
proxas(x) = argmin {f(y) SN —yHZ} .
yex 2\

For differentiable f,
y =proxys(x) = x — AVf(y) <= y+ Vf(y)=x.

Consequence. lterating prox; (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point

Still for differentiable f,

Y (F0)+ g3lly = xIP) = VF) + 3=)

Non-differentiable optimization: proximal methods

Remark (Properties of prox;)
For A > 0,

. 1
proxas(x) = argmin {f(y) SN —yHZ} .
yeEX 2\

For differentiable f,
y =proxys(x) = x — AVf(y) <= y+ Vf(y)=x.

Consequence. lterating prox; (from x to y) resembles “backward gradient ascent”: if
started from y, step along gradient at destination point points to starting point

Still for differentiable f,
v(f()+1|| ||2) Vf()+1()
—|ly — x = —(x—vy).
y B3\ y y by y

Thus, aty = x, f and f + ﬁHX — -||? have same value and gradient: prox; minimizes
“local approximation” of f.

Non-differentiable optimization: proximal methods
Key property:

Property (Proximal fixed-points and minimizers)

Minimizers of f are the fixed points of prox:

x* € argmin f(x) < 0 € 9f(x*) & x* = proxs(x*).
xeX

Non-differentiable optimization: proximal methods
Key property:
Property (Proximal fixed-points and minimizers)

Minimizers of f are the fixed points of prox;:

x* € argmin f(x) < 0 € 9f(x*) & x* = proxs(x*).
xeX

Proof.

Follows from:

x* € argmin f(x) < 0 € 9f (x*)
xeX

&0 € If(x*) + (x* —x*)
& x* = proxg(x*)

(last line from x* = proxs(x*) = x* € arg miny f(x)).

Non-differentiable optimization: proximal methods

Key property:
Property (Proximal fixed-points and minimizers)

Minimizers of f are the fixed points of prox;:

x* € argmin f(x) < 0 € 9f(x*) & x* = proxs(x*).
xeX

Proof.

Follows from:

x* € argmin f(x) < 0 € 9f (x*)
xeX

&0 € If(x*) + (x* —x*)
& x* = proxg(x*)

(last line from x* = proxs(x*) = x* € arg miny f(x)).

Consequence: Suggests that fixed-point algorithm xj1 = proxs(xx) converges to
minimum of f.

Non-differentiable optimization: proximal methods

Key property:
Property (Proximal fixed-points and minimizers)

Minimizers of f are the fixed points of prox;:

x* € argmin f(x) < 0 € 9f(x*) & x* = proxs(x*).
xeX

Proof.

Follows from:

x* € argmin f(x) < 0 € 9f (x*)
xeX

&0 € If(x*) + (x* —x*)
& x* = proxg(x*)

(last line from x* = proxs(x*) = x* € arg miny f(x)).

Consequence: Suggests that fixed-point algorithm xj1 = proxs(xx) converges to
minimum of . But... does it converge?

Non-differentiable optimization: proximal methods

Key property:
Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox;:

x* € argmin f(x) < 0 € 9f(x*) & x* = proxs(x*).
xeX

Proof.

Follows from:
x* € argmin f(x) < 0 € 9f (x*)
xeX
&0 € If(x*) + (x* —x*)
& x* = proxg(x*)

(last line from x* = proxs(x*) = x* € arg miny f(x)).

Consequence: Suggests that fixed-point algorithm xj1 = proxs(xx) converges to
minimum of . But... does it converge?

> prox, unfortunately not contractive (i.e., a-Lipschitz with a € (0,1) so that
xir1 = x* || < allxic — x*])

Non-differentiable optimization: proximal methods

Key property:
Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox;:

x* € argmin f(x) < 0 € 9f(x*) & x* = proxs(x*).
xeX

Proof.

Follows from:
x* € argmin f(x) < 0 € 9f (x*)
x€EX
&0 € If(x*) + (x* —x*)
& x* = proxg(x*)
(last line from x* = proxs(x*) = x* € arg miny f(x)).
Consequence: Suggests that fixed-point algorithm xj1 = proxs(xx) converges to

minimum of . But... does it converge?

> prox, unfortunately not contractive (i.e., a-Lipschitz with a € (0,1) so that
xir1 = x* || < allxic — x*])

» but proxs firmly non-expansivel

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X — X non-expansive if Vx,y € X,

llg(x) =gl < lIx = yll.

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X — X non-expansive if Vx,y € X,

lg() =g < lIx = yll-

i.e., g is 1-Lipschitz.

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X — X non-expansive if Vx,y € X,

le(x) —gW)Il < lIx = yII.

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
g : X — X firmly non-expansive if 3G : X — X non-expansive with g = %(l + G).

Non-differentiable optimization: proximal methods

Definition (Non-expansiveness)
g : X — X non-expansive if Vx,y € X,

lg() =g < lIx = yll-

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
g : X — X firmly non-expansive if 3G : X — X non-expansive with g = %(l + G).

lal2 g(x) — g(y) ol 9(x) — g(y)
rT—y r—y
[x]l [1']1

Figure: Non-expansive g (left) and firmly non-expansive g (right).

Non-differentiable optimization: proximal methods

Theorem
For convex f, proxs : X — X, x + argmin,, f(y) + %Hx — y||? firmly non-expansive.

Non-differentiable optimization: proximal methods

Theorem
For convex f, proxs : X — X, x + argmin,, f(y) + %Hx — y||? firmly non-expansive.

Proof.

Idea: Prove that 2prox; — I/ non-expansive, i.e., Vx,y € X,

lI(2proxy(x) — x) = (2prox,(y) = y)II* < lIx = y|?
& [lproxg(x) — prox¢(y)||* — (prox(x) — prox(y)) " (x — y) < 0.

Non-differentiable optimization: proximal methods

Theorem
For convex f, proxs : X — X, x + argmin,, f(y) + %Hx — y||? firmly non-expansive.

Proof.

Idea: Prove that 2prox; — I/ non-expansive, i.e., Vx,y € X,

lI(2proxy(x) — x) = (2prox,(y) = y)II* < lIx = y|?
& [lproxg(x) — prox¢(y)||* — (prox(x) — prox(y)) " (x — y) < 0.

For this, recall 8f is monotone: for a = proxs(x) and b = prox,(y), then

x—a€of(a) and y—beof(b).

Non-differentiable optimization: proximal methods

Theorem
For convex f, proxs : X — X, x + argmin,, f(y) + %Hx — y||? firmly non-expansive.

Proof.

Idea: Prove that 2prox; — I/ non-expansive, i.e., Vx,y € X,

lI(2proxy(x) — x) = (2prox,(y) = y)II* < lIx = y|?
& [lproxg(x) — prox¢(y)||* — (prox(x) — prox(y)) " (x — y) < 0.

For this, recall 8f is monotone: for a = proxs(x) and b = prox,(y), then

x—a€of(a) and y—beof(b).
Thus

((x — prox¢(x)) — (v — prox¢(y)))" (prox(x) — prox(y)) > 0.

Non-differentiable optimization: proximal methods

Theorem
For convex f, proxs : X — X, x + argmin,, f(y) + %Hx — y||? firmly non-expansive.

Proof.

Idea: Prove that 2prox; — I/ non-expansive, i.e., Vx,y € X,
lI(2proxe(x) — x) — (2prox(y) — y)II* < |Ix — yII?
& [lprox,(x) — prox,(y)|* = (proxs(x) — prox,(y))"(x — y) < 0.

For this, recall 8f is monotone: for a = proxs(x) and b = prox,(y), then
x—a€of(a) and y—beof(b).
Thus

((x — prox¢(x)) — (v — prox¢(y)))" (prox(x) — prox(y)) > 0.

Implies

(pros(x) — proxs(y))T(x — y) > [|pross(x) — prox,(y)[> > 0 .

Non-differentiable optimization: proximal methods
Main property:

Theorem (The Proximal Point Algorithm)
For f : X — R convex, x1 € X, let

Xk+1 = proxs(xx), Vk>1.

Then x;. — x* € argmin, o v {f(x)}.

Non-differentiable optimization: proximal methods
Main property:
Theorem (The Proximal Point Algorithm)
For f : X — R convex, x1 € X, let
Xk+1 = proxs(xx), Vk > 1.

Then x;. — x* € argmin, o v {f(x)}.

Proof.

X1 — i[>

= [|proxs(xx) — Xk||2

= [|(prox (xk) — xk) — (proxs(x*) — x*)||?

= [[proxs(x) — prox(x*)II* + xx — x*[|* — 2 (prox(xk) — prox(x*))" (xx — x*)

< llxk = x*[1? = l[prox (xk) — prox,(x*)|1%.

Non-differentiable optimization: proximal methods
Main property:
Theorem (The Proximal Point Algorithm)
For f : X — R convex, x1 € X, let
Xk+1 = proxs(xx), Vk > 1.
Then x;. — x* € argmin, o v {f(x)}.

Proof.

X1 — i[>

= [|prox(xc) — xk||®

= [|(proxs(xc) — xi) — (prox(x*) — x*)|?

= [Iproxs(xk) — prox(x*)|* + [[xk — x*||> — 2 (proxs(xe) — prox(x*))" (xx — x*)
< lxk = x* |17 = [|proxg (xx) — prox (x*)|1%.

Last inequality uses firm non-expansiveness of prox;:

(proxs(xx) — proxs(x™)) T (xx — x*) > ||lproxs(xx) — proxf(x*)H2 >0 .

Non-differentiable optimization: proximal methods

Proof.
Geometric interpretation:
[z]2
[prox () — prox; (y)| (I = prox)(x) — (I — prox;)(y)|

rT—=Y

[z]1

[l —yll

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

[[proxs(x) — prox,(y)||> — (prox,(x) — proxs(y))"(x —y) <0
<= 2|Jprox¢(x) — prox(y)||* — 2(proxs(x) — prox(y))"(x — y) + [Ix — y|I* < [|Ix — y|1?
<= [Jprox(x) — prox¢(y)|I> + [[(— proxs) (v) — (I — proxs) (x)|I* < ||Ix — y|I?

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

[[proxs(x) — prox,(y)||> — (prox,(x) — proxs(y))"(x —y) <0
<= 2|Jprox¢(x) — prox(y)||* — 2(proxs(x) — prox(y))"(x — y) + [Ix — y|I* < [|Ix — y|1?
<= [Jprox(x) — prox¢(y)|I> + [[(— proxs) (v) — (I — proxs) (x)|I* < ||Ix — y|I?

In particular

2
lxer1 — x* 12 + [xn — xkl1? < Jlxi — x|

2 2
l[proxs(x) — prox¢(y)[I* < fIx = ¥/

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

[[prox(x) — prox(y)||* — (proxs(x) — proxs(y)) '(x — y) < 0

= 2||proxs(x) — prox(y)||” — 2(prox(x) — proxs(y)) (x = y) + lIx = y|I* < [Ix — y|?
<= [[proxs(x) — prox¢(y)|I” + [[(/ = prox¢) (y) — (I — proxe) ()[1* < [|Ix = y||?

In particular

lxert — x* 12+ [xesn — xkl? < Jlxie — x*|?

l[proxs(x) — prox¢ (y)|* < |Ix — yI*.
Summing over k =1,... K:
2
112 il

Kllxkr1 — xkll? < lxa = x*[7 = [Ixigr — x*[1° < [xa — x

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

[Iprosc (x) — proxy (y)I|? — (proxy(x) — prox(y))"(x — y) < 0

2
= 2[prox(x) — prox;(y)[|* — 2(prox(x) — prox,(y))T(x — y) + lIx = y[I* < Ix = y||
2 2 2
<= |lprox(x) — prox;(y)|I* + [|(/ — prox¢) (y) — (I — proxs) (x)[I* < [|x — y|
In particular
a1 — ¥ + [lxars — xiell® < flxe — x* 12
l[prox (x) — prox¢(y)[|* < [|Ix — y|I*.
Summing over k =1,... K:
2
1P |l

Kllxkr1 — xkll? < lxa = x*[7 = [Ixigr — x*[1° < [xa — x

and thus
1 *
lIxk+1 — x| < 7\\X1 —x*l—=0

as K — oo, i.e., ||proxs(xx) — xk|| — O.

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

» does not need differentiable f, does not have step size constraint;

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

» does not need differentiable f, does not have step size constraint;

» one can change f in A\f (A > 0): not affecting algorithm, but possibly
performance;

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

» does not need differentiable f, does not have step size constraint;
» one can change f in A\f (A > 0): not affecting algorithm, but possibly
performance;
» but 2 main difficulties:
P prox, can be difficult to evaluate

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

» does not need differentiable f, does not have step size constraint;

» one can change f in A\f (A > 0): not affecting algorithm, but possibly
performance;

» but 2 main difficulties:

» prox, can be difficult to evaluate
P in worst case, sublinear convergence rate.

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

» does not need differentiable f, does not have step size constraint;

» one can change f in A\f (A > 0): not affecting algorithm, but possibly
performance;

» but 2 main difficulties:

» prox, can be difficult to evaluate
P in worst case, sublinear convergence rate.

Table of classical prox operators:

f proxy(x) Vf(x) -
0 X 0
10(x) Pa(x) :
R (x) {max([x];,0)}~, -
Allx|l1 {sgn([x];) max(|[x];| — A, 0)}_; -
1z, Ax=y} (X) x+ AT(AAT)"1(y — Ax) -
SIAx —y? (In+ATA) "1 (x + ATy) AT(Ax —y)
XTATy X — ATy ATy
%XTAX (I + A)~tx Ax

Outline

Advanced Methods

Minimization of the Sum of Two Functions

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f; and f;,

min fi(x) + £(x)

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f; and f;,

min fi(x) + £(x)

Crucial example:
> fi(x) = 1q(x) for convex Q C X

» f, any convex function

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f; and f;,

min fi(x) + £(x)

Crucial example:
> fi(x) = 1q(x) for convex Q C X

» f, any convex function

Case of differentiable convex f: with L-Lipschitz gradient V£ (fi only convex).

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f; and f;,

min fi(x) + £(x)

Crucial example:
> fi(x) = 1q(x) for convex Q C X
» f, any convex function
Case of differentiable convex f: with L-Lipschitz gradient V£ (fi only convex).
Then:
x* € argmin, c v {Ai(x) + 2(x)} & 0 € O (x*) + Vhi(x)
& 0 € ¥Oh(x*) +Vh(x*)
& x* € XF +yOR(x*) + 4V h(x¥)
& x* — yVh(x*) € x* + y0f(x*)
& x* = prox, (1 = 77 8)(x*))
& x* = (prox, 4 o (I —yVh)) (x*).

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f; and f;,

min fi(x) + £(x)

Crucial example:
> fi(x) = 1q(x) for convex Q C X
» f, any convex function
Case of differentiable convex f: with L-Lipschitz gradient V£ (fi only convex).
Then:
x* € argmin, c v {Ai(x) + 2(x)} & 0 € O (x*) + Vhi(x)
& 0 € ¥Oh(x*) +Vh(x*)
& x* € XF +yOR(x*) + 4V h(x¥)
& x* — yVh(x*) € x* + y0f(x*)
& x* = prox, (1 = 77 8)(x*))
& x* = (prox, 4 o (I —yVh)) (x*).

Consequence: equivalent to finding fixed-point for:

prox., gz o (I =vVf).

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive.

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive. Only true if v < %!

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive. Only true if v < %!

Theorem (Forward-Backward Splitting algorithm)
For f1,f, : X — R convex with f, differentiable and with L-Lipschitz gradient, let
x] €X
Xk+1 = ProX,p (xk —vVh(xk)), k=>1.

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive. Only true if v < %!

Theorem (Forward-Backward Splitting algorithm)
For f1,f, : X — R convex with f, differentiable and with L-Lipschitz gradient, let

x] €X
Xk+1 = ProX,p (xk —vVh(xk)), k=>1.

Then, as k — oo,

X — x* € argmin, c x {fi(x) + f(x)} .

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive. Only true if v < %!

Theorem (Forward-Backward Splitting algorithm)
For f1,f, : X — R convex with f, differentiable and with L-Lipschitz gradient, let

x] €X
Xk+1 = ProX,p (xk —vVh(xk)), k=>1.

Then, as k — oo,

X — x* € argmin, c x {fi(x) + f(x)} .

Why forward-backward splitting?

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive. Only true if v < %!

Theorem (Forward-Backward Splitting algorithm)
For f1,f, : X — R convex with f, differentiable and with L-Lipschitz gradient, let

x] €X
Xk+1 = ProX,p (xk —vVh(xk)), k=>1.

Then, as k — oo,

X — x* € argmin, c x {fi(x) + f(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xi to Xk = xx — YV (xk), i.e., gradient descent step on f» (forward
progression to minimizing £);

Non-differentiable optimization: sum of two functions

Remark (On parameter)

~y seems artificial. But, to ensure convergence of fixed-point algorithm,
prox. g o (I —vVh)

must be firmly non-expansive. Only true if v < %!

Theorem (Forward-Backward Splitting algorithm)
For f1,f, : X — R convex with f, differentiable and with L-Lipschitz gradient, let

x] €X
Xk+1 = ProX,p (xk —vVh(xk)), k=>1.

Then, as k — oo,

X — x* € argmin, c x {fi(x) + f(x)} .

Why forward-backward splitting? Two-step approach:

1. move from xi to Xk = xx — YV (xk), i.e., gradient descent step on f» (forward
progression to minimizing £);

2. move from Xk to xk1 = prox, g (%), i.e., "backward’ move from % to
X1 = (1 +0A) 7 (%)

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable f = fo under convex
constraints given by fi,

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable f = fo under convex
constraints given by f1, e.g.,

min £(x)

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable f = fo under convex
constraints given by f1, e.g.,

min fx) < min 10(x) + f(x)

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable f = fo under convex
constraints given by f1, e.g.,

min fx) < min 10(x) + f(x)

Main advantage: constrained minimization turned into a much simpler unconstrained
minimization of two functions.

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,:

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,: Proceeding as before, algorithm now iterates

(2prox, s — 1) o (2prox,g — I).

Non-differentiable optimization: sum of two functions
Relaxing differentiable f,: Proceeding as before, algorithm now iterates
(2prox, s — 1) o (2prox,g — I).

Why? Follows from:

x = (2prox, g, — 1) o (2prox,5 — 1)(x)

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,: Proceeding as before, algorithm now iterates

(2prox, s — 1) o (2prox,g — I).

Why? Follows from:

x = (2prox,, —) o (2prox,; — I)(x) & x=2prox,.(2% — x) — (2% — x)

where X = prox. ¢ (x) (i.e., x — X € y0f(X)).

vh

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,: Proceeding as before, algorithm now iterates

(2prox, s — 1) o (2prox,g — I).

Why? Follows from:
x = (2prox,, —) o (2prox,; — I)(x) & x=2prox,.(2% — x) — (2% — x)

where X = prox. ¢ (x) (i.e., x — X € y0fi(X)).

Further equivalent to
& 0 = prox,,, (2% — x) — %
& 2% — x € (yORh + 1)(X)
& X — x € y0h(X)
< 0 € y0fi(x) + v0h(x)

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,: Proceeding as before, algorithm now iterates

(2prox, s — 1) o (2prox,g — I).

Why? Follows from:
x = (2prox,, —) o (2prox,; — I)(x) & x=2prox,.(2% — x) — (2% — x)

where X = prox. ¢ (x) (i.e., x — X € y0fi(X)).

Further equivalent to
& 0 = prox,,, (2% — x) — %
& 2% — x € (yORh + 1)(X)
& X — x € y0h(X)
< 0 € y0fi(x) + v0h(x)

Major issue: only non-expansive iterations;

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,: Proceeding as before, algorithm now iterates

(2prox, s — 1) o (2prox,g — I).

Why? Follows from:
x = (2prox,, —) o (2prox,; — I)(x) & x=2prox,.(2% — x) — (2% — x)

where X = prox. ¢ (x) (i.e., x — X € y0fi(X)).

Further equivalent to
& 0 = prox,,, (2% — x) — %
& 2% — x € (yORh + 1)(X)
& X — x € y0h(X)
< 0 € y0fi(x) + v0h(x)

Major issue: only non-expansive iterations; does not guarantee convergence.

Non-differentiable optimization: sum of two functions

Relaxing differentiable f,: Proceeding as before, algorithm now iterates

(2prox, s — 1) o (2prox,g — I).

Why? Follows from:
x = (2prox,, —) o (2prox,; — I)(x) & x=2prox,.(2% — x) — (2% — x)

where X = prox. ¢ (x) (i.e., x — X € y0fi(X)).
Further equivalent to

& 0 = prox,,, (2% — x) — %
& 2% — x € (yORh + 1)(X)
& X — x € y0h(X)

< 0 € y0fi(x) + v0h(x)

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra p € (0, 1) in algorithm steps.

Non-differentiable optimization: sum of two functions

Theorem (Douglas-Rachford Splitting)
Let fi,f» : X = R convex. Forxg € X, A>0, p€(0,1), and k > 1, let

K = prox 4 (xk)

Xir1 = Xk + 2p (prox, g, (2% — xi) — %) -

Non-differentiable optimization: sum of two functions

Theorem (Douglas-Rachford Splitting)
Let fi,f» : X = R convex. Forxg € X, A>0, p€(0,1), and k > 1, let

Xie = prox g (x)

ES)

Xk+1 = Xk + 2p (prox,y,—z(2>"<k — Xk) —)?k) .
Then, as k — oo,

X — x* € argmin, ¢y f(x) + f2(x).

The End.

	Motivation
	Basics of Convex Optimization
	Convex Sets
	Convex Functions

	Basic Algorithms for Convex Optimization
	Descent methods and gradient descent
	Inequality Constraints and Barrier Methods

	Constrained Optimization and Duality
	Linearly Equality-Constrained Optimization
	Generalization to Equality and Inequality Constraints

	Advanced Methods
	Non-Differentiable Convex Functions
	The Proximal Operator Approach
	Minimization of the Sum of Two Functions

