Introduction to Optimization

Romain Couillet and Ronald Phlypo

December 3, 2020

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 1/88

Outline

Motivation

Basics of Convex Optimization

Convex Sets Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization Convex Sets

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Main objective

Objective of the class: solve the problem

Find
$$x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$$
 (1)

・ ・ ・ ● ・ ・ 注 ・ ・ 注 ・ うへで 4/88

for some function $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$.

Main objective

Objective of the class: solve the problem

Find
$$x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$$
 (1)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ・ ● ● ● ● ◆ 0 へ ● 4/88

for some function $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$.

Remark

 $\operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$ is a subset of \mathcal{X} (may be empty, a singleton, a discrete set, an uncountable set).

Main objective

Objective of the class: solve the problem

Find
$$x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$$
 (1)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 4/88

for some function $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$.

Remark

 $\operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$ is a subset of \mathcal{X} (may be empty, a singleton, a discrete set, an uncountable set).

- f is the cost, penalty, or objective function;
- $\Omega = S \cap X$ is the set of constraints S restricted to X.

Specifying f

Example (1. Portfolio Optimization)

Setting:

- n assets;
- ▶ at time t, return $[x_t]_i$ for asset i, with $\mathbb{E}[x_t] = \mu$ and $Cov[x_t] = C$;
- investment of wealth 1 across assets $[w]_1, \ldots, [w]_n, \sum_{i=1}^n [w]_i = 1$.

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の < で 6/88

Example (1. Portfolio Optimization)

Setting:

- n assets;
- ▶ at time t, return $[x_t]_i$ for asset i, with $\mathbb{E}[x_t] = \mu$ and $Cov[x_t] = C$;
- investment of wealth 1 across assets $[w]_1, \ldots, [w]_n, \sum_{i=1}^n [w]_i = 1$.

Objective:

Optimal expected gain:

$$\operatorname{argmax}_{w \in \mathbb{R}^n} \mathbb{E}[w^{\mathsf{T}} x_t] = w^{\mathsf{T}} \mu$$
, such that $\sum_{i=1}^n [w]_i = 1$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 6/88

Example (1. Portfolio Optimization)

Setting:

- n assets;
- ▶ at time t, return $[x_t]_i$ for asset i, with $\mathbb{E}[x_t] = \mu$ and $Cov[x_t] = C$;
- investment of wealth 1 across assets $[w]_1, \ldots, [w]_n, \sum_{i=1}^n [w]_i = 1$.

Objective:

Optimal expected gain:

$$\operatorname{argmax}_{w \in \mathbb{R}^n} \mathbb{E}[w^{\mathsf{T}} \mathsf{x}_t] = w^{\mathsf{T}} \mu$$
, such that $\sum_{i=1}^n [w]_i = 1$.

Risk minimization:

$$\operatorname{argmin}_{w\in\mathbb{R}^n}\mathbb{E}[|w^{\mathsf{T}}(x_t-\mu)|^2], ext{ such that } \sum_{i=1}^n [w]_i=1$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 6/88

Example (1. Portfolio Optimization)

Setting:

- n assets;
- ▶ at time t, return $[x_t]_i$ for asset i, with $\mathbb{E}[x_t] = \mu$ and $Cov[x_t] = C$;
- investment of wealth 1 across assets $[w]_1, \ldots, [w]_n, \sum_{i=1}^n [w]_i = 1$.

Objective:

Optimal expected gain:

$$\operatorname{argmax}_{w \in \mathbb{R}^n} \mathbb{E}[w^\mathsf{T} \mathsf{x}_t] = w^\mathsf{T} \mu$$
, such that $\sum_{i=1}^n [w]_i = 1$.

Risk minimization:

$$\operatorname{argmin}_{w\in\mathbb{R}^n}\mathbb{E}[|w^{\mathsf{T}}(\mathsf{x}_t-\mu)|^2], ext{ such that } \sum_{i=1}^n [w]_i=1.$$

Risk minimization under constrained expected gain g:

$$\operatorname{argmin}_{w \in \mathbb{R}^n} \mathbb{E}[|w^{\mathsf{T}}(x_t - \mu)|^2], \text{ such that } \sum_{i=1}^n [w]_i = 1 \text{ and } \mathbb{E}[w^{\mathsf{T}}x_t] \ge g.$$

Example (1. Portfolio Optimization)

Objective:

Risk minimization with non-negativity constraint:

$$\operatorname{argmin}_{w \in \mathbb{R}^n} \mathbb{E}[|w^{\mathsf{T}}(x_t - \mu)|^2], \text{ such that } \sum_{i=1}^n [w]_i = 1 \text{ and } \forall i, \ [w]_i \ge 0.$$

◆□ ▶ ◆ □ ▶ ↓ ■ ▶ ↓

Example (1. Portfolio Optimization)

Objective:

Risk minimization with non-negativity constraint:

$$\operatorname{argmin}_{w \in \mathbb{R}^n} \mathbb{E}[|w^{\mathsf{T}}(x_t - \mu)|^2], \text{ such that } \sum_{i=1}^n [w]_i = 1 \text{ and } \forall i, \ [w]_i \ge 0.$$

Overview:

Without inequality constraint, Lagrange multipliers give the solution:

$$w^{\star} = \frac{C^{-1} \mathbf{1}_n}{\mathbf{1}_n^{\mathsf{T}} C^{-1} \mathbf{1}_n}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Example (1. Portfolio Optimization)

Objective:

Risk minimization with non-negativity constraint:

$$\operatorname{argmin}_{w \in \mathbb{R}^n} \mathbb{E}[|w^{\mathsf{T}}(x_t - \mu)|^2], \text{ such that } \sum_{i=1}^n [w]_i = 1 \text{ and } \forall i, \ [w]_i \ge 0.$$

Overview:

Without inequality constraint, Lagrange multipliers give the solution:

$$w^{\star} = \frac{C^{-1} \mathbf{1}_n}{\mathbf{1}_n^{\mathsf{T}} C^{-1} \mathbf{1}_n}.$$

With inequality constraint, interior point method (Lab Session 1), or proximal point method (Lab Session 2).

Example (2. Support Vector Machines) **Setting**:

- Data points and labels $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{\pm 1\};$
- Separating hyperplane of \mathbb{R}^n of the form $\mathcal{H} = \{x \mid x^T w^* + b^* = 0\}.$

Example (2. Support Vector Machines) **Setting**:

- Data points and labels $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{\pm 1\};$
- Separating hyperplane of ℝⁿ of the form H = {x | x^Tw^{*} + b^{*} = 0}.

Objective: Maximize hyperplane "margin",

・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ り へ で 8/88

Example (2. Support Vector Machines) **Setting**:

- Data points and labels $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{\pm 1\};$
- Separating hyperplane of ℝⁿ of the form H = {x | x^Tw^{*} + b^{*} = 0}.

Objective: Maximize hyperplane "margin", or equivalently

$$(w^{\star}, b^{\star}) \in \operatorname{argmin}_{w, b \in \mathbb{R}^n} \left\{ \|w\|^2 \right\}$$
 such that $y_i(w^{\mathsf{T}}x_i + b) \geq 1$.

Example (2. Support Vector Machines) **Setting**:

- Data points and labels (x₁, y₁),..., (x_m, y_m) ∈ ℝⁿ × {±1};
- Separating hyperplane of \mathbb{R}^n of the form $\mathcal{H} = \{x \mid x^T w^* + b^* = 0\}.$

Objective: Maximize hyperplane "margin", or equivalently

 $(w^{\star}, b^{\star}) \in \operatorname{argmin}_{w, b \in \mathbb{R}^n} \left\{ \|w\|^2 \right\}$ such that $y_i(w^{\mathsf{T}}x_i + b) \geq 1$.

Why? Distance between "supporting" hyperplanes $\mathcal{H}_{\pm 1} : x^T w^* + b^* = \pm 1$ for all $||x_{\pm 1} - x_{-1}||$, $x_{\pm 1} \in \mathcal{H}_{\pm 1}$: implies $(x_{\pm 1} - x_{-1})^T w^* = 2$. Distance max for $||w^*||$ min.

Example (2. Support Vector Machines) **Setting**:

- Data points and labels (x₁, y₁),..., (x_m, y_m) ∈ ℝⁿ × {±1};
- Separating hyperplane of \mathbb{R}^n of the form $\mathcal{H} = \{x \mid x^T w^* + b^* = 0\}.$

Objective: Maximize hyperplane "margin", or equivalently

$$(w^{\star}, b^{\star}) \in \operatorname{argmin}_{w, b \in \mathbb{R}^n} \left\{ \|w\|^2 \right\}$$
 such that $y_i(w^{\mathsf{T}}x_i + b) \geq 1$.

Why? Distance between "supporting" hyperplanes $\mathcal{H}_{\pm 1} : x^T w^* + b^* = \pm 1$ for all $||x_{\pm 1} - x_{-1}||$, $x_{\pm 1} \in \mathcal{H}_{\pm 1}$: implies $(x_{\pm 1} - x_{-1})^T w^* = 2$. Distance max for $||w^*||$ min.

But argmin can be empty! Relaxation to "soft-margin" SVM:

$$(w^{\star}, b^{\star}) \in \operatorname{argmin}_{w, b \in \mathbb{R}^p} \left\{ \frac{1}{m} \sum_{i=1}^m \max(0, 1 - y_i [w^{\mathsf{T}} x_i + b]) + \lambda \|w\|^2 \right\}$$

for some $\lambda > 0$.

Example (2. Support Vector Machines) **Setting**:

- ▶ Data points and labels $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^n \times \{\pm 1\};$
- Separating hyperplane of ℝⁿ of the form H = {x | x^Tw^{*} + b^{*} = 0}.

Objective: Maximize hyperplane "margin", or equivalently

$$(w^{\star}, b^{\star}) \in \operatorname{argmin}_{w, b \in \mathbb{R}^n} \left\{ \|w\|^2 \right\}$$
 such that $y_i(w^{\mathsf{T}}x_i + b) \geq 1$.

Why? Distance between "supporting" hyperplanes $\mathcal{H}_{\pm 1} : x^T w^* + b^* = \pm 1$ for all $||x_{\pm 1} - x_{-1}||$, $x_{\pm 1} \in \mathcal{H}_{\pm 1}$: implies $(x_{\pm 1} - x_{-1})^T w^* = 2$. Distance max for $||w^*||$ min.

But argmin can be empty! Relaxation to "soft-margin" SVM:

$$(w^{\star}, b^{\star}) \in \operatorname{argmin}_{w, b \in \mathbb{R}^p} \left\{ \frac{1}{m} \sum_{i=1}^m \max(0, 1 - y_i [w^{\mathsf{T}} x_i + b]) + \lambda \|w\|^2 \right\}$$

for some $\lambda > 0$.

Solution: Interior point or proximal methods.

Example (3. Compressive Sensing) **Setting**:

For retrieve $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^p$, $p \ll n$, with x a sparse vector;

Example (3. Compressive Sensing) Setting:

• retrieve $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^p$, $p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_1 -relaxation"

 $x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^n} \|x\|_1$ such that y = Ax

with $||x||_1 = \sum_{i=1}^n |[x]_i|$.

Example (3. Compressive Sensing) Setting:

• retrieve $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^p$, $p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_1 -relaxation"

 $x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^n} \|x\|_1$ such that y = Ax

with $||x||_1 = \sum_{i=1}^n |[x]_i|$.

Remark 1: $\|\cdot\|_1$ is not differentiable.

Example (3. Compressive Sensing) Setting:

• retrieve $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^p$, $p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via "l1-relaxation"

 $x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^n} \|x\|_1$ such that y = Ax

with $||x||_1 = \sum_{i=1}^n |[x]_i|$.

Remark 1: $\|\cdot\|_1$ is not differentiable.

Remark 2: Denoting $\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $\imath_{\Omega}(x) = +\infty$ if $x \notin \Omega$,

$$x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}} \left\{ \|x\|_{1} + \imath_{\{y = Ax\}} \right\}$$

Example (3. Compressive Sensing) Setting:

• retrieve $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^p$, $p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via "l1-relaxation"

 $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^n} \|x\|_1$ such that y = Ax

with $||x||_1 = \sum_{i=1}^n |[x]_i|$.

Remark 1: $\|\cdot\|_1$ is not differentiable.

Remark 2: Denoting $\iota_{\Omega}(x) = 0$ if $x \in \Omega$ and $\iota_{\Omega}(x) = +\infty$ if $x \notin \Omega$,

 $x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}} \left\{ \|x\|_{1} + \imath_{\{y = Ax\}} \right\} \\ \equiv \operatorname{argmin}_{x \in \mathbb{R}^{n}} \left\{ f_{1}(x) + f_{2}(x) \right\}$

with f_1, f_2 convex non-differentiable.

Example (3. Compressive Sensing) Setting:

• retrieve $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^p$, $p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via "l1-relaxation"

 $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^n} \|x\|_1$ such that y = Ax

with $||x||_1 = \sum_{i=1}^n |[x]_i|$.

Remark 1: $\|\cdot\|_1$ is not differentiable.

Remark 2: Denoting $\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $\imath_{\Omega}(x) = +\infty$ if $x \notin \Omega$,

 $x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}} \left\{ \|x\|_{1} + \imath_{\{y = Ax\}} \right\} \\ \equiv \operatorname{argmin}_{x \in \mathbb{R}^{n}} \left\{ f_{1}(x) + f_{2}(x) \right\}$

with f_1, f_2 convex non-differentiable.

Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

4 ロ ト 4 団 ト 4 王 ト 4 王 ト 王 の Q C 9/88

Outline

Motivation

Basics of Convex Optimization

Convex Sets Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Convex Sets

Definition (Convex Set)

 $\mathcal{C} \subset \mathcal{X}$ convex iif $\forall x, y \in \mathcal{C}$ and $\forall \lambda \in [0, 1]$,

$$(1 - \lambda)x + \lambda y = x + \lambda(y - x) \in C.$$

Convex Sets

$$(1-\lambda)x + \lambda y = x + \lambda(y-x) \in C$$

Figure: Convex sets and non-convex sets (stroke out).

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ C 12/88

Remark (Ensemble manipulations on convex sets)

For convex sets C_1 , C_2 ,

- C_i can be open, closed, bounded, unbounded.
- $C_1 \cap C_2$ is convex.
- $C_1 \cup C_2$ is not necessarily convex.

Remark (Ensemble manipulations on convex sets)

For convex sets C_1 , C_2 ,

- C_i can be open, closed, bounded, unbounded.
- $C_1 \cap C_2$ is convex.
- $C_1 \cup C_2$ is not necessarily convex.

Remark (List of convex sets)

The following ensembles are convex:

- line, segment, half-line, Rⁿ
- a vector subspace
- ▶ hyperplanes $\{x, x^{\mathsf{T}}a = b\}$, half-spaces $\{x, x^{\mathsf{T}}a \leq b\}$
- ▶ balls $\mathcal{B}(x_c; r) \equiv \{x, ||x x_c|| \le r\}$ and ellipsoids $\{x, (x x_c)^T P^{-1}(x x_c) \le r\}$.

Exercise (1. Ball convexity) Show that $\mathcal{B}(x_c; r) \equiv \{x, ||x - x_c|| \le r\}$ is convex.

Exercise (1. Ball convexity) Show that $\mathcal{B}(x_c; r) \equiv \{x, ||x - x_c|| \le r\}$ is convex.

Proof of ball convexity.

Let $x, y \in \mathcal{B}(x_c; r)$. Then,

 $\|\lambda x + (1-\lambda)y - x_c\| = \|\lambda(x-x_c) + (1-\lambda)(y-x_c)\|$

Exercise (1. Ball convexity) Show that $\mathcal{B}(x_c; r) \equiv \{x, ||x - x_c|| \le r\}$ is convex.

Proof of ball convexity.

Let $x, y \in \mathcal{B}(x_c; r)$. Then,

 $\|\lambda x+(1-\lambda)y-x_c\|=\|\lambda(x-x_c)+(1-\lambda)(y-x_c)\|\leq \lambda\|x-x_c\|+(1-\lambda)\|y-x_c\|\leq r.$

Exercise (1. Ball convexity) Show that $\mathcal{B}(x_c; r) \equiv \{x, ||x - x_c|| \le r\}$ is convex.

Proof of ball convexity.

Let $x, y \in \mathcal{B}(x_c; r)$. Then,

 $\|\lambda x+(1-\lambda)y-x_c\|=\|\lambda(x-x_c)+(1-\lambda)(y-x_c)\|\leq \lambda\|x-x_c\|+(1-\lambda)\|y-x_c\|\leq r.$

Exercise (2. Polyhedron convexity) For $A \in \mathbb{R}^{l \times n}$, $B \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{l}$, $d \in \mathbb{R}^{m}$, show the convexity of polyhedron

$$\mathcal{P} = \{x, Ax \leq b, Cx = d\}.$$

Figure: A polyhedron.
Definition (Convex combinations)

The set of convex combinations of $x_1, \ldots, x_k \in \mathcal{S}$ is the set

$$\left\{\theta_1 x_1 + \ldots + \theta_k x_k \mid \sum_{i=1}^k \theta_i = 1, \ \theta_1, \ldots, \theta_k \ge 0\right\}.$$

<□ > < □ > < □ > < 三 > < 三 > 三 の < ⊙ 15/88

Definition (Convex combinations)

The set of convex combinations of $x_1, \ldots, x_k \in \mathcal{S}$ is the set

$$\left\{\theta_1 x_1 + \ldots + \theta_k x_k \mid \sum_{i=1}^k \theta_i = 1, \ \theta_1, \ldots, \theta_k \ge 0\right\}.$$

This is a convex set.

Definition (Convex combinations)

The set of convex combinations of $x_1, \ldots, x_k \in \mathcal{S}$ is the set

$$\left\{\theta_1 x_1 + \ldots + \theta_k x_k \mid \sum_{i=1}^k \theta_i = 1, \ \theta_1, \ldots, \theta_k \ge 0\right\}.$$

This is a convex set.

The polyhedron (Figure 2) is the set of convex combinations of x_1, \ldots, x_5 .

Definition (Convex combinations)

The set of convex combinations of $x_1, \ldots, x_k \in S$ is the set

$$\left\{\theta_1 x_1 + \ldots + \theta_k x_k \mid \sum_{i=1}^k \theta_i = 1, \ \theta_1, \ldots, \theta_k \ge 0\right\}.$$

This is a convex set.

The polyhedron (Figure 2) is the set of convex combinations of x_1, \ldots, x_5 .

Definition (Convex hull)

The convex hull $conv(\mathcal{X})$ is the set of all convex combinations of points in \mathcal{X} ,

$$\operatorname{conv}(\mathcal{X}) = \left\{ heta_1 x_1 + \ldots + heta_k x_k \mid \sum_{i=1}^k heta_i = 1, \ heta_1, \ldots, heta_k \geq 0, \ x_1, \ldots, x_k \in \mathcal{X}, \ k \geq 0
ight\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ - ∽ へ [∞] 15/88

Definition (Convex combinations)

The set of convex combinations of $x_1, \ldots, x_k \in S$ is the set

$$\left\{\theta_1 x_1 + \ldots + \theta_k x_k \mid \sum_{i=1}^k \theta_i = 1, \ \theta_1, \ldots, \theta_k \ge 0\right\}.$$

This is a convex set.

The polyhedron (Figure 2) is the set of convex combinations of x_1, \ldots, x_5 .

Definition (Convex hull)

The convex hull $conv(\mathcal{X})$ is the set of all convex combinations of points in \mathcal{X} ,

$$\operatorname{conv}(\mathcal{X}) = \left\{ \theta_1 x_1 + \ldots + \theta_k x_k \mid \sum_{i=1}^k \theta_i = 1, \ \theta_1, \ldots, \theta_k \ge 0, \ x_1, \ldots, x_k \in \mathcal{X}, \ k \ge 0 \right\}.$$

Property (Convex sets and convex hulls)

 $\operatorname{conv}(\mathcal{X})$ is the smallest convex set containing \mathcal{X} : \mathcal{X} is convex iif $\mathcal{X} = \operatorname{conv}(\mathcal{X})$.

Outline

Motivation

Basics of Convex Optimization Convex Sets Convex Functions

Basic Algorithms for Convex Optimization Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Definition (Epigraph of a function)

The epigraph of $f : \mathcal{X} \to \mathbb{R}$ is the set

$$\operatorname{epi}(f) = \{(x, c) \in \mathcal{X} \times \mathbb{R}, f(x) \leq c\}$$

Figure: Epigraph of a function $f : \mathbb{R} \to \mathbb{R}$.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の < ℃ 17/88

Definition (Epigraph of a function)

The epigraph of $f : \mathcal{X} \to \mathbb{R}$ is the set

$$\operatorname{epi}(f) = \{(x, c) \in \mathcal{X} \times \mathbb{R}, \ f(x) \leq c\}.$$

Figure: Epigraph of a function $f : \mathbb{R} \to \mathbb{R}$.

Definition (Convex function)

A function $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif epi(f) is a convex set.

Property (Convex function) $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in [0, 1]$,

 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$

Property (Convex function) $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in [0, 1]$,

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ C 18/88

Property (Convex function) $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in [0, 1]$,

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$

Proof. ⇒ Let $x, y \in \mathcal{X}$. Then $(x, f(x)), (y, f(y)) \in epi(f)$.

Property (Convex function) $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in [0, 1]$,

 $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$

Proof.

 $\Rightarrow \text{Let } x, y \in \mathcal{X}. \text{ Then } (x, f(x)), (y, f(y)) \in \text{epi}(f).$ Thus so is $(\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)).$

Property (Convex function) $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in [0, 1]$,

Proof.

 $\Rightarrow \text{Let } x, y \in \mathcal{X}. \text{ Then } (x, f(x)), (y, f(y)) \in \text{epi}(f).$ Thus so is $(\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)).$ By definition of epi(f), this implies $\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$

Property (Convex function) $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

Proof.

 $\Rightarrow \text{Let } x, y \in \mathcal{X}. \text{ Then } (x, f(x)), (y, f(y)) \in \text{epi}(f).$ Thus so is $(\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)).$ By definition of epi(f), this implies $\lambda f(x) + (1 - \lambda)f(y) \geq f(\lambda x + (1 - \lambda)y).$ $\Leftrightarrow \text{For } x, y \in \mathcal{X}, (\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \in \text{epi}(f) \text{ and so epi}(f) \text{ is convex.}$

Reminder. For *f* differentiable at *x*, $\nabla f(x) = \left\{\frac{\partial f}{\partial x_i}(x)\right\}_{i=1}^n$.

Reminder. For *f* differentiable at *x*, $\nabla f(x) = \left\{\frac{\partial f}{\partial x_i}(x)\right\}_{i=1}^n$.

Definition (Domain of a function)

The domain of $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is the set $\operatorname{dom}(f) = \{x, f(x) < +\infty\}$.

Reminder. For *f* differentiable at *x*, $\nabla f(x) = \left\{\frac{\partial f}{\partial x_i}(x)\right\}_{i=1}^n$.

Definition (Domain of a function)

The domain of $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is the set $\operatorname{dom}(f) = \{x, f(x) < +\infty\}$.

Theorem (First order conditions)

For $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ differentiable in its domain, f convex iif, $\forall x, y \in \text{dom}(f)$,

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x).$$

Reminder. For *f* differentiable at *x*, $\nabla f(x) = \left\{\frac{\partial f}{\partial x_i}(x)\right\}_{i=1}^n$.

Definition (Domain of a function)

The domain of $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ is the set $\operatorname{dom}(f) = \{x, f(x) < +\infty\}$.

Theorem (First order conditions)

For $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ differentiable in its domain, f convex iif, $\forall x, y \in \text{dom}(f)$,

$$f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x).$$

Differentiable f: f convex if all tangent hyperplanes of epi(f) are below the epigraph.

Proof.

 \Rightarrow *f* convex implies, for $\lambda \in [0, 1]$, $x, y \in \mathcal{X}$,

 $f(\lambda x + (1 - \lambda)y) = f(y + \lambda(x - y)) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda(f(x) - f(y)) + f(y)$

Proof. \Rightarrow *f* convex implies, for $\lambda \in [0, 1]$, $x, y \in \mathcal{X}$,

 $f(\lambda x + (1 - \lambda)y) = f(y + \lambda(x - y)) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda(f(x) - f(y)) + f(y)$

or equivalently

$$\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y).$$

Proof. $\Rightarrow f \text{ convex implies, for } \lambda \in [0, 1], x, y \in \mathcal{X},$ $f(\lambda x + (1 - \lambda)y) = f(y + \lambda(x - y)) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda(f(x) - f(y)) + f(y)$ or equivalently

$$\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y).$$

Taking the limit $y \downarrow 0$ (for this: $g(\lambda) = f(y + \lambda(x - y)) \Rightarrow g'(\lambda) = \sum_{i=1}^{n} \frac{\partial f}{\partial [x]_i} \frac{d[x]_i}{d\lambda}$),

$$\nabla f(y)^{\mathsf{T}}(x-y) \leq f(x) - f(y).$$

Proof. $\Rightarrow f \text{ convex implies, for } \lambda \in [0, 1], x, y \in \mathcal{X},$ $f(\lambda x + (1 - \lambda)y) = f(y + \lambda(x - y)) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda(f(x) - f(y)) + f(y)$ or equivalently

$$\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y).$$

Taking the limit $y \downarrow 0$ (for this: $g(\lambda) = f(y + \lambda(x - y)) \Rightarrow g'(\lambda) = \sum_{i=1}^{n} \frac{\partial f}{\partial [x]_i} \frac{d[x]_i}{d\lambda}$),

$$\nabla f(y)^{\mathsf{T}}(x-y) \leq f(x) - f(y).$$

 $\leftarrow \text{For } z = \lambda x + (1 - \lambda)y,$ $(*) \quad f(x) \ge f(z) + \nabla f(z)^{\mathsf{T}} (x - z)$

$$(**) f(y) \ge f(z) + \nabla f(z)^{\mathsf{T}} (y - z).$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 20/88

Proof. $\Rightarrow f \text{ convex implies, for } \lambda \in [0, 1], x, y \in \mathcal{X},$ $f(\lambda x + (1 - \lambda)y) = f(y + \lambda(x - y)) \le \lambda f(x) + (1 - \lambda)f(y) = \lambda(f(x) - f(y)) + f(y)$ or equivalently

$$\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y).$$

Taking the limit $y \downarrow 0$ (for this: $g(\lambda) = f(y + \lambda(x - y)) \Rightarrow g'(\lambda) = \sum_{i=1}^{n} \frac{\partial f}{\partial [x]_i} \frac{d[x]_i}{d\lambda}$),

$$\nabla f(y)^{\mathsf{T}}(x-y) \leq f(x) - f(y).$$

 $\leftarrow \text{For } z = \lambda x + (1 - \lambda)y,$ $(*) \quad f(x) \ge f(z) + \nabla f(z)^{\mathsf{T}}(x - z)$ $(**) \quad f(y) \ge f(z) + \nabla f(z)^{\mathsf{T}}(y - z).$

Then $\lambda(*) + (1 - \lambda)(**)$ gives

 $\lambda f(x) + (1-\lambda)f(y) \ge f(z) = f(\lambda x + (1-\lambda)y).$

Detailed derivation of the first order conditions for n = 1:

Detailed derivation of the first order conditions for n = 1:

▶ hyperplane \mathcal{H} equation given by $\omega^{\mathsf{T}}(y, c_y) + C = 0$, with $(x, f(x)) \in \mathcal{H}$

Detailed derivation of the first order conditions for n = 1:

- ▶ hyperplane \mathcal{H} equation given by $\omega^{\mathsf{T}}(y, c_y) + C = 0$, with $(x, f(x)) \in \mathcal{H}$
- ▶ hence C = f(x) f'(x)x (because $(f'(x), -1)^T(x, f(x)) + C = 0$)

Detailed derivation of the first order conditions for n = 1:

- ▶ hyperplane \mathcal{H} equation given by $\omega^{\mathsf{T}}(y, c_y) + C = 0$, with $(x, f(x)) \in \mathcal{H}$
- ▶ hence C = f(x) f'(x)x (because $(f'(x), -1)^{T}(x, f(x)) + C = 0)$
- using $c_y \leq f(y)$, one retrieves the first order conditions.

Important consequence: Fermat's rule,

- Theorem (Fermat's rule)
- $x^{\star} \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^{\star}) = 0$.

Important consequence: Fermat's rule,

Theorem (Fermat's rule)

 $x^{\star} \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^{\star}) = 0$.

Proof.

 \Rightarrow Assume $\nabla f(x^*) \neq 0$.

Important consequence: Fermat's rule,

Theorem (Fermat's rule) $x^* \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^*) = 0$.

Proof.

 $\Rightarrow \text{Assume } \nabla f(x^*) \neq 0.$ Then, for $h \in \mathcal{X}$ and $\epsilon > 0$,

$$f(x^* + \epsilon h) = f(x^*) + \epsilon \nabla f(x^*)^\mathsf{T} h + O(\epsilon^2)$$

$$f(x^* - \epsilon h) = f(x^*) - \epsilon \nabla f(x^*)^\mathsf{T} h + O(\epsilon^2).$$

Important consequence: Fermat's rule,

Theorem (Fermat's rule) $x^* \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^*) = 0$.

Proof.

 $\Rightarrow \text{Assume } \nabla f(x^*) \neq 0.$ Then, for $h \in \mathcal{X}$ and $\epsilon > 0$,

$$f(x^* + \epsilon h) = f(x^*) + \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2)$$

$$f(x^* - \epsilon h) = f(x^*) - \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2).$$

If $\nabla f(x^*)^{\mathsf{T}} h \neq 0$, contradiction as $\epsilon \to 0!$

Important consequence: Fermat's rule,

Theorem (Fermat's rule) $x^* \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^*) = 0$.

Proof.

 $\Rightarrow \text{Assume } \nabla f(x^*) \neq 0.$ Then, for $h \in \mathcal{X}$ and $\epsilon > 0$,

$$f(x^* + \epsilon h) = f(x^*) + \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2)$$

$$f(x^* - \epsilon h) = f(x^*) - \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2).$$

If $\nabla f(x^*)^T h \neq 0$, contradiction as $\epsilon \to 0$! So $\nabla f(x^*)^T h = 0$.

Important consequence: Fermat's rule,

Theorem (Fermat's rule) $x^* \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^*) = 0$.

Proof.

 $\Rightarrow \text{Assume } \nabla f(x^{\star}) \neq 0.$ Then, for $h \in \mathcal{X}$ and $\epsilon > 0$,

$$f(x^* + \epsilon h) = f(x^*) + \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2)$$

$$f(x^* - \epsilon h) = f(x^*) - \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2).$$

If $\nabla f(x^*)^{\mathsf{T}} h \neq 0$, contradiction as $\epsilon \to 0$! So $\nabla f(x^*)^{\mathsf{T}} h = 0$. True for all *h*: this implies $\nabla f(x^*) = 0$.

Important consequence: Fermat's rule,

Theorem (Fermat's rule) $x^* \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^*) = 0$.

Proof.

 $\Rightarrow \text{Assume } \nabla f(x^*) \neq 0.$ Then, for $h \in \mathcal{X}$ and $\epsilon > 0$,

$$f(x^* + \epsilon h) = f(x^*) + \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2)$$

$$f(x^* - \epsilon h) = f(x^*) - \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2).$$

If $\nabla f(x^*)^{\mathsf{T}} h \neq 0$, contradiction as $\epsilon \to 0$! So $\nabla f(x^*)^{\mathsf{T}} h = 0$. True for all *h*: this implies $\nabla f(x^*) = 0$.

 $\leftarrow \text{ If } \nabla f(x^*) = 0 \text{ with } f \text{ convex}, \forall x \in \mathcal{X},$ $f(x) \ge f(x^*) + \nabla f(x^*)^{\mathsf{T}}(x - x^*) = f(x^*)$

Important consequence: Fermat's rule,

Theorem (Fermat's rule) $x^* \in \mathcal{X}$ minimizes $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex iif $\nabla f(x^*) = 0$.

Proof.

 $\Rightarrow \text{Assume } \nabla f(x^{\star}) \neq 0.$ Then, for $h \in \mathcal{X}$ and $\epsilon > 0$,

$$f(x^* + \epsilon h) = f(x^*) + \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2)$$

$$f(x^* - \epsilon h) = f(x^*) - \epsilon \nabla f(x^*)^{\mathsf{T}} h + O(\epsilon^2).$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ ⑦ Q @ 22/88

If $\nabla f(x^*)^{\mathsf{T}} h \neq 0$, contradiction as $\epsilon \to 0$! So $\nabla f(x^*)^{\mathsf{T}} h = 0$. True for all *h*: this implies $\nabla f(x^*) = 0$.

 $\leftarrow \text{ If } \nabla f(x^*) = 0 \text{ with } f \text{ convex}, \forall x \in \mathcal{X},$ $f(x) \ge f(x^*) + \nabla f(x^*)^{\mathsf{T}}(x - x^*) = f(x^*)$

so x^* minimizes f.

Twice-differentiable convex function

Reminder: For *f* twice-differentiable at *x*, Hessian $\nabla^2 f(x) = \{\frac{\partial^2 f}{\partial[x]_i \partial[x]_i}\}_{i,j=1}^n$.
Reminder: For f twice-differentiable at x, Hessian $\nabla^2 f(x) = \{\frac{\partial^2 f}{\partial [x]_i \partial [x]_i}\}_{i,j=1}^n$.

Theorem (Second order conditions)

For $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ twice differentiable, f is convex on its domain iif $\nabla^2 f(x)$ is semi-definite positive for all $x \in \text{dom}(f)$.

Reminder: For f twice-differentiable at x, Hessian $\nabla^2 f(x) = \{\frac{\partial^2 f}{\partial [x]_i \partial [x]_j}\}_{i,j=1}^n$.

Theorem (Second order conditions)

For $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ twice differentiable, f is convex on its domain iif $\nabla^2 f(x)$ is semi-definite positive for all $x \in \text{dom}(f)$.

Remark (Case n = 1) For n = 1, $\nabla^2 f(x) = f''(x)$.

Reminder: For f twice-differentiable at x, Hessian $\nabla^2 f(x) = \{\frac{\partial^2 f}{\partial [x]_i \partial [x]_j}\}_{i,j=1}^n$.

Theorem (Second order conditions)

For $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ twice differentiable, f is convex on its domain iif $\nabla^2 f(x)$ is semi-definite positive for all $x \in \text{dom}(f)$.

Remark (Case n = 1)

For n = 1, $\nabla^2 f(x) = f''(x)$. Thus, f convex iif f''(x) > 0 (or equivalently f'(x) non-decreasing).

 $\begin{array}{l} \mathsf{Proof.} \\ \Rightarrow \mathsf{By Taylor-Lagrange}, \ \forall h \in \mathcal{X} \ \mathsf{and} \ \forall \epsilon > \mathsf{0}, \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0}, \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$.

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By} \; \mathsf{Taylor-Lagrange}, \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0}, \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x + \epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h$

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0,} \end{array}$

$$\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x + \epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, \ h^{\mathsf{T}} \left[\nabla^2 f(x + \gamma h) \right] h \ge 0.$

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0,} \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x + \epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, \ h^{\mathsf{T}} \left[\nabla^2 f(x + \gamma h) \right] h \ge 0.$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}$, $h^{\mathsf{T}} [\nabla^2 f(x)] h \ge 0$, i.e., $\nabla^2 f \succeq 0$.

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0,} \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x+\epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, \ h^{\mathsf{T}} \left[\nabla^2 f(x+\gamma h) \right] h \ge 0.$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}$, $h^{\mathsf{T}} [\nabla^2 f(x)] h \ge 0$, i.e., $\nabla^2 f \succeq 0$.

 $\Leftarrow \text{ Define } g: [0,1] \rightarrow \mathbb{R} \cup \{+\infty\}, \ g(t) = f(tx + (1-t)y).$

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0}, \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x + \epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, \ h^{\mathsf{T}} \left[\nabla^2 f(x + \gamma h) \right] h \ge 0.$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\mathsf{T}} [\nabla^2 f(x)] h \ge 0$, i.e., $\nabla^2 f \succeq 0$.

 $\leftarrow \text{ Define } g: [0,1] \to \mathbb{R} \cup \{+\infty\}, \ g(t) = f(tx + (1-t)y).$ By chain rule $(g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial [z]_i} \frac{d[z]_i(t)}{dt} \text{ with } g(t) \equiv f(z(t)), \text{ and similarly for } g''(t))$

$$g''(t) = (x - y)^{\mathsf{T}} \left[\nabla^2 f(tx + (1 - t)y) \right] (x - y) \ge 0 \quad (\text{since } \nabla^2 f \succeq 0).$$

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0}, \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x + \epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, \ h^{\mathsf{T}} \left[\nabla^2 f(x + \gamma h) \right] h \ge 0.$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\mathsf{T}} [\nabla^2 f(x)] h \ge 0$, i.e., $\nabla^2 f \succeq 0$.

 $\leftarrow \text{ Define } g: [0,1] \to \mathbb{R} \cup \{+\infty\}, \ g(t) = f(tx + (1-t)y).$ By chain rule $(g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial [z]_i} \frac{d[z]_i(t)}{dt} \text{ with } g(t) \equiv f(z(t)), \text{ and similarly for } g''(t))$

$$g''(t) = (x - y)^{\mathsf{T}} \left[\nabla^2 f(tx + (1 - t)y) \right] (x - y) \ge 0 \quad (\text{since } \nabla^2 f \succeq 0).$$

By Taylor-Lagrange, we then have, for some $\zeta_x,\zeta_y\in[0,1],$

$$(*) f(y) = g(0) = g(t) + (0 - t)g'(t) + rac{1}{2}t^2g''(\zeta_y) \ge g(t) - tg'(t)$$

 $(**) f(x) = g(1) = g(t) + (1 - t)g'(t) + rac{1}{2}t^2g''(\zeta_x) \ge g(t) + (1 - t)g'(t).$

 $\begin{array}{l} \mathsf{Proof.}\\ \Rightarrow \; \mathsf{By \; Taylor-Lagrange, } \; \forall h \in \mathcal{X} \; \mathsf{and} \; \forall \epsilon > \mathsf{0}, \end{array}$

 $\exists \gamma \in (0, \epsilon), f(x + \epsilon h) = f(x) + \epsilon h^{\mathsf{T}} \nabla f(x) + \epsilon^2 h^{\mathsf{T}} \nabla^2 f(x + \gamma h) h$

Why? 1D Taylor-Lagrange by differentiating $g : \epsilon \mapsto f(x + \epsilon h)$. But by convexity,

 $f(x + \epsilon h) \ge f(x) + \epsilon \nabla f(x)^{\mathsf{T}} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, \ h^{\mathsf{T}} \left[\nabla^2 f(x + \gamma h) \right] h \ge 0.$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\mathsf{T}} [\nabla^2 f(x)] h \ge 0$, i.e., $\nabla^2 f \succeq 0$.

 $\leftarrow \text{ Define } g: [0,1] \to \mathbb{R} \cup \{+\infty\}, \ g(t) = f(tx + (1-t)y).$ By chain rule $(g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial [z]_i} \frac{d[z]_i(t)}{dt} \text{ with } g(t) \equiv f(z(t)), \text{ and similarly for } g''(t))$

$$g''(t) = (x - y)^{\mathsf{T}} \left[\nabla^2 f(tx + (1 - t)y) \right] (x - y) \ge 0 \quad (\text{since } \nabla^2 f \succeq 0).$$

By Taylor-Lagrange, we then have, for some $\zeta_x,\zeta_y\in[0,1],$

$$(*) f(y) = g(0) = g(t) + (0 - t)g'(t) + \frac{1}{2}t^{2}g''(\zeta_{y}) \ge g(t) - tg'(t)$$

$$(**) f(x) = g(1) = g(t) + (1 - t)g'(t) + \frac{1}{2}t^{2}g''(\zeta_{x}) \ge g(t) + (1 - t)g'(t).$$
Using $(1 - t)(*) + t(**)$, we conclude $tf(x) + (1 - t)f(y) \ge g(t) = f(tx + (1 - t)y).$

Outline

Motivation

Basics of Convex Optimization Convex Sets Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization Convex Sets Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent

Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 ∽ Q (~ 27/88)

Reminder: our objective is to solve

```
x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.
```

Assumption (Unconstrained Ω , differentiable f)

- ▶ f differentiable everywhere on X;
- Ω unbounded.

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions x_1, x_2, \ldots with x_{k+1} a function of x_k .

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions $x_1, x_2, ...$ with x_{k+1} a function of x_k . Algorithm terminates when either:

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions $x_1, x_2, ...$ with x_{k+1} a function of x_k . Algorithm terminates when either:

▶ $||x_{k+1} - x_k|| < \epsilon$: the algorithm no longer progresses in \mathcal{X} ;

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions $x_1, x_2, ...$ with x_{k+1} a function of x_k . Algorithm terminates when either:

- ▶ $||x_{k+1} x_k|| < \epsilon$: the algorithm no longer progresses in \mathcal{X} ;
- ▶ $|f(x_{k+1}) f(x_k)| < \epsilon$: the *cost* no longer progresses

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions $x_1, x_2, ...$ with x_{k+1} a function of x_k . Algorithm terminates when either:

- ▶ $||x_{k+1} x_k|| < \epsilon$: the algorithm no longer progresses in \mathcal{X} ;
- ► $|f(x_{k+1}) f(x_k)| < \epsilon$: the *cost* no longer progresses ($\Rightarrow x_k$ converges!);

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions $x_1, x_2, ...$ with x_{k+1} a function of x_k . Algorithm terminates when either:

- ▶ $||x_{k+1} x_k|| < \epsilon$: the algorithm no longer progresses in \mathcal{X} ;
- ► $|f(x_{k+1}) f(x_k)| < \epsilon$: the *cost* no longer progresses ($\Rightarrow x_k$ converges!);

• $\|\nabla f(x_k)\| < \epsilon$: cost almost flat

Reminder: our objective is to solve

 $x^* \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} \{f(x)\}.$

Assumption (Unconstrained Ω , differentiable f)

- f differentiable everywhere on X;
- Ω unbounded.

Definition (Iterative algorithms)

Sequentially evaluate f at positions $x_1, x_2, ...$ with x_{k+1} a function of x_k . Algorithm terminates when either:

- ||x_{k+1} − x_k|| < ε: the algorithm no longer progresses in X;</p>
- ► $|f(x_{k+1}) f(x_k)| < \epsilon$: the *cost* no longer progresses ($\Rightarrow x_k$ converges!);
- ▶ $\|\nabla f(x_k)\| < \epsilon$: cost almost flat (close to $\nabla f(x^*) = 0$ but maybe far from x^*).

Definition (Descent Method)

Descent method is an algorithm outputing $x_1, x_2, \ldots \in \mathcal{X}$ of the form

 $x_{k+1} = x_k + t_k \Delta x_k$, step size $t_k > 0$, increment Δx_k

such that $f(x_{k+1}) < f(x_k)$ if $x_k \notin \operatorname{argmin} f$ and $f(x_{k+1}) = f(x_k)$ if $x_k \in \operatorname{argmin} f$.

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

• too slow descent: we may have $\lim_k f(x_k) > f(x^*)$;

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

- too slow descent: we may have $\lim_k f(x_k) > f(x^*)$;
- $f(x_k) \rightarrow f(x^*)$ does not imply that x_k converges at all (periodic behavior of x_k !).

Remark (Convergence (or not) of descent algorithms)

For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

- ► too slow descent: we may have lim_k f(x_k) > f(x^{*});
- ▶ $f(x_k) \rightarrow f(x^*)$ does not imply that x_k converges at all (periodic behavior of x_k !).

Descent sequences either not converging (top) or not reaching minimum (bottom).

Important property: for $x_k, x_{k+1} \in \mathcal{X}$, by first order condition

 $f(x_k + t_k \Delta x_k) \geq f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$

Important property: for $x_k, x_{k+1} \in \mathcal{X}$, by first order condition

$$f(x_k + t_k \Delta x_k) \geq f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k$$

As such, letting x_1, x_2, \ldots defined by

$$x_{k+1} = x_k + t_k \Delta x_k,$$

we have

$$f(x_{k+1}) \geq f(x_k) + \nabla f(x_k)^\mathsf{T}(x_{k+1} - x_k) = f(x_k) + t_k \nabla f(x_k)^\mathsf{T} \Delta x_k.$$

Important property: for $x_k, x_{k+1} \in \mathcal{X}$, by first order condition

$$f(x_k + t_k \Delta x_k) \ge f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k$$

As such, letting x_1, x_2, \ldots defined by

$$x_{k+1} = x_k + t_k \Delta x_k,$$

we have

$$f(x_{k+1}) \ge f(x_k) + \nabla f(x_k)^{\mathsf{T}}(x_{k+1} - x_k) = f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

and thus x_1, x_2, \ldots cannot be a descent method sequence unless $\nabla f(x_k)^T \Delta x_k \leq 0$.

Important property: for $x_k, x_{k+1} \in \mathcal{X}$, by first order condition

$$f(x_k + t_k \Delta x_k) \geq f(x_k) + t_k \nabla f(x_k)^{\top} \Delta x_k.$$

As such, letting x_1, x_2, \ldots defined by

$$x_{k+1} = x_k + t_k \Delta x_k,$$

we have

$$f(x_{k+1}) \geq f(x_k) + \nabla f(x_k)^\mathsf{T}(x_{k+1} - x_k) = f(x_k) + t_k \nabla f(x_k)^\mathsf{T} \Delta x_k.$$

and thus x_1, x_2, \ldots cannot be a descent method sequence unless $\nabla f(x_k)^T \Delta x_k \leq 0$.

Property (Descent direction)

Necessary condition for x_1, x_2, \ldots to be a descent sequence,

$$\nabla f(x_k)^{\mathsf{T}} \Delta x_k \leq 0$$

where $\Delta x_k = x_{k+1} - x_k$, and equality reached iif $x_k \in \arg \min f$.

Function $f(x) = [x]_1^2 + [x]_2^2$. Initialized at $x_1 = [1, 1]$.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ○ ○ ○ 31/88

The condition is not sufficient!

Function $f(x) = [x]_1^2 + [x]_2^2$. Initialized at $x_1 = [1, 1]$.

Although $\Delta x_1 = [-1, 1/2]$ has acute angle with $-\nabla f(x_1)$,

$$x_2 = [0, 3/2] = x_1 + \Delta x_1$$

increases rather than decreases f.

Function $f(x) = [x]_1^2 + [x]_2^2$. Initialized at $x_1 = [1, 1]$.

Although $\Delta x_1 = [-1, 1/2]$ has acute angle with $-\nabla f(x_1)$,

$$x_2 = [0, 3/2] = x_1 + \Delta x_1$$

increases rather than decreases f.

Yet, for small t, $x_1 + t\Delta x_1$ is descent direction (red circle).

Function $f(x) = [x]_1^2 + [x]_2^2$. Initialized at $x_1 = [1, 1]$.

Although $\Delta x_1 = [-1, 1/2]$ has acute angle with $-\nabla f(x_1)$,

$$x_2 = [0, 3/2] = x_1 + \Delta x_1$$

increases rather than decreases f.

Yet, for small t, $x_1 + t\Delta x_1$ is descent direction (red circle).

The condition is "locally sufficient" with **small steps** and *f* locally twice-differentiable; indeed, by Taylor

$$f(x_{k+1}) = f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k + O(t_k^2 \| \Delta x_k \|^2)$$

Function $f(x) = [x]_1^2 + [x]_2^2$. Initialized at $x_1 = [1, 1]$.

Although $\Delta x_1 = [-1, 1/2]$ has acute angle with $-\nabla f(x_1)$,

$$x_2 = [0, 3/2] = x_1 + \Delta x_1$$

increases rather than decreases f.

Yet, for small t, $x_1 + t\Delta x_1$ is descent direction (red circle).

The condition is "locally sufficient" with **small steps** and *f* locally twice-differentiable; indeed, by Taylor

$$f(x_{k+1}) = f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k + O(t_k^2 \| \Delta x_k \|^2)$$

so that, $\forall t_k > 0$ small, $f(x_{k+1}) < f(x_k)$.

Function $f(x) = [x]_1^2 + [x]_2^2$. Initialized at $x_1 = [1, 1]$.

Although $\Delta x_1 = [-1, 1/2]$ has acute angle with $-\nabla f(x_1)$,

$$x_2 = [0, 3/2] = x_1 + \Delta x_1$$

increases rather than decreases f.

Yet, for small t, $x_1 + t\Delta x_1$ is descent direction (red circle).

The condition is "locally sufficient" with **small steps** and *f* locally twice-differentiable; indeed, by Taylor

$$f(x_{k+1}) = f(x_k) + t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k + O(t_k^2 \| \Delta x_k \|^2)$$

so that, $\forall t_k > 0$ small, $f(x_{k+1}) < f(x_k)$.

⇒ Careful control of step sizes needed!

Remark: Still in small step size limit, gain $|f(x_{k+1}) - f(x_k)|$ maximal when $\nabla f(x_k)^T \Delta x_k$ both negative and of maximal absolute value.

Remark: Still in small step size limit, gain $|f(x_{k+1}) - f(x_k)|$ maximal when $\nabla f(x_k)^T \Delta x_k$ both negative and of maximal absolute value.

For $\|\Delta x_k\| = 1$, optimal when

$$\Delta x_k = -rac{
abla f(x_k)}{\|
abla f(x_k)\|}$$

Remark: Still in small step size limit, gain $|f(x_{k+1}) - f(x_k)|$ maximal when $\nabla f(x_k)^T \Delta x_k$ both negative and of maximal absolute value.

For $\|\Delta x_k\| = 1$, optimal when

$$\Delta x_k = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|}$$

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm) $x_1 \in \mathcal{X}$ and, for all $k \ge 1$,

$$x_{k+1} = x_k - t_k \nabla f(x_k), \quad t_1, t_2, \ldots > 0.$$

Remark: Still in small step size limit, gain $|f(x_{k+1}) - f(x_k)|$ maximal when $\nabla f(x_k)^T \Delta x_k$ both negative and of maximal absolute value.

For $\|\Delta x_k\| = 1$, optimal when

$$\Delta x_k = -rac{
abla f(x_k)}{\|
abla f(x_k)\|}$$

Leads to popular gradient descent algorithm.

Definition (Gradient Descent Algorithm) $x_1 \in \mathcal{X}$ and, for all $k \ge 1$,

$$x_{k+1} = x_k - t_k \nabla f(x_k), \quad t_1, t_2, \ldots > 0.$$

Remark: Often, *constant step*, i.e., $t_k = t$ constant:

- easy: does not request fine-tuning of t_k,
- but suboptimal.

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Remark: a descent sequence x_1, x_2, \ldots

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Remark: a descent sequence x_1, x_2, \ldots

Remark (On step size)

[Line search]

$$t_k \in \operatorname{argmin}_{t>0} f(x_k + t\Delta x_k)$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - の Q @ 33/88

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Remark: a descent sequence x_1, x_2, \ldots

Remark (On step size)

[Line search]

$$t_k \in \operatorname{argmin}_{t>0} f(x_k + t\Delta x_k)$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - の Q @ 33/88

But can be expensive (second optimization or full line search).

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Remark: a descent sequence x_1, x_2, \ldots

Remark (On step size)

[Line search]

$$t_k \in \operatorname{argmin}_{t>0} f(x_k + t\Delta x_k)$$

But can be expensive (second optimization or full line search).

▶ [Backtracking] simplified line search: $t^{(0)} = 1$ and, for some $0 < \alpha, \beta < 1$, $t^{(j+1)} = \beta t^{(j)}$ until

$$f(x_k + t^{(j+1)}\Delta x_k) < f(x_k) + \alpha t^{(j+1)}\nabla f(x_k)^{\mathsf{T}}\Delta x_k.$$

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Remark: a descent sequence x_1, x_2, \ldots

Remark (On step size)

[Line search]

$$t_k \in \operatorname{argmin}_{t>0} f(x_k + t\Delta x_k)$$

But can be expensive (second optimization or full line search).

▶ [Backtracking] simplified line search: $t^{(0)} = 1$ and, for some $0 < \alpha, \beta < 1$, $t^{(j+1)} = \beta t^{(j)}$ until

$$f(x_k + t^{(j+1)}\Delta x_k) < f(x_k) + \alpha t^{(j+1)}\nabla f(x_k)^{\mathsf{T}}\Delta x_k.$$

Remark: meets Armijo-Goldstein condition!

Definition (Armijo-Goldstein condition)

Given Δx_k with $||\Delta x_k|| = 1$ and $\nabla f(x_k)^T \Delta x_k < 0$, and $\alpha \in (0, 1)$, t_k satisfies Armijo-Goldstein condition if

$$f(x_k + t_k \Delta x_k) < f(x_k) + \alpha t_k \nabla f(x_k)^{\mathsf{T}} \Delta x_k.$$

Remark: a descent sequence x_1, x_2, \ldots

Remark (On step size)

[Line search]

$$t_k \in \operatorname{argmin}_{t>0} f(x_k + t\Delta x_k)$$

But can be expensive (second optimization or full line search).

▶ [Backtracking] simplified line search: $t^{(0)} = 1$ and, for some $0 < \alpha, \beta < 1$, $t^{(j+1)} = \beta t^{(j)}$ until

$$f(x_k + t^{(j+1)}\Delta x_k) < f(x_k) + \alpha t^{(j+1)}\nabla f(x_k)^{\mathsf{T}}\Delta x_k.$$

Remark: meets Armijo-Goldstein condition! Always achievable: as $t^{(j)} \rightarrow 0$,

 $f(x_k + t^{(j+1)}\Delta x_k) \simeq f(x_k) + t^{(j)}\nabla f(x_k)^{\mathsf{T}}\Delta x_k < f(x_k) + \alpha t^{(j+1)}\nabla f(x_k)^{\mathsf{T}}\Delta x_k.$

Theorem (Convergence of Gradient Descent with Constant Step Size) $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex, twice continuously differentiable, with L-Lipschitz ∇f :

$$\forall x, y \in \mathcal{X} \qquad \|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|.$$

Then gradient descent with constant step size $t \leq \frac{1}{L}$ convergences to a minimum of f:

 $x_k \to x^* \in \operatorname{argmin}_x f(x).$

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^2 f(x) \leq L l_n$:

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^2 f(x) \preceq LI_n$: for $x, u \in \mathcal{X}$

$$f(x + \epsilon u) = f(x) + \epsilon \nabla f(x)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x) u + o(\epsilon^2)$$

$$f(x) = f(x + \epsilon u) - \epsilon \nabla f(x + \epsilon u)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x + \epsilon u) u + o(\epsilon^2).$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ = つへで 35/88</p>

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^2 f(x) \preceq LI_n$: for $x, u \in \mathcal{X}$

$$f(x + \epsilon u) = f(x) + \epsilon \nabla f(x)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x) u + o(\epsilon^2)$$

$$f(x) = f(x + \epsilon u) - \epsilon \nabla f(x + \epsilon u)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x + \epsilon u) u + o(\epsilon^2).$$

Summing and dividing by ϵ^2 :

$$\frac{(\nabla f(x+\epsilon u)-\nabla f(x))^{\mathsf{T}}u}{\epsilon}=\frac{1}{2}u^{\mathsf{T}}(\nabla^2 f(x)+\nabla^2 f(x+\epsilon u))u+o(1).$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへで 35/88

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^2 f(x) \preceq LI_n$: for $x, u \in \mathcal{X}$

$$f(x + \epsilon u) = f(x) + \epsilon \nabla f(x)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x) u + o(\epsilon^2)$$

$$f(x) = f(x + \epsilon u) - \epsilon \nabla f(x + \epsilon u)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x + \epsilon u) u + o(\epsilon^2).$$

Summing and dividing by ϵ^2 :

$$\frac{(\nabla f(x+\epsilon u)-\nabla f(x))^{\mathsf{T}}u}{\epsilon}=\frac{1}{2}u^{\mathsf{T}}(\nabla^2 f(x)+\nabla^2 f(x+\epsilon u))u+o(1).$$

By Cauchy-Schwarz and the Lipschitz condition,

$$\frac{1}{2}u^{\mathsf{T}}(\nabla^2 f(x) + \nabla^2 f(x + \epsilon u))u + o(1) \leq \frac{\|\nabla f(x + \epsilon u) - \nabla f(x)\| \|u\|}{\epsilon} \leq L \|u\|^2$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < つ < ℃ 35/88

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^2 f(x) \preceq LI_n$: for $x, u \in \mathcal{X}$

$$f(x + \epsilon u) = f(x) + \epsilon \nabla f(x)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x) u + o(\epsilon^2)$$

$$f(x) = f(x + \epsilon u) - \epsilon \nabla f(x + \epsilon u)^{\mathsf{T}} u + \frac{1}{2} \epsilon^2 u^{\mathsf{T}} \nabla^2 f(x + \epsilon u) u + o(\epsilon^2).$$

Summing and dividing by ϵ^2 :

$$\frac{(\nabla f(x+\epsilon u)-\nabla f(x))^{\mathsf{T}}u}{\epsilon}=\frac{1}{2}u^{\mathsf{T}}(\nabla^2 f(x)+\nabla^2 f(x+\epsilon u))u+o(1).$$

By Cauchy-Schwarz and the Lipschitz condition,

$$\frac{1}{2}u^{\mathsf{T}}(\nabla^2 f(x) + \nabla^2 f(x + \epsilon u))u + o(1) \leq \frac{\|\nabla f(x + \epsilon u) - \nabla f(x)\| \|u\|}{\epsilon} \leq L \|u\|^2.$$
So, as $\epsilon \to 0$,

$$u^{\mathsf{T}} \nabla^2 f(x) u \leq L \|u\|^2, \quad \forall u \in \mathcal{X}.$$

2. Core of Proof. Since f convex (*) and $\nabla^2 f(x) \preceq LI_n$ (**), for $x, y \in \mathcal{X}$,

$$(*) \ f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y - x)$$

$$(**) \ f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}(y - x)^{\mathsf{T}} \nabla^2 f(\zeta)(y - x)$$

$$\le f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}L||y - x||^2$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 36/88

 $(\zeta = x + \lambda(y - x) \text{ for some } \lambda \in [0, 1]).$

2. Core of Proof. Since f convex (*) and $\nabla^2 f(x) \preceq LI_n$ (**), for $x, y \in \mathcal{X}$,

$$(*) \ f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y - x)$$

$$(**) \ f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}(y - x)^{\mathsf{T}} \nabla^{2} f(\zeta)(y - x)$$

$$\le f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}L ||y - x||^{2}$$

 $(\zeta = x + \lambda(y - x) \text{ for some } \lambda \in [0, 1]).$ From (**),

$$\begin{split} f(x_{k+1}) &\leq f(x_k) + \nabla f(x_k)^\mathsf{T}(x_{k+1} - x_k) + \frac{1}{2}L \|x_{k+1} - x_k\|^2 \\ &= f(x_k) - t \|\nabla f(x_k)\|^2 + \frac{1}{2}Lt^2 \|\nabla f(x_k)\|^2 \\ &= f(x_k) - \left(1 - \frac{1}{2}Lt\right)t \|\nabla f(x_k)\|^2. \end{split}$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · ク Q (~ 36/88)

2. Core of Proof. Since f convex (*) and $\nabla^2 f(x) \preceq LI_n$ (**), for $x, y \in \mathcal{X}$,

$$(*) \ f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y - x)$$

$$(**) \ f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}(y - x)^{\mathsf{T}} \nabla^2 f(\zeta)(y - x)$$

$$\le f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}L ||y - x||^2$$

 $(\zeta = x + \lambda(y - x) \text{ for some } \lambda \in [0, 1]).$ From (**),

$$\begin{split} f(x_{k+1}) &\leq f(x_k) + \nabla f(x_k)^\mathsf{T}(x_{k+1} - x_k) + \frac{1}{2}L \|x_{k+1} - x_k\|^2 \\ &= f(x_k) - t \|\nabla f(x_k)\|^2 + \frac{1}{2}Lt^2 \|\nabla f(x_k)\|^2 \\ &= f(x_k) - \left(1 - \frac{1}{2}Lt\right)t \|\nabla f(x_k)\|^2. \end{split}$$

We now use $t \leq 1/L$:

$$f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2 (\le f(x_k))$$
(2)

<□ ▶ < @ ▶ < E ▶ < E ▶ E のへで 36/88

with equality iif $\nabla f(x_k) = 0$

2. Core of Proof. Since f convex (*) and $\nabla^2 f(x) \leq LI_n$ (**), for $x, y \in \mathcal{X}$,

$$(*) \ f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y - x)$$

$$(**) \ f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}(y - x)^{\mathsf{T}} \nabla^2 f(\zeta)(y - x)$$

$$\le f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}L ||y - x||^2$$

 $(\zeta = x + \lambda(y - x) \text{ for some } \lambda \in [0, 1]).$ From (**),

$$\begin{split} f(x_{k+1}) &\leq f(x_k) + \nabla f(x_k)^\mathsf{T}(x_{k+1} - x_k) + \frac{1}{2}L \|x_{k+1} - x_k\|^2 \\ &= f(x_k) - t \|\nabla f(x_k)\|^2 + \frac{1}{2}Lt^2 \|\nabla f(x_k)\|^2 \\ &= f(x_k) - \left(1 - \frac{1}{2}Lt\right)t \|\nabla f(x_k)\|^2. \end{split}$$

We now use $t \leq 1/L$:

$$f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2 (\le f(x_k))$$
(2)

with equality iif $\nabla f(x_k) = 0 \Rightarrow$ gradient descent *is* a descent algorithm.

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

 $f(x^{\star}) \geq f(x) + \nabla f(x)^{\mathsf{T}}(x^{\star} - x)$

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

 $f(x^*) \ge f(x) + \nabla f(x)^{\mathsf{T}}(x^* - x) \quad \Leftrightarrow \quad f(x) \le f(x^*) + \nabla f(x)^{\mathsf{T}}(x - x^*).$

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$f(x^{\star}) \geq f(x) + \nabla f(x)^{\mathsf{T}}(x^{\star} - x) \quad \Leftrightarrow \quad f(x) \leq f(x^{\star}) + \nabla f(x)^{\mathsf{T}}(x - x^{\star}).$$

So in particular, from (2), $(f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2)$

$$f(x_{k+1}) \leq f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2$$

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$f(x^{\star}) \geq f(x) + \nabla f(x)^{\mathsf{T}}(x^{\star} - x) \quad \Leftrightarrow \quad f(x) \leq f(x^{\star}) + \nabla f(x)^{\mathsf{T}}(x - x^{\star}).$$

So in particular, from (2), $(f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2)$

$$f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2 \le f(x^*) + \nabla f(x_k)^{\mathsf{T}}(x_k - x^*) - \frac{t}{2} \|\nabla f(x_k)\|^2$$

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$f(x^{\star}) \geq f(x) + \nabla f(x)^{\mathsf{T}}(x^{\star} - x) \quad \Leftrightarrow \quad f(x) \leq f(x^{\star}) + \nabla f(x)^{\mathsf{T}}(x - x^{\star}).$$

So in particular, from (2), $(f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2)$

$$f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2 \le f(x^*) + \nabla f(x_k)^{\mathsf{T}}(x_k - x^*) - \frac{t}{2} \|\nabla f(x_k)\|^2$$

We need to relate $\nabla f(x_k)^{\mathsf{T}}(x_k - x^*)$ to $t \|\nabla f(x_k)\|^2$:

$$\|x_k - x^{\star} - t\nabla f(x_k)\|^2 = \|x_k - x^{\star}\|^2 + t^2 \|\nabla f(x_k)\|^2 - 2t\nabla f(x_k)^{\mathsf{T}}(x_k - x^{\star})$$

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$f(x^*) \ge f(x) + \nabla f(x)^{\mathsf{T}}(x^* - x) \quad \Leftrightarrow \quad f(x) \le f(x^*) + \nabla f(x)^{\mathsf{T}}(x - x^*).$$

So in particular, from (2), $(f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2)$

$$f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2 \le f(x^*) + \nabla f(x_k)^{\mathsf{T}}(x_k - x^*) - \frac{t}{2} \|\nabla f(x_k)\|^2$$

We need to relate $\nabla f(x_k)^T(x_k - x^*)$ to $t \|\nabla f(x_k)\|^2$:

$$\|x_k - x^* - t\nabla f(x_k)\|^2 = \|x_k - x^*\|^2 + t^2 \|\nabla f(x_k)\|^2 - 2t\nabla f(x_k)^{\mathsf{T}}(x_k - x^*)$$

which yields

$$f(x_{k+1}) \leq f(x^{\star}) + \frac{1}{2t} \Big(\|x_k - x^{\star}\|^2 - \|\underbrace{x_k - t\nabla f(x_k)}_{x_{k+1}} - x^{\star}\|^2 \Big).$$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ク Q ↔ 37/88

3. Convergence to minimum. From (*), for any $x^* \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$f(x^*) \ge f(x) + \nabla f(x)^{\mathsf{T}}(x^* - x) \quad \Leftrightarrow \quad f(x) \le f(x^*) + \nabla f(x)^{\mathsf{T}}(x - x^*).$$

So in particular, from (2), $(f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2)$

$$f(x_{k+1}) \le f(x_k) - \frac{t}{2} \|\nabla f(x_k)\|^2 \le f(x^*) + \nabla f(x_k)^{\mathsf{T}}(x_k - x^*) - \frac{t}{2} \|\nabla f(x_k)\|^2$$

We need to relate $\nabla f(x_k)^{\mathsf{T}}(x_k - x^{\star})$ to $t \|\nabla f(x_k)\|^2$:

$$\|x_k - x^* - t\nabla f(x_k)\|^2 = \|x_k - x^*\|^2 + t^2 \|\nabla f(x_k)\|^2 - 2t\nabla f(x_k)^{\mathsf{T}}(x_k - x^*)$$

which yields

$$f(x_{k+1}) \leq f(x^*) + \frac{1}{2t} \Big(\|x_k - x^*\|^2 - \|\underbrace{x_k - t\nabla f(x_k)}_{x_{k+1}} - x^*\|^2 \Big).$$

Summing for k = 1, ..., K, RHS telescopes:

$$\sum_{k=1}^{K} f(x_{k+1}) - f(x^{*}) \leq \frac{1}{2t} \left(\|x_{1} - x^{*}\|^{2} - \|x_{K} - x^{*}\|^{2} \right) \leq \frac{1}{2t} \|x_{1} - x^{*}\|^{2}.$$

Proof. So finally, as $K \to \infty$

$$f(x_{\mathcal{K}}) - f(x^{\star}) \leq \frac{1}{2\mathcal{K}t} ||x_1 - x^{\star}||^2 \to 0$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊂ 38/88

Proof. So finally, as $K \to \infty$

$$f(x_{\mathcal{K}}) - f(x^{\star}) \leq \frac{1}{2\mathcal{K}t} ||x_1 - x^{\star}||^2 \to 0$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへで 38/88

 x_K may not converge, but $f(x_K) \rightarrow f(x^*)$.

Remark (Advantages/limitations of gradient descent)

▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) - f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;

Remark (Advantages/limitations of gradient descent)

- ▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);

Remark (Advantages/limitations of gradient descent)

- ▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);

ensured convergence for fixed steps: "no" step size adaptation required;

Remark (Advantages/limitations of gradient descent)

- ▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);

- ensured convergence for fixed steps: "no" step size adaptation required;
- **BUT** requires small steps (< 1/L): in most cases, difficult to evaluate;
Remark (Advantages/limitations of gradient descent)

- ▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- **BUT** requires small steps (< 1/L): in most cases, difficult to evaluate;
- strong constraints on f: bounded ∇²f bounded (f cannot be super-quadratic), risk of "bouncing or diverging steps";

Remark (Advantages/limitations of gradient descent)

- ▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- **BUT** requires small steps (< 1/L): in most cases, difficult to evaluate;
- strong constraints on f: bounded ∇²f bounded (f cannot be super-quadratic), risk of "bouncing or diverging steps";
- f needs be everywhere differentiable for gradient to be evaluated;

Remark (Advantages/limitations of gradient descent)

- ▶ simple to implement: for f not easily differentiable, gradient approximation $\{(f(x_k + \epsilon e_i) f(x_k))/\epsilon\}_{i=1}^n$ with $[e_i]_j = \delta_i^j$ i-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- **BUT** requires small steps (< 1/L): in most cases, difficult to evaluate;
- strong constraints on f: bounded \(\nabla^2 f\) bounded (f cannot be super-quadratic), risk of "bouncing or diverging steps";

- f needs be everywhere differentiable for gradient to be evaluated;
- needs unbounded Ω : $x_k + t\nabla f(x_k)$ remains within the domain of f.

Remark: From the proof, convergence speed satisfies at least

$$f(x_k) - f(x^*) \leq \frac{1}{2kt} ||x_1 - x^*||^2.$$

Remark: From the proof, convergence speed satisfies at least

$$f(x_k) - f(x^*) \leq \frac{1}{2kt} ||x_1 - x^*||^2.$$

i.e., 100 steps lead to 1% error:

Remark: From the proof, convergence speed satisfies at least

$$f(x_k) - f(x^*) \leq \frac{1}{2kt} ||x_1 - x^*||^2.$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ → ○ ◆ 40/88

Remark: From the proof, convergence speed satisfies at least

$$f(x_k) - f(x^*) \leq \frac{1}{2kt} ||x_1 - x^*||^2.$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate. We can do much better!

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ● ⑦ Q @ 40/88

Remark: From the proof, convergence speed satisfies at least

$$f(x_k) - f(x^*) \leq \frac{1}{2kt} ||x_1 - x^*||^2.$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate. We can do much better!

Theorem (Linear Convergence of Gradient Descent) $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex, twice continuously differentiable, and $\forall x \in \mathcal{X}$, $II_n \prec \nabla^2 f(x) \prec LI_n$, for some L > I > 0.

Then, ofr gradient descent algorithm with step size $t \leq \frac{1}{l}$,

$$f(x_k) - f(x^*) \leq \alpha C^k, \quad C < 1.$$

Remark: From the proof, convergence speed satisfies at least

$$f(x_k) - f(x^*) \leq \frac{1}{2kt} ||x_1 - x^*||^2.$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate. We can do much better!

Theorem (Linear Convergence of Gradient Descent) $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex, twice continuously differentiable, and $\forall x \in \mathcal{X}$,

 $II_n \preceq \nabla^2 f(x) \preceq LI_n$, for some $L \ge l > 0$.

Then, ofr gradient descent algorithm with step size $t \leq \frac{1}{l}$,

$$f(x_k) - f(x^*) \leq \alpha C^k, \quad C < 1.$$

Convergence is said linear.

Proof.

We already know, since $t \leq \frac{1}{L}$,

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2}t \|\nabla f(x_k)\|^2$$

Proof. We already know, since $t \leq \frac{1}{l}$,

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2}t \|\nabla f(x_k)\|^2$$

from which

$$f(x_{k+1}) - f(x^*) \le f(x_k) - f(x^*) - \frac{1}{2}t \|\nabla f(x_k)\|^2.$$
(3)

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ ∽ ♀ ↔ 41/88

Proof. We already know, since $t \leq \frac{1}{l}$,

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2}t \|\nabla f(x_k)\|^2$$

from which

$$f(x_{k+1}) - f(x^*) \le f(x_k) - f(x^*) - \frac{1}{2}t \|\nabla f(x_k)\|^2.$$
(3)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 41/88

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y - x) + \frac{1}{2}(y - x)^{\mathsf{T}} \nabla^2 f(\zeta)(y - x)$$

Proof. We already know, since $t \leq \frac{1}{l}$,

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2}t \|\nabla f(x_k)\|^2$$

from which

$$f(x_{k+1}) - f(x^{\star}) \le f(x_k) - f(x^{\star}) - \frac{1}{2}t \|\nabla f(x_k)\|^2.$$
(3)

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 41/88

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{1}{2}(y-x)^{\mathsf{T}} \nabla^2 f(\zeta)(y-x) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{1}{2} \|y-x\|^2$$

Proof. We already know, since $t \leq \frac{1}{l}$,

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2}t \|\nabla f(x_k)\|^2$$

from which

$$f(x_{k+1}) - f(x^*) \le f(x_k) - f(x^*) - \frac{1}{2}t \|\nabla f(x_k)\|^2.$$
(3)

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{1}{2}(y-x)^{\mathsf{T}} \nabla^2 f(\zeta)(y-x) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{1}{2} ||y-x||^2$$

Right-hand side minimized for $y = x - \frac{1}{l} \nabla f(x)$ (differentiate along y): $\forall x, y \in \mathcal{X}$,

$$f(y) \ge f(x) - \frac{1}{2I} \|\nabla f(x)\|^2.$$

Proof. We already know, since $t \leq \frac{1}{l}$,

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2}t \|\nabla f(x_k)\|^2$$

from which

$$f(x_{k+1}) - f(x^*) \le f(x_k) - f(x^*) - \frac{1}{2}t \|\nabla f(x_k)\|^2.$$
(3)

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{1}{2}(y-x)^{\mathsf{T}} \nabla^2 f(\zeta)(y-x) \ge f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{1}{2} ||y-x||^2$$

Right-hand side minimized for $y = x - \frac{1}{l} \nabla f(x)$ (differentiate along y): $\forall x, y \in \mathcal{X}$,

$$f(y) \ge f(x) - \frac{1}{2I} \|\nabla f(x)\|^2.$$

Applied to $y = x^*$ and $x = x_k$,

$$-\frac{t}{2}\|\nabla f(x_k)\|^2 \leq tl(f(x^*)-f(x_k)).$$

← → < 쿱 → < 클 → < 클 → 클 · ♡(♥(♡ 41/88
))
</p>

Proof. Back to (3), this implies

 $f(x_{k+1}) - f(x^*) \le (1 - tl)(f(x_k) - f(x^*)), \quad 1 - tl = C < 1$ (by assumption).

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 42/88

Proof.

Back to (3), this implies

$$f(x_{k+1}) - f(x^*) \le (1 - tl)(f(x_k) - f(x^*)), \quad 1 - tl = C < 1$$
 (by assumption).

Applied to $k = 1, \ldots, K$, this is

$$f(x_{K+1}) - f(x^*) \leq C^K(f(x_1) - f(x^*)).$$

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ ∽ Q (~ 42/88

Intuition of Newton's method: second-order Taylor expansion of f

$$f(x+h) = \underbrace{f(x) + \nabla f(x)^{\mathsf{T}}h + \frac{1}{2}h^{\mathsf{T}}\nabla^{2}f(x)h}_{\equiv \hat{f}(x+h)} + o(\|h\|^{2}).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intuition of Newton's method: second-order Taylor expansion of f

$$f(x+h) = \underbrace{f(x) + \nabla f(x)^{\mathsf{T}}h + \frac{1}{2}h^{\mathsf{T}}\nabla^{2}f(x)h}_{\equiv \hat{f}(x+h)} + o(\|h\|^{2}).$$

Idea:

- ▶ approximate f(x + h) by $\hat{f}(x + h)$ for every $x \in \mathcal{X}$
- ▶ solve local minimization of f(x + h) via minimization of $\hat{f}(x + h)$ for h, i.e., for

$$h = -[\nabla^2 f(x)]^{-1} \nabla f(x).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ▲ □ ▶ ● ○ ○ ○ 43/88

Intuition of Newton's method: second-order Taylor expansion of f

$$f(x+h) = \underbrace{f(x) + \nabla f(x)^{\mathsf{T}}h + \frac{1}{2}h^{\mathsf{T}}\nabla^{2}f(x)h}_{\equiv \hat{f}(x+h)} + o(\|h\|^{2}).$$

Idea:

- ▶ approximate f(x + h) by $\hat{f}(x + h)$ for every $x \in \mathcal{X}$
- ▶ solve local minimization of f(x + h) via minimization of $\hat{f}(x + h)$ for h, i.e., for

$$h = -[\nabla^2 f(x)]^{-1} \nabla f(x).$$

Definition (Newton's Method)

For f twice-differentiable and $\nabla^2 f(x) \succ 0$ for all $x \in \mathcal{X}$. Then Newton's method:

$$\begin{cases} \Delta x_k &= - \left[\nabla^2 f(x_k) \right] \nabla f(x_k). \\ t_k &= 1 \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ▲ □ ▶ ● ○ ○ ○ 43/88

Figure: (left) Gradient descent fast on hyperplane-shaped *f*; (right) Newton improves convergence speed, while not following the *steepest descent*.

Property (Newton's Method is a Descent Method) Since $\nabla^2 f(x) \succ 0$, $-\nabla f(x)^T [\nabla^2 f(x_k)] \nabla f(x_k) \le 0$

with equality for $\nabla f(x_k) = 0$: Newton's method is a valid descent method.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ・ ● ● のへで 45/88

Property (Newton's Method is a Descent Method) Since $\nabla^2 f(x) \succ 0$, $-\nabla f(x)^T [\nabla^2 f(x_k)] \nabla f(x_k) \leq 0$

with equality for $\nabla f(x_k) = 0$: Newton's method is a valid descent method.

Remark

▶ linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {x_k} is a Newton descent on f,

Property (Newton's Method is a Descent Method) Since $\nabla^2 f(x) \succ 0$, $-\nabla f(x)^T [\nabla^2 f(x_k)] \nabla f(x_k) \leq 0$

with equality for $\nabla f(x_k) = 0$: Newton's method is a valid descent method.

Remark

▶ linear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {x_k} is a Newton descent on f, then y_{k+1} = Ax_{k+1} is a Newton descent on g.

Property (Newton's Method is a Descent Method) Since $\nabla^2 f(x) \succ 0$, $-\nabla f(x)^T [\nabla^2 f(x_k)] \nabla f(x_k) \leq 0$

with equality for $\nabla f(x_k) = 0$: Newton's method is a valid descent method.

Remark

Inear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {x_k} is a Newton descent on f, then y_{k+1} = Ax_{k+1} is a Newton descent on g. Not true for gradient descent!

Property (Newton's Method is a Descent Method) Since $\nabla^2 f(x) \succ 0$, $-\nabla f(x)^T [\nabla^2 f(x_k)] \nabla f(x_k) \leq 0$

with equality for $\nabla f(x_k) = 0$: Newton's method is a valid descent method.

Remark

- Inear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {x_k} is a Newton descent on f, then y_{k+1} = Ax_{k+1} is a Newton descent on g. Not true for gradient descent!
- If $\nabla^2 f(x)$ almost singular, Newton's method can be very slow and even diverge.

Property (Newton's Method is a Descent Method) Since $\nabla^2 f(x) \succ 0$, $-\nabla f(x)^T [\nabla^2 f(x_k)] \nabla f(x_k) \leq 0$

with equality for $\nabla f(x_k) = 0$: Newton's method is a valid descent method.

Remark

- Inear invariance: if x = Ay and g(y) = f(x) = f(Ay), and {x_k} is a Newton descent on f, then y_{k+1} = Ax_{k+1} is a Newton descent on g. Not true for gradient descent!
- If $\nabla^2 f(x)$ almost singular, Newton's method can be very slow and even diverge.
- For $n \gg 1$, can be extremely costly (inversion of $\nabla^2 f(x_k)$ for every k!).

Solution: to avoid singular $\nabla^2 f$, Newton with a step-size adaption,

Solution: to avoid singular $\nabla^2 f$, Newton with a step-size adaption, Definition (Damped Newton's Method) Damped Newton's method:

$$x_{k+1} = x_k - t_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

with t_k obtained by backtracking line search.

Solution: to avoid singular $\nabla^2 f$, Newton with a step-size adaption, Definition (Damped Newton's Method) Damped Newton's method:

$$x_{k+1} = x_k - t_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

with t_k obtained by backtracking line search.

Theorem (Convergence of damped Newton's method) Assume $II_n \preceq \nabla^2 f(x) \preceq LI_n$ and $\nabla^2 f$ is M-Lipschitz, i.e.,

$$\forall x, y, \left\|\nabla^2 f(y) - \nabla^2 f(x)\right\| \le M \|y - x\|.$$

Then damped Newton's method converges sublinearly then quadratically as soon as $\|\nabla f(x_k)\| < \eta$ for some small $\eta > 0$; besides, from this point on, $t_k = 1$.

We only show the second part of the proof and take $t_k = 1$.

We only show the second part of the proof and take $t_k = 1$.

Proof.

First write

$$\begin{split} \|\nabla f(x_{k+1})\| &= \|\nabla f(x_k + \Delta x_k) \underbrace{-\nabla f(x_k) - \nabla^2 f(x_k) \Delta x_k}_{=0} \| \\ &= \left\| \int_0^1 (\nabla^2 f(x_k + u \Delta x_k) - \nabla^2 f(x_k)) \Delta x_k du \right\| \\ &\leq \frac{M}{2} \|\Delta x_k\|^2 = \frac{M}{2} \| [\nabla^2 f(x_k)]^{-1} \nabla f(x_k) \|^2 \leq \frac{M}{2l^2} \|\nabla f(x_k)\|^2. \end{split}$$

We only show the second part of the proof and take $t_k = 1$.

Proof.

First write

$$\begin{split} \|\nabla f(x_{k+1})\| &= \|\nabla f(x_k + \Delta x_k) \underbrace{-\nabla f(x_k) - \nabla^2 f(x_k) \Delta x_k}_{=0} \| \\ &= \left\| \int_0^1 (\nabla^2 f(x_k + u \Delta x_k) - \nabla^2 f(x_k)) \Delta x_k du \right\| \\ &\leq \frac{M}{2} \|\Delta x_k\|^2 = \frac{M}{2} \| [\nabla^2 f(x_k)]^{-1} \nabla f(x_k) \|^2 \leq \frac{M}{2l^2} \|\nabla f(x_k)\|^2. \end{split}$$

Multiplying both sides by $M/(2l^2)$,

$$\frac{M}{2l^2} \|\nabla f(x_{\mathcal{K}})\| \leq \left(\frac{M}{2l^2} \|\nabla f(x_{k_0})\|\right)^2.$$

We only show the second part of the proof and take $t_k = 1$.

Proof.

First write

 $\|$

$$\begin{aligned} \nabla f(x_{k+1}) \| &= \|\nabla f(x_k + \Delta x_k) \underbrace{-\nabla f(x_k) - \nabla^2 f(x_k) \Delta x_k}_{=0} \| \\ &= \left\| \int_0^1 (\nabla^2 f(x_k + u \Delta x_k) - \nabla^2 f(x_k)) \Delta x_k du \right\| \\ &\leq \frac{M}{2} \|\Delta x_k\|^2 = \frac{M}{2} \| [\nabla^2 f(x_k)]^{-1} \nabla f(x_k) \|^2 \leq \frac{M}{2l^2} \| \nabla f(x_k) \|^2. \end{aligned}$$

Multiplying both sides by $M/(2l^2)$,

$$\frac{M}{2l^2} \|\nabla f(x_{\mathcal{K}})\| \leq \left(\frac{M}{2l^2} \|\nabla f(x_{k_0})\|\right)^2.$$

Iterated over $k = k_0, \ldots, K_r$,

$$\|\nabla f(x_{\mathcal{K}})\| \leq \alpha C^{2^{\mathcal{K}-k_0}}$$

with $C = \frac{M}{2l^2} \|\nabla f(x_{k_0})\| < 1$ if $\|\nabla f(x_{k_0})\| < \eta = \frac{2l^2}{M}$.

Outline

Motivation

Basics of Convex Optimization Convex Sets Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Example: if we impose $\forall i, [x]_i > 0$, what if gradient descent points to $[x]_i < 0$?

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Example: if we impose $\forall i, [x]_i > 0$, what if gradient descent points to $[x]_i < 0$?

Example (Linear Programming)

```
\min_{x \in \mathbb{R}^n} \{ c^\mathsf{T} x \} \text{ such that } Ax \leq b \quad (Ax \leq b \text{ understood entry-wise})
```

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Example: if we impose $\forall i, [x]_i > 0$, what if gradient descent points to $[x]_i < 0$?

Example (Linear Programming)

 $\min_{x \in \mathbb{R}^n} \{ \boldsymbol{c}^\mathsf{T} x \} \text{ such that } \boldsymbol{A} x \leq \boldsymbol{b} \quad (\boldsymbol{A} x \leq \boldsymbol{b} \text{ understood entry-wise})$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 49/88

This is equivalent to

 $\min_{x\in\mathbb{R}^n,\ Ax\leq b}c^{\mathsf{T}}x$

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Example: if we impose $\forall i, [x]_i > 0$, what if gradient descent points to $[x]_i < 0$?

Example (Linear Programming)

 $\min_{x \in \mathbb{R}^n} \{ c^\mathsf{T} x \} \text{ such that } Ax \leq b \quad (Ax \leq b \text{ understood entry-wise})$

This is equivalent to

$$\min_{x \in \mathbb{R}^n, \ Ax \leq b} c^{\mathsf{T}}x \quad \Leftrightarrow \quad \min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x + \imath_{\{Ax \leq b\}}(x)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ▲ □ ▶ ● ○ ○ ○ 49/88

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Example: if we impose $\forall i, [x]_i > 0$, what if gradient descent points to $[x]_i < 0$?

Example (Linear Programming)

 $\min_{x \in \mathbb{R}^n} \{ \boldsymbol{c}^\mathsf{T} x \} \text{ such that } \boldsymbol{A} x \leq \boldsymbol{b} \quad (\boldsymbol{A} x \leq \boldsymbol{b} \text{ understood entry-wise})$

This is equivalent to

$$\min_{x \in \mathbb{R}^n, \ Ax \leq b} c^{\mathsf{T}}x \quad \Leftrightarrow \quad \min_{x \in \mathbb{R}^n} c^{\mathsf{T}}x + \imath_{\{Ax \leq b\}}(x)$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 49/88

Solution: a corner point of Ω !

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Example: if we impose $\forall i, [x]_i > 0$, what if gradient descent points to $[x]_i < 0$?

Example (Linear Programming)

 $\min_{x \in \mathbb{R}^n} \{ c^\mathsf{T} x \} \text{ such that } Ax \leq b \quad (Ax \leq b \text{ understood entry-wise})$

This is equivalent to

$$\min_{x \in \mathbb{R}^n, Ax \leq b} c^{\mathsf{T}} x \quad \Leftrightarrow \quad \min_{x \in \mathbb{R}^n} c^{\mathsf{T}} x + \imath_{\{Ax \leq b\}}(x)$$

Solution: a corner point of Ω !

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^{\mathsf{T}} x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^{\mathsf{T}} x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Generic solution: Interior point (or barrier) method:

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^{\mathsf{T}} x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Generic solution: Interior point (or barrier) method:

relax f(x) via additional cost on barriers of constraint set.

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^T x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Generic solution: Interior point (or barrier) method:

relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)

For f continuously differentiable, for $\mu > 0$, let

$$\phi(x;\mu) \equiv f(x) - \mu \sum_{i=1}^{m} \log(c_i(x)).$$

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^T x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Generic solution: Interior point (or barrier) method:

relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)

For f continuously differentiable, for $\mu > 0$, let

$$\phi(x;\mu) \equiv f(x) - \mu \sum_{i=1}^m \log(c_i(x)).$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < つへ ○ 50/88</p>

Start with $x_0(\mu) \in \mathcal{X}$ such that $\forall i, c_i(x_0(\mu)) > 0$,

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^T x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Generic solution: Interior point (or barrier) method:

relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)

For f continuously differentiable, for $\mu > 0$, let

$$\phi(x;\mu) \equiv f(x) - \mu \sum_{i=1}^{m} \log(c_i(x)).$$

Start with $x_0(\mu) \in \mathcal{X}$ such that $\forall i, c_i(x_0(\mu)) > 0$,

descent algorithm on

$$\min_{x\in\mathbb{R}^n}\phi(x;\mu)$$

with solution $x^*(\mu)$.

Considered problem:

$$\min_{x\in\mathbb{R}^n}f(x)$$
 such that $c_i(x)\geq 0,\ i=1,\ldots,m$

where $c_i(x) = a_i^{\mathsf{T}} x - b_i$ for some $a_i, b_i \in \mathbb{R}^n$.

Generic solution: Interior point (or barrier) method:

relax f(x) via additional cost on barriers of constraint set.

Definition (Barrier Method)

For f continuously differentiable, for $\mu > 0$, let

$$\phi(x;\mu) \equiv f(x) - \mu \sum_{i=1}^{m} \log(c_i(x)).$$

Start with $x_0(\mu) \in \mathcal{X}$ such that $\forall i, c_i(x_0(\mu)) > 0$,

descent algorithm on

$$\min_{x\in\mathbb{R}^n}\phi(x;\mu)$$

with solution $x^*(\mu)$.

• decrease μ and, starting from the previous $x^*(\mu)$, repeat.

Figure: Barrier Method. (left) Level sets of f and constraint set: algorithm "stuck"; (right) Level sets of $f - \mu \sum_{i=1}^{m} \log(c_i(x))$ and constraint set: algorithm finds approximation for x^* .

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ク Q ペ 51/88

Inequality constrained optimization: the barrier method Remark (Difficulties of Barrier Method)

Far from ideal...:

descent directions may be invalid: line-search or backtrack necessary to stay in Ω;

Remark (Difficulties of Barrier Method)

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- **costly double-iteration** with refined μ ; often difficult to handle:

Remark (Difficulties of Barrier Method)

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω ;
- **costly double-iteration** with refined μ ; often difficult to handle:
 - initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).

Remark (Difficulties of Barrier Method)

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω ;
- **costly double-iteration** with refined μ ; often difficult to handle:
 - initialization point in next µ-step must be close to µ-step solution to avoid slow descents (but too small µ-updates slows convergence).
 - exacerbated for solutions near or at a constraint (solution hard to reach!).

Remark (Difficulties of Barrier Method)

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω ;
- **costly double-iteration** with refined μ ; often difficult to handle:
 - initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
 - exacerbated for solutions near or at a constraint (solution hard to reach!).
 - on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.

Remark (Difficulties of Barrier Method)

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω ;
- **costly double-iteration** with refined μ ; often difficult to handle:
 - initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
 - exacerbated for solutions near or at a constraint (solution hard to reach!).
 - on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.
- barrier method only valid for inequality constraints.

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω ;
- **costly double-iteration** with refined μ ; often difficult to handle:
 - initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
 - exacerbated for solutions near or at a constraint (solution hard to reach!).
 - on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.
- barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all *f*.

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ ; often difficult to handle:
 - initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
 - exacerbated for solutions near or at a constraint (solution hard to reach!).
 - on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.
- barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f.

Figure: Barrier Method. (left) Sequence of $\phi(x; \mu)$ approx; (right) Difficulty raised by sharp minima and "ping-ponging" effect.

Outline

Motivation

Basics of Convex Optimization Convex Sets

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization Convex Sets Convex Functions

Basic Algorithms for Convex Optimization Descent methods and gradient descent

Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization

Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

$$\min_{x \in \mathcal{X}} f(x) \text{ such that } h_i(x) = 0, \ i = 1, \dots, p.$$
(4)

$$\min_{x \in \mathcal{X}} f(x) \text{ such that } h_i(x) = 0, \ i = 1, \dots, p.$$
(4)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 ∽ へ ♀ 55/88

Theorem

If x^* solution to (4), then $\exists \lambda_1, \ldots, \lambda_p \in \mathbb{R}$ such that

$$\nabla f(x^*) = \sum_{i=1}^p (-\lambda_i) \nabla h_i(x^*).$$

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set $\ell_c(g) \equiv \{x \mid g(x) = c\}$.

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set $\ell_c(g) \equiv \{x \mid g(x) = c\}$. For $h \in \mathcal{X}$ such that g(x) = g(x + h) = c and $||h|| \to 0$,

$$0 = (g(x+h) - g(x))/||h|| = \nabla g(x)^{\mathsf{T}}(h/||h||) + o(1)$$

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set $\ell_c(g) \equiv \{x \mid g(x) = c\}$. For $h \in \mathcal{X}$ such that g(x) = g(x + h) = c and $||h|| \to 0$,

$$0 = (g(x+h) - g(x))/||h|| = \nabla g(x)^{\mathsf{T}}(h/||h||) + o(1)$$

Thus $\nabla g(x)$ orthogonal to $\ell_c(g)$.

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set $\ell_c(g) \equiv \{x | g(x) = c\}$. For $h \in \mathcal{X}$ such that g(x) = g(x + h) = c and $||h|| \to 0$,

$$0 = (g(x+h) - g(x))/||h|| = \nabla g(x)^{\mathsf{T}}(h/||h||) + o(1)$$

Thus $\nabla g(x)$ orthogonal to $\ell_c(g)$.

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for x^* , so $\exists \lambda$ such that $\nabla f(x^*) = \lambda \nabla h(x^*)$.

Geometric Proof for p = 1.

1. Gradient orthogonal to level sets: level set $\ell_c(g) \equiv \{x | g(x) = c\}$. For $h \in \mathcal{X}$ such that g(x) = g(x + h) = c and $||h|| \to 0$,

$$0 = (g(x+h) - g(x))/||h|| = \nabla g(x)^{\mathsf{T}}(h/||h||) + o(1)$$

Thus $\nabla g(x)$ orthogonal to $\ell_c(g)$.

2. Gradient of f and h aligned at local minimum: see Figure. In particular true for x^* , so $\exists \lambda$ such that $\nabla f(x^*) = \lambda \nabla h(x^*)$.

3. When minimum of f coincides with h(x) = 0: formula still holds with $\lambda = 0$.

・ロト <
同 ト <
三 ト <
三 ・ うへや 56/88
</p>

Consequence: Necessary condition for extremum for f under the constraints h_i : find x such that $f(x) + \sum_i \lambda_i h_i(x)$ has zero gradient for some $\lambda_1, \ldots, \lambda_p$.

Consequence: Necessary condition for extremum for f under the constraints h_i : find x such that $f(x) + \sum_i \lambda_i h_i(x)$ has zero gradient for some $\lambda_1, \ldots, \lambda_p$.

Definition (Lagrange dual function)

For $\lambda \in \mathbb{R}^p$, Lagrange dual g of f is

$$g(\lambda) = \inf_{x \in \mathcal{X}} L(x; \lambda)$$
$$L(x; \lambda) \equiv f(x) + \sum_{i=1}^{p} \lambda_i h_i(x)$$

Consequence: Necessary condition for extremum for f under the constraints h_i : find x such that $f(x) + \sum_i \lambda_i h_i(x)$ has zero gradient for some $\lambda_1, \ldots, \lambda_p$.

Definition (Lagrange dual function)

For $\lambda \in \mathbb{R}^p$, Lagrange dual g of f is

$$g(\lambda) = \inf_{x \in \mathcal{X}} L(x; \lambda)$$
$$L(x; \lambda) \equiv f(x) + \sum_{i=1}^{p} \lambda_i h_i(x)$$

The coefficients $\lambda_1, \ldots, \lambda_p$ are called the *Lagrange multipliers*.

Consequence: Necessary condition for extremum for f under the constraints h_i : find x such that $f(x) + \sum_i \lambda_i h_i(x)$ has zero gradient for some $\lambda_1, \ldots, \lambda_p$.

Definition (Lagrange dual function) For $\lambda \in \mathbb{R}^{p}$, Lagrange dual g of f is

 $g(\lambda) = \inf_{x \in \mathcal{X}} L(x; \lambda)$ $L(x; \lambda) \equiv f(x) + \sum_{i=1}^{p} \lambda_i h_i(x).$

The coefficients $\lambda_1, \ldots, \lambda_p$ are called the *Lagrange multipliers*.

Property (Lagrange dual as lower bound) For x^* solution, since $h_i(x^*) = 0$, we have for all $\lambda \in \mathbb{R}^p$,

$$g(\lambda) = \inf_{x \in \mathcal{X}} L(x; \lambda) \le L(x^*; \lambda) = f(x^*).$$

Consequence: Necessary condition for extremum for f under the constraints h_i : find x such that $f(x) + \sum_i \lambda_i h_i(x)$ has zero gradient for some $\lambda_1, \ldots, \lambda_p$.

Definition (Lagrange dual function) For $\lambda \in \mathbb{R}^{p}$, Lagrange dual g of f is

 $g(\lambda) = \inf_{x \in \mathcal{X}} L(x; \lambda)$ $L(x; \lambda) \equiv f(x) + \sum_{i=1}^{p} \lambda_i h_i(x).$

The coefficients $\lambda_1, \ldots, \lambda_p$ are called the *Lagrange multipliers*.

Property (Lagrange dual as lower bound) For x^* solution, since $h_i(x^*) = 0$, we have for all $\lambda \in \mathbb{R}^p$,

$$g(\lambda) = \inf_{x \in \mathcal{X}} L(x; \lambda) \leq L(x^*; \lambda) = f(x^*).$$

In particular

$$\sup_{\lambda\in\mathbb{R}^p}g(\lambda)\leq f(x^{\star}).$$
$$\sup_{\lambda \in \mathbb{R}^n} g(\lambda) = \sup_{\lambda \in \mathbb{R}^p} \left\{ \inf_{x \in \mathcal{X}} L(x; \lambda) \right\}.$$

$$\sup_{\lambda \in \mathbb{R}^n} g(\lambda) = \sup_{\lambda \in \mathbb{R}^p} \left\{ \inf_{x \in \mathcal{X}} L(x; \lambda) \right\}.$$

We denote $\lambda^* \in \mathbb{R}^n$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

$$\sup_{\lambda \in \mathbb{R}^n} g(\lambda) = \sup_{\lambda \in \mathbb{R}^p} \left\{ \inf_{x \in \mathcal{X}} L(x; \lambda) \right\}.$$

We denote $\lambda^* \in \mathbb{R}^n$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

• $g(\lambda^*) - f(x^*) \ge 0$ is the *duality gap*

$$\sup_{\lambda \in \mathbb{R}^n} g(\lambda) = \sup_{\lambda \in \mathbb{R}^p} \left\{ \inf_{x \in \mathcal{X}} L(x; \lambda) \right\}.$$

We denote $\lambda^* \in \mathbb{R}^n$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

- $g(\lambda^*) f(x^*) \ge 0$ is the *duality gap*
- ▶ if duality gap is zero, the original (*primal*) problem is solved by Lagrange dual.

$$\sup_{\lambda \in \mathbb{R}^n} g(\lambda) = \sup_{\lambda \in \mathbb{R}^p} \left\{ \inf_{x \in \mathcal{X}} L(x; \lambda) \right\}.$$

We denote $\lambda^{\star} \in \mathbb{R}^n$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

• $g(\lambda^*) - f(x^*) \ge 0$ is the *duality gap*

▶ if duality gap is zero, the original (*primal*) problem is solved by Lagrange dual.

Property

Lagrange dual $\lambda \mapsto g(\lambda)$ is concave, irrespective of f (convex or not!).

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$\sup_{\lambda \in \mathbb{R}^n} g(\lambda) = \sup_{\lambda \in \mathbb{R}^p} \left\{ \inf_{x \in \mathcal{X}} L(x; \lambda) \right\}.$$

We denote $\lambda^{\star} \in \mathbb{R}^n$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

• $g(\lambda^*) - f(x^*) \ge 0$ is the *duality gap*

▶ if duality gap is zero, the original (*primal*) problem is solved by Lagrange dual.

Property

Lagrange dual $\lambda \mapsto g(\lambda)$ is concave, irrespective of f (convex or not!).

Proof.

For $\lambda_1,\lambda_2\in\mathbb{R}^p$, $lpha\in[0,1]$,

$$g(\alpha\lambda_1 + (1 - \alpha)\lambda_2) = \inf_{x \in \mathcal{X}} \left\{ \alpha \left(f(x) + \sum_{i=1}^p \lambda_{1i} h_i(x) \right) + (1 - \alpha) \left(f(x) + \sum_{i=1}^p \lambda_{2i} h_i(x) \right) \right\}$$
$$\geq \alpha \inf_{x \in \mathcal{X}} \left\{ f(x) + \sum_{i=1}^p \lambda_{1i} h_i(x) \right\} + (1 - \alpha) \inf_{x \in \mathcal{X}} \left\{ f(x) + \sum_{i=1}^p \lambda_{2i} h_i(x) \right\}$$
$$= \alpha g(\lambda_1) + (1 - \alpha) g(\lambda_2)$$

(inequality follows from $\inf_x \{f_1(x) + f_2(x)\} \ge \inf_x \{f_1(x)\} + \inf_x \{f_2(x)\})_{=}$, \exists

Remarks:

• $\inf_{\lambda} -g(\lambda)$ convex: dual can be solved by standard *unconstrained* convex optimization.

Remarks:

- $\inf_{\lambda} -g(\lambda)$ convex: dual can be solved by standard *unconstrained* convex optimization.
- if f not convex (min f difficult to solve), at least max g can be solved: lower bounding min f.

Remarks:

- $\inf_{\lambda} -g(\lambda)$ convex: dual can be solved by standard *unconstrained* convex optimization.
- if f not convex (min f difficult to solve), at least max g can be solved: lower bounding min f.

Theorem (Slater's condition for strong duality)

If $\exists x \in \mathcal{X}$ such that $\forall i, h_i(x) = 0$ (feasibility), f is convex and h_i affine $(h_i(x) = a_i^T x + b_i)$, then strong duality holds.

Proof.

Let $\bar{\lambda} \in \mathbb{R}^{p}$ be such that $\nabla f(x^{\star}) = \sum_{i=1}^{p} (-\bar{\lambda}_{i}) \nabla h_{i}(x^{\star})$. Then

$$g(\bar{\lambda}) = \inf_{x \in \mathcal{X}} f(x) + \sum_{i=1}^{p} \bar{\lambda}_i h_i(x) = f(x^*).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ - ∽ へ [©] 59/88

Remarks:

- $\inf_{\lambda} -g(\lambda)$ convex: dual can be solved by standard *unconstrained* convex optimization.
- if f not convex (min f difficult to solve), at least max g can be solved: lower bounding min f.

Theorem (Slater's condition for strong duality)

If $\exists x \in \mathcal{X}$ such that $\forall i, h_i(x) = 0$ (feasibility), f is convex and h_i affine $(h_i(x) = a_i^T x + b_i)$, then strong duality holds.

Proof.

Let $\bar{\lambda} \in \mathbb{R}^{p}$ be such that $\nabla f(x^{\star}) = \sum_{i=1}^{p} (-\bar{\lambda}_{i}) \nabla h_{i}(x^{\star})$. Then

$$g(\bar{\lambda}) = \inf_{x \in \mathcal{X}} f(x) + \sum_{i=1}^{p} \bar{\lambda}_i h_i(x) = f(x^*).$$

Indeed, $x \mapsto f(x) + \sum_{i=1}^{p} \overline{\lambda}_{i}h_{i}(x)$ convex $(h_{i} \text{ affine})$, so minimal at zero gradient: true for x having same cost as x^{*} , i.e., $f(x^{*}) + \sum_{i=1}^{p} \overline{\lambda}_{i}h_{i}(x^{*}) = f(x^{*})$.

Remarks:

- $\inf_{\lambda} -g(\lambda)$ convex: dual can be solved by standard *unconstrained* convex optimization.
- if f not convex (min f difficult to solve), at least max g can be solved: lower bounding min f.

Theorem (Slater's condition for strong duality)

If $\exists x \in \mathcal{X}$ such that $\forall i, h_i(x) = 0$ (feasibility), f is convex and h_i affine $(h_i(x) = a_i^T x + b_i)$, then strong duality holds.

Proof.

Let $\bar{\lambda} \in \mathbb{R}^p$ be such that $\nabla f(x^*) = \sum_{i=1}^p (-\bar{\lambda}_i) \nabla h_i(x^*)$. Then

$$g(\bar{\lambda}) = \inf_{x \in \mathcal{X}} f(x) + \sum_{i=1}^{p} \bar{\lambda}_i h_i(x) = f(x^*).$$

Indeed, $x \mapsto f(x) + \sum_{i=1}^{p} \overline{\lambda}_{i}h_{i}(x)$ convex (h_{i} affine), so minimal at zero gradient: true for x having same cost as x^{\star} , i.e., $f(x^{\star}) + \sum_{i=1}^{p} \overline{\lambda}_{i}h_{i}(x^{\star}) = f(x^{\star})$. As a consequence,

$$\begin{split} g(\lambda^*) &= \max_{\lambda \in \mathbb{R}^p} g(\lambda) \geq g(\bar{\lambda}) = f(x^*) \\ g(\lambda^*) &\leq f(x^*) \end{split}$$

< ロ ト 4 週 ト 4 夏 ト 4 夏 ト 夏 の 4 0 59/88</p>

so $g(\lambda^{\star}) = f(x^{\star}).$

Outline

Motivation

Basics of Convex Optimization Convex Sets Convex Functions

Basic Algorithms for Convex Optimization Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

 $\min_{x\in\mathcal{X}}f(x) \text{ such that } g_i(x)\leq 0,\ i=1,\ldots,m \text{ and } h_j(x)=0,\ j=1,\ldots,p. \tag{5}$

 $\min_{x\in\mathcal{X}}f(x) \text{ such that } g_i(x)\leq 0,\ i=1,\ldots,m \text{ and } h_j(x)=0,\ j=1,\ldots,p. \tag{5}$

Method: For inequalities, additional multipliers.

 $\min_{x\in\mathcal{X}}f(x) \text{ such that } g_i(x)\leq 0,\ i=1,\ldots,m \text{ and } h_j(x)=0,\ j=1,\ldots,p. \tag{5}$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be *positive*.

 $\min_{x\in\mathcal{X}}f(x) \text{ such that } g_i(x)\leq 0, \ i=1,\ldots,m \text{ and } h_j(x)=0, \ j=1,\ldots,p. \tag{5}$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be *positive*.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の へ C 61/88

 $\min_{x\in\mathcal{X}}f(x) \text{ such that } g_i(x)\leq 0, \ i=1,\ldots,m \text{ and } h_j(x)=0, \ j=1,\ldots,p. \tag{5}$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be *positive*.

if, at minimum, constraint enforced (minimum at edge), inequality becomes equality: Lagrangian multiplier non zero and positive (see figure).

 $\min_{x\in\mathcal{X}}f(x) \text{ such that } g_i(x)\leq 0, \ i=1,\ldots,m \text{ and } h_j(x)=0, \ j=1,\ldots,p. \tag{5}$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be *positive*.

- if, at minimum, constraint enforced (minimum at edge), inequality becomes equality: Lagrangian multiplier non zero and positive (see figure).
- if constraint not enforced (minimum within constraint set), then Lagrange multiplier is zero.

Definition (Lagrange Dual Problem) Lagrange dual of (5) is

$$\max_{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}^{m}_{+}} g(\lambda, \nu), \quad g(\lambda, \nu) \equiv \inf_{x \in \mathcal{X}} L(x; \lambda, \nu)$$
$$L(x; \lambda, \nu) \equiv f(x) + \sum_{i=1}^{m} \nu_{i} g_{i}(x) + \sum_{j=1}^{p} \lambda_{j} h_{j}(x).$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 > 三 の Q (_{62/88}

Definition (Lagrange Dual Problem) Lagrange dual of (5) is

$$\max_{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}^{m}_{+}} g(\lambda, \nu), \quad g(\lambda, \nu) \equiv \inf_{x \in \mathcal{X}} L(x; \lambda, \nu)$$
$$L(x; \lambda, \nu) \equiv f(x) + \sum_{i=1}^{m} \nu_{i} g_{i}(x) + \sum_{j=1}^{p} \lambda_{j} h_{j}(x).$$

Theorem (Slater's Condition)

For f be convex, g_i convex, h_j affine, and $\exists x \in \mathcal{X}$ such that $h_i(x) = 0$ and $g_j(x) \le 0$ for all i, j (feasibility). Then strong duality holds.

Definition (Lagrange Dual Problem) Lagrange dual of (5) is

$$\max_{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}^{m}_{+}} g(\lambda, \nu), \quad g(\lambda, \nu) \equiv \inf_{x \in \mathcal{X}} L(x; \lambda, \nu)$$
$$L(x; \lambda, \nu) \equiv f(x) + \sum_{i=1}^{m} \nu_{i} g_{i}(x) + \sum_{j=1}^{p} \lambda_{j} h_{j}(x).$$

Theorem (Slater's Condition)

For f be convex, g_i convex, h_j affine, and $\exists x \in \mathcal{X}$ such that $h_i(x) = 0$ and $g_j(x) \le 0$ for all i, j (feasibility). Then strong duality holds.

Remark:

- for g_j convex, $\mathcal{G}_j = \{x | g_j(x) \le 0\}$ is convex.
- ▶ for h_i affine, $\mathcal{H}_i = \{x | h_i(x) = 0\}$ also convex (but not if h_i convex!).

Definition (Lagrange Dual Problem) Lagrange dual of (5) is

$$\max_{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}^{m}_{+}} g(\lambda, \nu), \quad g(\lambda, \nu) \equiv \inf_{x \in \mathcal{X}} L(x; \lambda, \nu)$$
$$L(x; \lambda, \nu) \equiv f(x) + \sum_{i=1}^{m} \nu_{i} g_{i}(x) + \sum_{j=1}^{p} \lambda_{j} h_{j}(x).$$

Theorem (Slater's Condition)

For f be convex, g_i convex, h_j affine, and $\exists x \in \mathcal{X}$ such that $h_i(x) = 0$ and $g_j(x) \le 0$ for all i, j (feasibility). Then strong duality holds.

Remark:

- for g_j convex, $\mathcal{G}_j = \{x | g_j(x) \leq 0\}$ is convex.
- ▶ for h_i affine, $\mathcal{H}_i = \{x | h_i(x) = 0\}$ also convex (but not if h_i convex!).
- Hence,

$$x^{\star} = \arg \min_{\mathcal{X} \cap \left(\bigcap_{j} \mathcal{G}_{j}\right) \cap \left(\bigcap_{i} \mathcal{H}_{i}\right)} f(x)$$

i.e., minimising convex f over convex set.

Outline

Motivation

Basics of Convex Optimization Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization Convex Sets

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions

The Proximal Operator Approach Minimization of the Sum of Two Functions

Non-differentiable optimization

Setup: *f* convex but not everywhere differentiable.

Non-differentiable optimization

Setup: *f* convex but not everywhere differentiable.

Figure: Examples of not-everywhere differentiable convex functions

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊂ 65/88

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

 \longrightarrow can be used to define ∇f for convex f: only linear function satisfying inequality.

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

 \longrightarrow can be used to define ∇f for convex f: only linear function satisfying inequality.

Generalization: *subdifferential* of convex *f*:

Definition (Subdifferential)

Let $f : \mathcal{X} \to \mathbb{R}$. The subdifferential ∂f of f is

$$\partial f: \mathcal{X} \to 2^{\mathcal{X}}$$
$$x \mapsto \left\{ u \in \mathcal{X} \mid \forall z \in \mathcal{X}, \ f(x) \leq f(z) + u^{\mathsf{T}}(x-z) \right\}.$$

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

 \rightarrow can be used to define ∇f for convex f: only linear function satisfying inequality.

Generalization: *subdifferential* of convex *f*:

Definition (Subdifferential)

Let $f : \mathcal{X} \to \mathbb{R}$. The subdifferential ∂f of f is

$$\partial f: \mathcal{X} \to 2^{\mathcal{X}}$$

 $x \mapsto \left\{ u \in \mathcal{X} \mid \forall z \in \mathcal{X}, \ f(x) \leq f(z) + u^{\mathsf{T}}(x-z) \right\}.$

Careful: $\partial f(x)$ is a *set-valued* function: members of the set are the *subderivatives*.

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

 \longrightarrow can be used to define ∇f for convex f: only linear function satisfying inequality.

Generalization: *subdifferential* of convex *f*:

Definition (Subdifferential)

Let $f : \mathcal{X} \to \mathbb{R}$. The subdifferential ∂f of f is

$$\partial f: \mathcal{X} \to 2^{\mathcal{X}} \\ x \mapsto \left\{ u \in \mathcal{X} \mid \forall z \in \mathcal{X}, \ f(x) \leq f(z) + u^{\mathsf{T}}(x-z) \right\} .$$

Careful: $\partial f(x)$ is a *set-valued* function: members of the set are the *subderivatives*. Property

For convex f, $\partial f(x)$ at those x where f is differentiable is a singleton:

$$\partial f(x) = \{\nabla f(x)\}.$$

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

 \longrightarrow can be used to define ∇f for convex f: only linear function satisfying inequality.

Generalization: *subdifferential* of convex *f*:

Definition (Subdifferential)

Let $f : \mathcal{X} \to \mathbb{R}$. The subdifferential ∂f of f is

$$\partial f: \mathcal{X} \to 2^{\mathcal{X}}$$

 $x \mapsto \left\{ u \in \mathcal{X} \mid \forall z \in \mathcal{X}, \ f(x) \leq f(z) + u^{\mathsf{T}}(x-z) \right\}.$

Careful: $\partial f(x)$ is a *set-valued* function: members of the set are the *subderivatives*. Property

For convex f, $\partial f(x)$ at those x where f is differentiable is a singleton:

$$\partial f(x) = \{\nabla f(x)\}.$$

Proof. Let $u \in \partial f(x)$, hence $x \in \arg \min_{z \in \mathcal{X}} f(z) - u^{\mathsf{T}} z.i$

Reminder: first order conditions for convex differentiable $f : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$,

$$\forall x, z \in \operatorname{dom}(f), \quad f(z) \ge f(x) + \nabla f(x)^{\mathsf{T}}(z-x).$$

 \longrightarrow can be used to define ∇f for convex f: only linear function satisfying inequality.

Generalization: *subdifferential* of convex *f*:

Definition (Subdifferential)

Let $f : \mathcal{X} \to \mathbb{R}$. The subdifferential ∂f of f is

$$\partial f: \mathcal{X} \to 2^{\mathcal{X}}$$

 $x \mapsto \left\{ u \in \mathcal{X} \mid \forall z \in \mathcal{X}, \ f(x) \leq f(z) + u^{\mathsf{T}}(x-z) \right\}$

Careful: $\partial f(x)$ is a *set-valued* function: members of the set are the *subderivatives*. Property

For convex f, $\partial f(x)$ at those x where f is differentiable is a singleton:

$$\partial f(x) = \{\nabla f(x)\}.$$

Proof. Let $u \in \partial f(x)$, hence $x \in \arg \min_{z \in \mathcal{X}} f(z) - u^T z$.i Since f differentiable at x, first order condition gives $\nabla f(x) = u$.

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ ∽ ♀ ↔ 67/88

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の < ℃ 67/88

Property (Subdifferential as a convex set) $\partial f(x)$ is a nonempty convex compact set.

Property (Subdifferential as a convex set) $\partial f(x)$ is a nonempty convex compact set.

Property (Subdifferential as union of supporting hyperplanes) $\partial f(x)$ consists of the hyperplanes that support epi(f) at (x, f(x)).
Theorem (Fermat's rule extension) For $f : \mathcal{X} \to \mathbb{R}$ convex,

```
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}).
```

Theorem (Fermat's rule extension) For $f : \mathcal{X} \to \mathbb{R}$ convex,

$$x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}).$$

Proof. \Rightarrow . $\partial f(x^*)$ must (at least) contain 0, since $x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) + 0^T x$.

Theorem (Fermat's rule extension) For $f : \mathcal{X} \to \mathbb{R}$ convex,

$$x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Proof.

 \Rightarrow . $\partial f(x^*)$ must (at least) contain 0, since $x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) + 0^T x$.

 \Leftarrow . $0 \in \partial f(x) \implies x \in \arg \min_{z \in \mathcal{X}} f(z)$, but then x must be a solution.

Theorem (Fermat's rule extension)

For $f : \mathcal{X} \to \mathbb{R}$ convex,

$$x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Proof.

 \Rightarrow . $\partial f(x^*)$ must (at least) contain 0, since $x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) + 0^T x$.

 $\Leftarrow 0 \in \partial f(x) \implies x \in \arg\min_{z \in \mathcal{X}} f(z), \text{ but then } x \text{ must be a solution.}$

Careful: looking for 0 in one of the sets $\partial f(x)$, $x \in \mathcal{X}$, different from looking for singleton $\{0\}$ among the sets $\partial f(x)$, $x \in \mathcal{X}$.

Theorem (Fermat's rule extension)

For $f : \mathcal{X} \to \mathbb{R}$ convex,

$$x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Proof.

 \Rightarrow . $\partial f(x^*)$ must (at least) contain 0, since $x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) + 0^T x$.

 $\Leftarrow. \ 0 \in \partial f(x) \implies x \in \arg\min_{z \in \mathcal{X}} f(z), \text{ but then } x \text{ must be a solution.}$

Careful: looking for 0 in one of the sets $\partial f(x)$, $x \in \mathcal{X}$, different from looking for singleton $\{0\}$ among the sets $\partial f(x)$, $x \in \mathcal{X}$.

Definition (Subgradient algorithm)

Under conditions of gradient descent theorem, with *all Lipschitz subgradients*, subgradient algorithm:

1.
$$x_{k+1} = x_k - t_k u_k$$
, for any $u_k \in \partial f(x_k)$

2.
$$f_{\text{best}}^{k+1} = \min\{f_{\text{best}}^k, f(x_{k+1})\}.$$

Theorem (Fermat's rule extension)

For $f : \mathcal{X} \to \mathbb{R}$ convex,

$$x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^*).$$

Proof.

 \Rightarrow . $\partial f(x^*)$ must (at least) contain 0, since $x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) + 0^T x$.

 $\Leftarrow. \ 0 \in \partial f(x) \implies x \in \arg\min_{z \in \mathcal{X}} f(z), \text{ but then } x \text{ must be a solution.}$

Careful: looking for 0 in one of the sets $\partial f(x)$, $x \in \mathcal{X}$, different from looking for singleton $\{0\}$ among the sets $\partial f(x)$, $x \in \mathcal{X}$.

Definition (Subgradient algorithm)

Under conditions of gradient descent theorem, with *all Lipschitz subgradients*, subgradient algorithm:

1.
$$x_{k+1} = x_k - t_k u_k$$
, for any $u_k \in \partial f(x_k)$

2.
$$f_{\text{best}}^{k+1} = \min\{f_{\text{best}}^k, f(x_{k+1})\}.$$

Remark: 2nd step underlies major weakness of the method (rarely used in practice): algorithm is *not* a descent method.

Outline

Motivation

Basics of Convex Optimization Convex Sets

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functi

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator ($\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $= +\infty$ if not), define

$$\min_{x\in\mathcal{X}}\frac{1}{2}\|x-y\|^2+\imath_{\Omega}(x).$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator ($\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $= +\infty$ if not), define

$$\min_{x\in\mathcal{X}}\frac{1}{2}\|x-y\|^2+\imath_{\Omega}(x).$$

Show that x^* is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$.

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator ($\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $= +\infty$ if not), define

$$\min_{x\in\mathcal{X}}\frac{1}{2}\|x-y\|^2+\imath_{\Omega}(x).$$

Show that x^* is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$. Projection and proximity: x^* is the "proximal" point of y:

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator ($\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $= +\infty$ if not), define

$$\min_{x\in\mathcal{X}}\frac{1}{2}\|x-y\|^2+\imath_{\Omega}(x).$$

Show that x^* is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$. Projection and proximity: x^* is the "proximal" point of y:

• stays close to x (through $\|\cdot -y\|^2$ term)

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator ($\imath_{\Omega}(x) = 0$ if $x \in \Omega$ and $= +\infty$ if not), define

$$\min_{x\in\mathcal{X}}\frac{1}{2}\|x-y\|^2+\imath_{\Omega}(x).$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 70/88

Show that x^* is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$.

Projection and proximity: x^* is the "proximal" point of y:

- stays close to x (through $\|\cdot -y\|^2$ term)
- simultaneously (approximately) minimizes objective function, here i_{Ω} .

Definition (The Proximal (Point) Operator)

For $f : \mathcal{X} \to \mathbb{R}$ convex, proximal operator prox_f of f is

$$\operatorname{prox}_{f} : \mathcal{X} \to \mathcal{X}$$
$$x \mapsto \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2} \|y - x\|^{2} \right\}.$$

ロ ・ ・ 「日 ・ ・ 王 ・ ・ 王 ・ つ へ (? 71/88
)
)
)

Definition (The Proximal (Point) Operator)

I

For $f : \mathcal{X} \to \mathbb{R}$ convex, proximal operator prox_f of f is

$$\operatorname{prox}_{f} : \mathcal{X} \to \mathcal{X}$$
$$x \mapsto \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2} \|y - x\|^{2} \right\}$$

Definition (The Proximal (Point) Operator)

I

For $f : \mathcal{X} \to \mathbb{R}$ convex, proximal operator prox_f of f is

$$\operatorname{prox}_{f} : \mathcal{X} \to \mathcal{X}$$
$$x \mapsto \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2} \|y - x\|^{2} \right\}$$

Remark: proximal point operator is *single-valued*.

Definition (The Proximal (Point) Operator)

I

For $f : \mathcal{X} \to \mathbb{R}$ convex, proximal operator prox_f of f is

$$\operatorname{prox}_{f} : \mathcal{X} \to \mathcal{X}$$
$$x \mapsto \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2} \|y - x\|^{2} \right\}$$

Remark: proximal point operator is single-valued. Not obvious! See next!

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x, y \in \mathcal{X}, D : d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \ge 0.$

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x,y \in \mathcal{X}, D \ : \ d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \geq 0.$

Strictly monotone: equality only for x = y.

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x, y \in \mathcal{X}, D : d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \ge 0.$

Strictly monotone: equality only for x = y.

Figure: Monotone (left) and strictly monotone (right) operators.

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x, y \in \mathcal{X}, D \ : \ d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \ge 0.$

Strictly monotone: equality only for x = y.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator) Inverse of the strictly monotone operator is single-valued.

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x, y \in \mathcal{X}, D \ : \ d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \ge 0.$

Strictly monotone: equality only for x = y.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)

Inverse of the strictly monotone operator is single-valued.

Proof.

Proof by contradiction. Let $x \in \mathcal{X}$ with $\delta_x \in D(x)$. Suppose $\exists x'$ with $\delta_x \in D(x')$.

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x, y \in \mathcal{X}, D \ : \ d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \ge 0.$

Strictly monotone: equality only for x = y.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)

Inverse of the strictly monotone operator is single-valued.

Proof.

Proof by contradiction. Let $x \in \mathcal{X}$ with $\delta_x \in D(x)$. Suppose $\exists x'$ with $\delta_x \in D(x')$. But, by strict monotonicity, $0 < (\delta_x - \delta_x)^T (x - x') = 0$:

Definition ((Strictly) Monotone operator) Operator $D : \mathcal{X} \to 2^{\mathcal{X}}$ is monotone if

 $\forall x, y \in \mathcal{X}, D \ : \ d_x \in D(x), d_y \in D(y) \implies (d_y - d_x)^{\mathsf{T}} (y - x) \ge 0.$

Strictly monotone: equality only for x = y.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)

Inverse of the strictly monotone operator is single-valued.

Proof.

Proof by contradiction. Let $x \in \mathcal{X}$ with $\delta_x \in D(x)$. Suppose $\exists x'$ with $\delta_x \in D(x')$. But, by strict monotonicity, $0 < (\delta_x - \delta_x)^T (x - x') = 0$: by contradiction, inverse of D is single-valued.

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Proof.

Idea. ∂f is a monotone operator: $\forall d_x \in \partial f(x), d_y \in \partial f(y)$,

$$(d_y - d_x)^{\mathsf{T}}(y - x) \geq 0$$

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Proof.

Idea. ∂f is a monotone operator: $\forall d_x \in \partial f(x), d_y \in \partial f(y)$,

$$(d_y - d_x)^{\mathsf{T}}(y - x) \geq 0$$
.

Follows from summing $f(x) \ge f(y) + d_y^{\mathsf{T}}(x-y)$ and $f(y) \ge f(x) + d_x^{\mathsf{T}}(y-x)$ (1st order relations).

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Proof.

Idea. ∂f is a monotone operator: $\forall d_x \in \partial f(x), d_y \in \partial f(y)$,

$$(d_y - d_x)^{\mathsf{T}}(y - x) \geq 0$$
.

Follows from summing $f(x) \ge f(y) + d_y^T(x - y)$ and $f(y) \ge f(x) + d_x^T(y - x)$ (1st order relations).

Implies $I + \partial f$ strictly monotone operator:

$$((y + d_y) - (x + d_x))^{\mathsf{T}}(y - x) = (d_y - d_x)^{\mathsf{T}}(y - x) + ||y - x||^2 > 0$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 73/88

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Proof.

Idea. ∂f is a monotone operator: $\forall d_x \in \partial f(x), d_y \in \partial f(y)$,

$$(d_y - d_x)^{\mathsf{T}}(y - x) \geq 0$$

Follows from summing $f(x) \ge f(y) + d_y^{\mathsf{T}}(x-y)$ and $f(y) \ge f(x) + d_x^{\mathsf{T}}(y-x)$ (1st order relations).

Implies $I + \partial f$ strictly monotone operator:

$$((y + d_y) - (x + d_x))^{\mathsf{T}}(y - x) = (d_y - d_x)^{\mathsf{T}}(y - x) + ||y - x||^2 > 0$$

For $y \in \text{prox}_f(x)$ (= argmin_z $f(z) + \frac{1}{2} ||z - x||^2$), 1st order optimality says

$$0 \in \partial f(y) + y - x = (I + \partial f)(y) - x \quad \Leftrightarrow \quad y \in (I + \partial f)^{-1}(x).$$

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Proof.

Idea. ∂f is a monotone operator: $\forall d_x \in \partial f(x), d_y \in \partial f(y)$,

$$(d_y - d_x)^{\mathsf{T}}(y - x) \geq 0$$

Follows from summing $f(x) \ge f(y) + d_y^{\mathsf{T}}(x-y)$ and $f(y) \ge f(x) + d_x^{\mathsf{T}}(y-x)$ (1st order relations).

Implies $I + \partial f$ strictly monotone operator:

$$((y + d_y) - (x + d_x))^{\mathsf{T}}(y - x) = (d_y - d_x)^{\mathsf{T}}(y - x) + ||y - x||^2 > 0$$

For $y \in \text{prox}_f(x)$ (= argmin_z $f(z) + \frac{1}{2} ||z - x||^2$), 1st order optimality says

$$0 \in \partial f(y) + y - x = (I + \partial f)(y) - x \quad \Leftrightarrow \quad y \in (I + \partial f)^{-1}(x).$$

But inverse of strictly monotone $I + \partial f$ single-valued!

Property

The operator $prox_f$ is single-valued (and thus well-defined).

Proof.

Idea. ∂f is a monotone operator: $\forall d_x \in \partial f(x), d_y \in \partial f(y)$,

$$(d_y - d_x)^{\mathsf{T}}(y - x) \geq 0$$

Follows from summing $f(x) \ge f(y) + d_y^{\mathsf{T}}(x-y)$ and $f(y) \ge f(x) + d_x^{\mathsf{T}}(y-x)$ (1st order relations).

Implies $I + \partial f$ strictly monotone operator:

$$((y + d_y) - (x + d_x))^{\mathsf{T}}(y - x) = (d_y - d_x)^{\mathsf{T}}(y - x) + ||y - x||^2 > 0$$
.

For $y \in \text{prox}_f(x)$ (= argmin_z $f(z) + \frac{1}{2} ||z - x||^2$), 1st order optimality says

$$0 \in \partial f(y) + y - x = (I + \partial f)(y) - x \quad \Leftrightarrow \quad y \in (I + \partial f)^{-1}(x).$$

But inverse of strictly monotone $I + \partial f$ single-valued!

Consequence. Uniqueness of prox_f makes optimization simpler: f may have multiple minima, $\text{prox}_f(x)$ always unique.

Remark (Properties of prox_f) For $\lambda > 0$,

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\lambda} \|x - y\|^2 \right\}.$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 74/88

Remark (Properties of $prox_f$) For $\lambda > 0$,

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\lambda} \|x - y\|^2 \right\}.$$

For differentiable f,

$$y = \operatorname{prox}_{\lambda f}(x) = x - \lambda \nabla f(y) \iff y + \nabla f(y) = x.$$

Remark (Properties of prox_f) For $\lambda > 0$,

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\lambda} \|x - y\|^2 \right\}.$$

For differentiable f,

$$y = \operatorname{prox}_{\lambda f}(x) = x - \lambda \nabla f(y) \iff y + \nabla f(y) = x.$$

Consequence. Iterating $prox_f$ (from x to y) resembles "backward gradient ascent": if started from y, step along gradient at destination point points to starting point (with λ the step size).

Remark (Properties of $prox_f$) For $\lambda > 0$,

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\lambda} \|x - y\|^2 \right\}.$$

For differentiable f,

$$y = \operatorname{prox}_{\lambda f}(x) = x - \lambda \nabla f(y) \iff y + \nabla f(y) = x.$$

Consequence. Iterating $prox_f$ (from x to y) resembles "backward gradient ascent": if started from y, step along gradient at destination point points to starting point (with λ the step size).

Still for differentiable f,

$$abla \left(f(y) + \frac{1}{2\lambda} \|y - x\|^2\right) =
abla f(y) + \frac{1}{\lambda} (x - y).$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ ⑦ Q @ 74/88

Remark (Properties of $prox_f$) For $\lambda > 0$,

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{argmin}_{y \in \mathcal{X}} \left\{ f(y) + \frac{1}{2\lambda} \|x - y\|^2 \right\}.$$

For differentiable f,

$$y = \operatorname{prox}_{\lambda f}(x) = x - \lambda \nabla f(y) \iff y + \nabla f(y) = x.$$

Consequence. Iterating $prox_f$ (from x to y) resembles "backward gradient ascent": if started from y, step along gradient at destination point points to starting point (with λ the step size).

Still for differentiable f,

$$abla \left(f(y) + \frac{1}{2\lambda} \|y - x\|^2\right) =
abla f(y) + \frac{1}{\lambda} (x - y).$$

Thus, at y = x, f and $f + \frac{1}{2\lambda} ||x - \cdot||^2$ have same value and gradient: prox_f minimizes "local approximation" of f.

Key property:

Property (Proximal fixed-points and minimizers) Minimizers of f are the fixed points of $prox_f$:

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}).$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 75/88
Key property:

Property (Proximal fixed-points and minimizers) Minimizers of f are the fixed points of $prox_f$:

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}).$$

Proof.

Follows from:

$$\begin{aligned} x^{\star} &\in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \\ &\Leftrightarrow 0 \in \partial f(x^{\star}) + (x^{\star} - x^{\star}) \\ &\Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}) \end{aligned}$$

(last line from $x^* = \operatorname{prox}_f(x^*) \implies x^* \in \arg\min_x f(x)$).

Key property:

Property (Proximal fixed-points and minimizers) Minimizers of f are the fixed points of $prox_f$:

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}).$$

Proof.

Follows from:

$$x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star})$$
$$\Leftrightarrow 0 \in \partial f(x^{\star}) + (x^{\star} - x^{\star})$$
$$\Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star})$$

(last line from $x^* = \operatorname{prox}_f(x^*) \implies x^* \in \arg\min_x f(x)$).

Consequence: Suggests that *fixed-point algorithm* $x_{k+1} = \text{prox}_f(x_k)$ converges to minimum of f.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < つ < で 75/88

Key property:

Property (Proximal fixed-points and minimizers) Minimizers of f are the fixed points of $prox_f$:

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}).$$

Proof.

Follows from:

$$x^* \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f(x^*)$$
$$\Leftrightarrow 0 \in \partial f(x^*) + (x^* - x^*)$$
$$\Leftrightarrow x^* = \operatorname{prox}_f(x^*)$$

(last line from $x^* = \operatorname{prox}_f(x^*) \implies x^* \in \operatorname{arg\,min}_x f(x)$).

Consequence: Suggests that *fixed-point algorithm* $x_{k+1} = \text{prox}_f(x_k)$ converges to minimum of *f*. **But...** does it converge?

Key property:

Property (Proximal fixed-points and minimizers) Minimizers of f are the fixed points of $prox_f$:

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}).$$

Proof.

Follows from:

$$x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star})$$
$$\Leftrightarrow 0 \in \partial f(x^{\star}) + (x^{\star} - x^{\star})$$
$$\Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star})$$

(last line from $x^* = \operatorname{prox}_f(x^*) \implies x^* \in \operatorname{arg\,min}_x f(x)$).

Consequence: Suggests that *fixed-point algorithm* $x_{k+1} = \text{prox}_f(x_k)$ converges to minimum of *f*. **But...** does it converge?

▶ prox_f unfortunately **not** contractive (i.e., α -Lipschitz with $\alpha \in (0, 1)$ so that $||x_{k+1} - x^*|| \le \alpha ||x_k - x^*||$)

Key property:

Property (Proximal fixed-points and minimizers) Minimizers of f are the fixed points of $prox_f$:

$$x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f(x^{\star}) \Leftrightarrow x^{\star} = \operatorname{prox}_{f}(x^{\star}).$$

Proof.

Follows from:

$$x^* \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f(x^*)$$
$$\Leftrightarrow 0 \in \partial f(x^*) + (x^* - x^*)$$
$$\Leftrightarrow x^* = \operatorname{prox}_f(x^*)$$

(last line from $x^* = \operatorname{prox}_f(x^*) \implies x^* \in \operatorname{arg\,min}_x f(x)$).

Consequence: Suggests that *fixed-point algorithm* $x_{k+1} = \text{prox}_f(x_k)$ converges to minimum of *f*. **But...** does it converge?

- ▶ prox_f unfortunately **not** contractive (i.e., α -Lipschitz with $\alpha \in (0, 1)$ so that $||x_{k+1} x^*|| \le \alpha ||x_k x^*||$)
- but prox_f firmly non-expansive!

Definition (Non-expansiveness)

 $g: \mathcal{X} \rightarrow \mathcal{X} \text{ non-expansive if } \forall x, y \in \mathcal{X},$

 $||g(x) - g(y)|| \le ||x - y||.$

Definition (Non-expansiveness)

 $g: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$|g(x) - g(y)|| \le ||x - y||.$$

i.e., g is 1-Lipschitz.

Definition (Non-expansiveness)

 $g: \mathcal{X} \to \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$||g(x) - g(y)|| \le ||x - y||.$$

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)

 $g: \mathcal{X} \to \mathcal{X}$ firmly non-expansive if $\exists G: \mathcal{X} \to \mathcal{X}$ non-expansive with $g = \frac{1}{2}(I+G)$.

Definition (Non-expansiveness)

 $g: \mathcal{X} \to \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$||g(x) - g(y)|| \le ||x - y||.$$

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness) $g: \mathcal{X} \to \mathcal{X}$ firmly non-expansive if $\exists G: \mathcal{X} \to \mathcal{X}$ non-expansive with $g = \frac{1}{2}(I+G)$.

Figure: Non-expansive g (left) and firmly non-expansive g (right).

Theorem

For convex f, $\operatorname{prox}_f : \mathcal{X} \to \mathcal{X}$, $x \mapsto \operatorname{argmin}_y f(y) + \frac{1}{2} ||x - y||^2$ firmly non-expansive.

Theorem

For convex f, $\operatorname{prox}_f : \mathcal{X} \to \mathcal{X}$, $x \mapsto \operatorname{argmin}_y f(y) + \frac{1}{2} ||x - y||^2$ firmly non-expansive.

Proof.

Idea: Prove that $2\text{prox}_f - I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$\begin{aligned} \|(2\mathrm{prox}_f(x) - x) - (2\mathrm{prox}_f(y) - y)\|^2 &\leq \|x - y\|^2 \\ \Leftrightarrow \quad \|\mathrm{prox}_f(x) - \mathrm{prox}_f(y)\|^2 - (\mathrm{prox}_f(x) - \mathrm{prox}_f(y))^\mathsf{T}(x - y) &\leq 0. \end{aligned}$$

Theorem

For convex f, $\operatorname{prox}_f : \mathcal{X} \to \mathcal{X}$, $x \mapsto \operatorname{argmin}_y f(y) + \frac{1}{2} ||x - y||^2$ firmly non-expansive.

Proof.

Idea: Prove that $2\text{prox}_f - I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$\|(2\mathrm{prox}_{f}(x) - x) - (2\mathrm{prox}_{f}(y) - y)\|^{2} \le \|x - y\|^{2}$$

$$\Leftrightarrow \quad \|\mathrm{prox}_{f}(x) - \mathrm{prox}_{f}(y)\|^{2} - (\mathrm{prox}_{f}(x) - \mathrm{prox}_{f}(y))^{\mathsf{T}}(x - y) \le 0.$$

For this, recall ∂f is monotone: for $a = \text{prox}_f(x)$ and $b = \text{prox}_f(y)$, then

$$x - a \in \partial f(a)$$
 and $y - b \in \partial f(b)$.

Theorem

For convex f, $\operatorname{prox}_f : \mathcal{X} \to \mathcal{X}$, $x \mapsto \operatorname{argmin}_y f(y) + \frac{1}{2} ||x - y||^2$ firmly non-expansive.

Proof.

Idea: Prove that $2\text{prox}_f - I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$\begin{aligned} \|(2\mathrm{prox}_f(x) - x) - (2\mathrm{prox}_f(y) - y)\|^2 &\leq \|x - y\|^2 \\ \Leftrightarrow \quad \|\mathrm{prox}_f(x) - \mathrm{prox}_f(y)\|^2 - (\mathrm{prox}_f(x) - \mathrm{prox}_f(y))^\mathsf{T}(x - y) &\leq 0. \end{aligned}$$

For this, recall ∂f is monotone: for $a = \text{prox}_f(x)$ and $b = \text{prox}_f(y)$, then

$$x - a \in \partial f(a)$$
 and $y - b \in \partial f(b)$.

Thus

$$\left(\left(x - \operatorname{prox}_f(x)\right) - \left(y - \operatorname{prox}_f(y)\right)\right)^{\mathsf{T}}\left(\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\right) \ge 0.$$

Theorem

For convex f, $\operatorname{prox}_f : \mathcal{X} \to \mathcal{X}$, $x \mapsto \operatorname{argmin}_y f(y) + \frac{1}{2} ||x - y||^2$ firmly non-expansive.

Proof.

Idea: Prove that $2\text{prox}_f - I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$\begin{aligned} \|(2\mathrm{prox}_f(x) - x) - (2\mathrm{prox}_f(y) - y)\|^2 &\leq \|x - y\|^2 \\ \Leftrightarrow \quad \|\mathrm{prox}_f(x) - \mathrm{prox}_f(y)\|^2 - (\mathrm{prox}_f(x) - \mathrm{prox}_f(y))^\mathsf{T}(x - y) &\leq 0. \end{aligned}$$

For this, recall ∂f is monotone: for $a = \operatorname{prox}_f(x)$ and $b = \operatorname{prox}_f(y)$, then

$$x - a \in \partial f(a)$$
 and $y - b \in \partial f(b)$.

Thus

$$\left(\left(x - \operatorname{prox}_f(x)\right) - \left(y - \operatorname{prox}_f(y)\right)\right)^{\mathsf{T}}\left(\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\right) \ge 0.$$

Implies

$$(\operatorname{prox}_f(x) - \operatorname{prox}_f(y))^{\mathsf{T}}(x - y) \ge \|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2 \ge 0$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ● ● ○ ○ 77/88

Main property:

Theorem (The Proximal Point Algorithm)

For $f:\mathcal{X} \to \mathbb{R}$ convex, $x_1 \in \mathcal{X}$, let

$$x_{k+1} = \operatorname{prox}_f(x_k), \quad \forall k \ge 1.$$

Then $x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f(x)\}.$

Main property:

Theorem (The Proximal Point Algorithm) For $f : \mathcal{X} \to \mathbb{R}$ convex, $x_1 \in \mathcal{X}$, let

$$x_{k+1} = \operatorname{prox}_f(x_k), \quad \forall k \ge 1.$$

Then $x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f(x)\}.$

Proof.

$$\begin{split} \|x_{k+1} - x_k\|^2 \\ &= \|\operatorname{prox}_f(x_k) - x_k\|^2 \\ &= \|(\operatorname{prox}_f(x_k) - x_k) - (\operatorname{prox}_f(x^*) - x^*)\|^2 \\ &= \|\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\|^2 + \|x_k - x^*\|^2 - 2\left(\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\right)^{\mathsf{T}} (x_k - x^*) \\ &\leq \|x_k - x^*\|^2 - \|\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\|^2. \end{split}$$

Main property:

Theorem (The Proximal Point Algorithm) For $f : \mathcal{X} \to \mathbb{R}$ convex, $x_1 \in \mathcal{X}$, let

$$x_{k+1} = \operatorname{prox}_f(x_k), \quad \forall k \ge 1.$$

Then $x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f(x)\}.$

Proof.

$$\begin{split} \|x_{k+1} - x_k\|^2 \\ &= \|\operatorname{prox}_f(x_k) - x_k\|^2 \\ &= \|(\operatorname{prox}_f(x_k) - x_k) - (\operatorname{prox}_f(x^*) - x^*)\|^2 \\ &= \|\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\|^2 + \|x_k - x^*\|^2 - 2\left(\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\right)^{\mathsf{T}} (x_k - x^*) \\ &\leq \|x_k - x^*\|^2 - \|\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\|^2. \end{split}$$

Last inequality uses *firm non-expansiveness* of prox_f:

$$(\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*))^{\mathsf{T}}(x_k - x^*) \ge \|\operatorname{prox}_f(x_k) - \operatorname{prox}_f(x^*)\|^2 \ge 0 .$$

Proof.

Geometric interpretation:

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≥ ♡ Q ○ 79/88

Proof.

Recall now (non-expansiveness equivalence):

$$\begin{aligned} \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - (\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) &\leq 0 \\ \iff 2 \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - 2(\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) + \|x - y\|^{2} &\leq \|x - y\|^{2} \\ \iff \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} + \|(I - \operatorname{prox}_{f})(y) - (I - \operatorname{prox}_{f})(x)\|^{2} &\leq \|x - y\|^{2} \end{aligned}$$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ Q ○ 80/88

Proof.

Recall now (non-expansiveness equivalence):

$$\begin{aligned} \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - (\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) &\leq 0 \\ \iff 2 \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - 2(\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) + \|x - y\|^{2} &\leq \|x - y\|^{2} \\ \iff \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} + \|(I - \operatorname{prox}_{f})(y) - (I - \operatorname{prox}_{f})(x)\|^{2} &\leq \|x - y\|^{2} \end{aligned}$$

In particular

$$\|x_{k+1} - x^*\|^2 + \|x_{k+1} - x_k\|^2 \le \|x_k - x^*\|^2$$
$$\|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2 \le \|x - y\|^2.$$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ Q ○ 80/88

Proof.

Recall now (non-expansiveness equivalence):

$$\begin{aligned} \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - (\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) &\leq 0 \\ \iff 2 \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - 2(\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) + \|x - y\|^{2} &\leq \|x - y\|^{2} \\ \iff \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} + \|(I - \operatorname{prox}_{f})(y) - (I - \operatorname{prox}_{f})(x)\|^{2} &\leq \|x - y\|^{2} \end{aligned}$$

In particular

$$\begin{aligned} \|x_{k+1} - x^*\|^2 + \|x_{k+1} - x_k\|^2 &\leq \|x_k - x^*\|^2 \\ \|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2 &\leq \|x - y\|^2 \,. \end{aligned}$$

Summing over $k = 1, \ldots, K$:

$$K \|x_{K+1} - x_K\|^2 \le \|x_1 - x^\star\|^2 - \|x_{K+1} - x^\star\|^2 \le \|x_1 - x^\star\|^2$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 80/88

Proof.

Recall now (non-expansiveness equivalence):

$$\begin{aligned} \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - (\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) &\leq 0 \\ \iff 2 \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} - 2(\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y))^{\mathsf{T}}(x - y) + \|x - y\|^{2} &\leq \|x - y\|^{2} \\ \iff \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} + \|(I - \operatorname{prox}_{f})(y) - (I - \operatorname{prox}_{f})(x)\|^{2} &\leq \|x - y\|^{2} \end{aligned}$$

In particular

$$\begin{aligned} \|x_{k+1} - x^{\star}\|^{2} + \|x_{k+1} - x_{k}\|^{2} &\leq \|x_{k} - x^{\star}\|^{2} \\ \|\operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y)\|^{2} &\leq \|x - y\|^{2} \,. \end{aligned}$$

Summing over $k = 1, \ldots, K$:

$$K \|x_{K+1} - x_K\|^2 \le \|x_1 - x^\star\|^2 - \|x_{K+1} - x^\star\|^2 \le \|x_1 - x^\star\|^2$$

and thus

$$||x_{K+1} - x_K|| \le \frac{1}{\sqrt{K}} ||x_1 - x^*|| \to 0$$

as $K \to \infty$, i.e., $\|\operatorname{prox}_f(x_k) - x_k\| \to 0$.

Remark (On proximal point algorithm)

does not need differentiable f, does not have step size constraint;

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in λf (λ > 0): not affecting algorithm, but possibly performance;

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in λf (λ > 0): not affecting algorithm, but possibly performance;
- but 2 main difficulties:
 - prox_f can be difficult to evaluate

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in λf (λ > 0): not affecting algorithm, but possibly performance;
- **but** 2 main difficulties:
 - prox_f can be difficult to evaluate
 - in worst case, sublinear convergence rate.

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in λf (λ > 0): not affecting algorithm, but possibly performance;
- but 2 main difficulties:
 - prox_f can be difficult to evaluate
 - in worst case, sublinear convergence rate.

Table of classical prox operators:

f	$\operatorname{prox}_f(x)$	$\nabla f(x)$ -
0	x	0
$i_{\Omega}(x)$	$P_{\Omega}(x)$	-
$\imath_{\mathbb{R}^n_+}(x)$	$\{\max([x]_i, 0)\}_{i=1}^N$	-
$\lambda \ x\ _1$	$\{ sgn([x]_i) max([x]_i - \lambda, 0) \}_{i=1}^n$	-
$i_{\{\bar{x},A\bar{x}=y\}}(x)$	$x + A^{T}(AA^{T})^{-1}(y - Ax)$	-
$\frac{1}{2} \ Ax - y\ ^2$	$(I_n + A^{T}A)^{-1}(x + A^{T}y)$	$A^{T}(Ax - y)$
$x^{T}A^{T}y$	$x - A^{T}y$	$A^{T}y$
$\frac{1}{2}x^{T}Ax$	$(I_n + A)^{-1}x$	Ax

Outline

Motivation

Basics of Convex Optimization Convex Sets

Basic Algorithms for Convex Optimization

Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality

Linearly Equality-Constrained Optimization Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions The Proximal Operator Approach Minimization of the Sum of Two Functions

Two-function optimization problem: for any convex f_1 and f_2 ,

 $\min_{x\in\mathcal{X}}f_1(x)+f_2(x)$

Non-differentiable optimization: sum of two functions **Two-function optimization problem**: for any convex f_1 and f_2 ,

$$\min_{x\in\mathcal{X}}f_1(x)+f_2(x)$$

Crucial example:

- $f_1(x) = i_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- ▶ *f*₂ any convex function (our previous *f*).

Non-differentiable optimization: sum of two functions **Two-function optimization problem**: for any convex f_1 and f_2 ,

$$\min_{x\in\mathcal{X}}f_1(x)+f_2(x)$$

Crucial example:

- $f_1(x) = i_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- ▶ f₂ any convex function (our previous f).

Case of differentiable convex f_2 : with *L*-Lipschitz gradient ∇f_2 (f_1 only convex).

Two-function optimization problem: for any convex f_1 and f_2 ,

$$\min_{x\in\mathcal{X}}f_1(x)+f_2(x)$$

Crucial example:

- $f_1(x) = i_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- ▶ f₂ any convex function (our previous f).

Case of differentiable convex f_2 : with *L*-Lipschitz gradient ∇f_2 (f_1 only convex). Then:

$$\begin{aligned} x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} \left\{ f_{1}(x) + f_{2}(x) \right\} &\Leftrightarrow 0 \in \partial f_{1}(x^{\star}) + \nabla f_{2}(x^{\star}) \\ &\Leftrightarrow 0 \in \gamma \partial f_{1}(x^{\star}) + \gamma \nabla f_{2}(x^{\star}) \\ &\Leftrightarrow x^{\star} \in x^{\star} + \gamma \partial f_{1}(x^{\star}) + \gamma \nabla f_{2}(x^{\star}) \\ &\Leftrightarrow x^{\star} - \gamma \nabla f_{2}(x^{\star}) \in x^{\star} + \gamma \partial f_{1}(x^{\star}) \\ &\Leftrightarrow x^{\star} = \operatorname{prox}_{\gamma f_{1}} ((I - \gamma \nabla f_{2})(x^{\star})) \\ &\Leftrightarrow x^{\star} = \left(\operatorname{prox}_{\gamma f_{1}} \circ (I - \gamma \nabla f_{2}) \right) (x^{\star}). \end{aligned}$$

Two-function optimization problem: for any convex f_1 and f_2 ,

$$\min_{x\in\mathcal{X}}f_1(x)+f_2(x)$$

Crucial example:

- $f_1(x) = i_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- ▶ f₂ any convex function (our previous f).

Case of differentiable convex f_2 : with *L*-Lipschitz gradient ∇f_2 (f_1 only convex). Then:

$$\begin{aligned} x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} \left\{ f_{1}(x) + f_{2}(x) \right\} &\Leftrightarrow 0 \in \partial f_{1}(x^{\star}) + \nabla f_{2}(x^{\star}) \\ &\Leftrightarrow 0 \in \gamma \partial f_{1}(x^{\star}) + \gamma \nabla f_{2}(x^{\star}) \\ &\Leftrightarrow x^{\star} \in x^{\star} + \gamma \partial f_{1}(x^{\star}) + \gamma \nabla f_{2}(x^{\star}) \\ &\Leftrightarrow x^{\star} - \gamma \nabla f_{2}(x^{\star}) \in x^{\star} + \gamma \partial f_{1}(x^{\star}) \\ &\Leftrightarrow x^{\star} = \operatorname{prox}_{\gamma f_{1}} \left((I - \gamma \nabla f_{2})(x^{\star}) \right) \\ &\Leftrightarrow x^{\star} = \left(\operatorname{prox}_{\gamma f_{1}} \circ (I - \gamma \nabla f_{2}) \right) (x^{\star}). \end{aligned}$$

Consequence: equivalent to finding fixed-point for:

$$\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2).$$

Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive.

Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive. Only true if $\gamma < \frac{1}{L}$!

Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive. Only true if $\gamma < \frac{1}{l}$!

Theorem (Forward-Backward Splitting algorithm) For $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex with f_2 differentiable and with L-Lipschitz gradient, let

$$\begin{aligned} x_1 &\in \mathcal{X} \\ x_{k+1} &= \operatorname{prox}_{\gamma f_1} \left(x_k - \gamma \nabla f_2(x_k) \right), \quad k \geq 1. \end{aligned}$$
Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive. Only true if $\gamma < \frac{1}{L}$!

Theorem (Forward-Backward Splitting algorithm) For $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex with f_2 differentiable and with L-Lipschitz gradient, let

$$egin{aligned} & x_1 \in \mathcal{X} \ & x_{k+1} = \mathrm{prox}_{\gamma f_1} \left(x_k - \gamma
abla f_2(x_k)
ight), \quad k \geq 1. \end{aligned}$$

Then, as $k \to \infty$,

$$x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f_1(x) + f_2(x)\}.$$

Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive. Only true if $\gamma < \frac{1}{L}$!

Theorem (Forward-Backward Splitting algorithm) For $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex with f_2 differentiable and with L-Lipschitz gradient, let

$$egin{aligned} & x_1 \in \mathcal{X} \ & x_{k+1} = \mathrm{prox}_{\gamma f_1} \left(x_k - \gamma
abla f_2(x_k)
ight), \quad k \geq 1. \end{aligned}$$

Then, as $k \to \infty$,

$$x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f_1(x) + f_2(x)\}.$$

Why forward-backward splitting?

Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive. Only true if $\gamma < \frac{1}{L}$!

Theorem (Forward-Backward Splitting algorithm) For $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex with f_2 differentiable and with L-Lipschitz gradient, let

$$\begin{aligned} x_1 &\in \mathcal{X} \\ x_{k+1} &= \operatorname{prox}_{\gamma f_1} \left(x_k - \gamma \nabla f_2(x_k) \right), \quad k \geq 1. \end{aligned}$$

Then, as $k \to \infty$,

$$x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f_1(x) + f_2(x)\}.$$

Why forward-backward splitting? Two-step approach:

1. move from x_k to $\tilde{x}_k \equiv x_k - \gamma \nabla f_2(x_k)$, i.e., gradient descent step on f_2 (forward progression to minimizing f_2);

Remark (On parameter γ)

 γ seems artificial. But, to ensure convergence of fixed-point algorithm,

 $\operatorname{prox}_{\gamma f_1} \circ (I - \gamma \nabla f_2)$

must be firmly non-expansive. Only true if $\gamma < \frac{1}{L}$!

Theorem (Forward-Backward Splitting algorithm) For $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex with f_2 differentiable and with L-Lipschitz gradient, let

$$\begin{aligned} x_1 &\in \mathcal{X} \\ x_{k+1} &= \operatorname{prox}_{\gamma f_1} \left(x_k - \gamma \nabla f_2(x_k) \right), \quad k \geq 1. \end{aligned}$$

Then, as $k \to \infty$,

$$x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} \{f_1(x) + f_2(x)\}.$$

Why forward-backward splitting? Two-step approach:

- 1. move from x_k to $\tilde{x}_k \equiv x_k \gamma \nabla f_2(x_k)$, i.e., gradient descent step on f_2 (forward progression to minimizing f_2);
- 2. move from \tilde{x}_k to $x_{k+1} = \operatorname{prox}_{\gamma f_1}(\tilde{x}_k)$, i.e., "backward" move from \tilde{x}_k to $x_{k+1} = (I + \partial f_1)^{-1}(\tilde{x}_k)$.

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable $f = f_2$ under convex constraints given by f_1 ,

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable $f = f_2$ under convex constraints given by f_1 , e.g.,

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへで 85/88

 $\min_{x\in\Omega}f(x)$

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable $f = f_2$ under convex constraints given by f_1 , e.g.,

$$\min_{x\in\Omega} f(x) \quad \Leftrightarrow \quad \min_{x\in\mathcal{X}} \imath_{\Omega}(x) + f(x)$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへで 85/88

Remark (Forward-Backward Splitting in Practice)

Very convenient in practice to minimize convex differentiable $f = f_2$ under convex constraints given by f_1 , e.g.,

$$\min_{x\in\Omega} f(x) \quad \Leftrightarrow \quad \min_{x\in\mathcal{X}} \imath_{\Omega}(x) + f(x)$$

Main advantage: constrained minimization turned into a much simpler unconstrained minimization of two functions.

Relaxing differentiable f₂:

Relaxing differentiable f₂: Proceeding as before, algorithm now iterates

 $(2 \operatorname{prox}_{\gamma f_2} - I) \circ (2 \operatorname{prox}_{\gamma f_1} - I).$

Relaxing differentiable f2: Proceeding as before, algorithm now iterates

$$(2 \operatorname{prox}_{\gamma f_2} - I) \circ (2 \operatorname{prox}_{\gamma f_1} - I).$$

▲□▶ ▲圖▶ ▲ 클▶ ▲ 클 ▶ ● 의 ♥ ♥ 86/88

Why? Follows from:

$$x = (2\mathrm{prox}_{\gamma f_2} - I) \circ (2\mathrm{prox}_{\gamma f_1} - I)(x)$$

Relaxing differentiable f₂: Proceeding as before, algorithm now iterates

$$(2\operatorname{prox}_{\gamma f_2} - I) \circ (2\operatorname{prox}_{\gamma f_1} - I).$$

Why? Follows from:

 $\begin{aligned} & x = (2\mathrm{prox}_{\gamma f_2} - I) \circ (2\mathrm{prox}_{\gamma f_1} - I)(x) \quad \Leftrightarrow \quad x = 2\mathrm{prox}_{\gamma f_2}(2\tilde{x} - x) - (2\tilde{x} - x) \\ & \text{where } \tilde{x} \equiv \mathrm{prox}_{\gamma f_1}(x) \text{ (i.e., } x - \tilde{x} \in \gamma \partial f_1(\tilde{x})). \end{aligned}$

Relaxing differentiable f₂: Proceeding as before, algorithm now iterates

$$(2\operatorname{prox}_{\gamma f_2} - I) \circ (2\operatorname{prox}_{\gamma f_1} - I).$$

Why? Follows from:

$$\begin{split} & x = (2\mathrm{prox}_{\gamma f_2} - I) \circ (2\mathrm{prox}_{\gamma f_1} - I)(x) \quad \Leftrightarrow \quad x = 2\mathrm{prox}_{\gamma f_2}(2\tilde{x} - x) - (2\tilde{x} - x) \\ & \text{where } \tilde{x} \equiv \mathrm{prox}_{\gamma f_1}(x) \text{ (i.e., } x - \tilde{x} \in \gamma \partial f_1(\tilde{x})). \\ & \text{Further equivalent to} \end{split}$$

$$\begin{aligned} \Leftrightarrow 0 &= \operatorname{prox}_{\gamma f_2}(2\tilde{x} - x) - \tilde{x} \\ \Leftrightarrow 2\tilde{x} - x \in (\gamma \partial f_2 + I)(\tilde{x}) \\ \Leftrightarrow \tilde{x} - x \in \gamma \partial f_2(\tilde{x}) \\ \Leftrightarrow 0 \in \gamma \partial f_1(x) + \gamma \partial f_2(x) \end{aligned}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで 86/88

(last line uses $x - \tilde{x} \in \gamma \partial f_1(\tilde{x})$).

Relaxing differentiable f₂: Proceeding as before, algorithm now iterates

$$(2\operatorname{prox}_{\gamma f_2} - I) \circ (2\operatorname{prox}_{\gamma f_1} - I).$$

Why? Follows from:

 $\begin{aligned} x &= (2\mathrm{prox}_{\gamma f_2} - I) \circ (2\mathrm{prox}_{\gamma f_1} - I)(x) \quad \Leftrightarrow \quad x = 2\mathrm{prox}_{\gamma f_2}(2\tilde{x} - x) - (2\tilde{x} - x) \\ \end{aligned}$ where $\tilde{x} \equiv \mathrm{prox}_{\gamma f_1}(x)$ (i.e., $x - \tilde{x} \in \gamma \partial f_1(\tilde{x})$). Further equivalent to

$$\begin{aligned} \Leftrightarrow 0 &= \operatorname{prox}_{\gamma f_2} (2\tilde{x} - x) - \tilde{x} \\ \Leftrightarrow 2\tilde{x} - x \in (\gamma \partial f_2 + I)(\tilde{x}) \\ \Leftrightarrow \tilde{x} - x \in \gamma \partial f_2(\tilde{x}) \\ \Leftrightarrow 0 \in \gamma \partial f_1(x) + \gamma \partial f_2(x) \end{aligned}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - のへで 86/88

(last line uses $x - \tilde{x} \in \gamma \partial f_1(\tilde{x})$).

Major issue: only non-expansive iterations;

Relaxing differentiable f₂: Proceeding as before, algorithm now iterates

$$(2\operatorname{prox}_{\gamma f_2} - I) \circ (2\operatorname{prox}_{\gamma f_1} - I).$$

Why? Follows from:

$$\begin{split} & x = (2\mathrm{prox}_{\gamma f_2} - I) \circ (2\mathrm{prox}_{\gamma f_1} - I)(x) \quad \Leftrightarrow \quad x = 2\mathrm{prox}_{\gamma f_2}(2\tilde{x} - x) - (2\tilde{x} - x) \\ & \text{where } \tilde{x} \equiv \mathrm{prox}_{\gamma f_1}(x) \text{ (i.e., } x - \tilde{x} \in \gamma \partial f_1(\tilde{x})). \\ & \text{Further equivalent to} \end{split}$$

$$\begin{aligned} \Leftrightarrow 0 &= \operatorname{prox}_{\gamma f_2}(2\tilde{x} - x) - \tilde{x} \\ \Leftrightarrow 2\tilde{x} - x \in (\gamma \partial f_2 + I)(\tilde{x}) \\ \Leftrightarrow \tilde{x} - x \in \gamma \partial f_2(\tilde{x}) \\ \Leftrightarrow 0 \in \gamma \partial f_1(x) + \gamma \partial f_2(x) \end{aligned}$$

(last line uses $x - \tilde{x} \in \gamma \partial f_1(\tilde{x})$).

Major issue: only non-expansive iterations; does not guarantee convergence.

Relaxing differentiable f₂: Proceeding as before, algorithm now iterates

$$(2\operatorname{prox}_{\gamma f_2} - I) \circ (2\operatorname{prox}_{\gamma f_1} - I).$$

Why? Follows from:

 $\begin{aligned} x &= (2\mathrm{prox}_{\gamma f_2} - I) \circ (2\mathrm{prox}_{\gamma f_1} - I)(x) \quad \Leftrightarrow \quad x = 2\mathrm{prox}_{\gamma f_2}(2\tilde{x} - x) - (2\tilde{x} - x) \\ \end{aligned}$ where $\tilde{x} \equiv \mathrm{prox}_{\gamma f_1}(x)$ (i.e., $x - \tilde{x} \in \gamma \partial f_1(\tilde{x})$). Further equivalent to

$$\begin{aligned} \Leftrightarrow 0 &= \operatorname{prox}_{\gamma f_2}(2\tilde{x} - x) - \tilde{x} \\ \Leftrightarrow 2\tilde{x} - x \in (\gamma \partial f_2 + I)(\tilde{x}) \\ \Leftrightarrow \tilde{x} - x \in \gamma \partial f_2(\tilde{x}) \\ \Leftrightarrow 0 \in \gamma \partial f_1(x) + \gamma \partial f_2(x) \end{aligned}$$

(last line uses $x - \tilde{x} \in \gamma \partial f_1(\tilde{x})$).

Major issue: only non-expansive iterations; does not guarantee convergence.

Solution: add extra $\rho \in (0, 1)$ in algorithm steps.

Theorem (Douglas-Rachford Splitting) Let $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex. For $x_0 \in \mathcal{X}, \lambda > 0, \rho \in (0, 1)$, and $k \ge 1$, let

$$\begin{split} \tilde{x}_k &= \operatorname{prox}_{\gamma f_1}(x_k) \\ x_{k+1} &= x_k + 2\rho \left(\operatorname{prox}_{\gamma f_2}(2\tilde{x}_k - x_k) - \tilde{x}_k \right). \end{split}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Theorem (Douglas-Rachford Splitting) Let $f_1, f_2 : \mathcal{X} \to \mathbb{R}$ convex. For $x_0 \in \mathcal{X}, \lambda > 0, \rho \in (0, 1)$, and $k \ge 1$, let

$$\begin{split} \tilde{x}_k &= \operatorname{prox}_{\gamma f_1}(x_k) \\ x_{k+1} &= x_k + 2\rho \left(\operatorname{prox}_{\gamma f_2}(2\tilde{x}_k - x_k) - \tilde{x}_k \right). \end{split}$$

Then, as $k \to \infty$,

$$x_k \to x^* \in \operatorname{argmin}_{x \in \mathcal{X}} f_1(x) + f_2(x).$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • • ● ● 87/88

The End.

▲□▶▲□▶▲■▶▲■▶ ▲■▶ ■ のへで 88/88