Introduction to Optimization

Romain Couillet and Ronald Phlypo

December 3, 2020

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Outline

Motivation

```
Basics of Convex Optimization
    Convex Sets
    Convex Functions
```

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods
Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Main objective

Objective of the class: solve the problem

$$
\begin{equation*}
\text { Find } x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x) \tag{1}
\end{equation*}
$$

for some function $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$.

Main objective

Objective of the class: solve the problem

$$
\begin{equation*}
\text { Find } x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x) \tag{1}
\end{equation*}
$$

for some function $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$.

Remark

$\operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$ is a subset of \mathcal{X} (may be empty, a singleton, a discrete set, an uncountable set).

Main objective

Objective of the class: solve the problem

$$
\begin{equation*}
\text { Find } x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x) \tag{1}
\end{equation*}
$$

for some function $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$.

Remark

$\operatorname{argmin}_{x \in \Omega \subset \mathcal{X}} f(x)$ is a subset of \mathcal{X} (may be empty, a singleton, a discrete set, an uncountable set).

- f is the cost, penalty, or objective function;
- $\Omega=\mathcal{S} \cap \mathcal{X}$ is the set of constraints \mathcal{S} restricted to \mathcal{X}.

Specifying f

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Setting:

- n assets;
- at time t, return $\left[x_{t}\right]_{i}$ for asset i, with $\mathbb{E}\left[x_{t}\right]=\mu$ and $\operatorname{Cov}\left[x_{t}\right]=C$;
- investment of wealth 1 across assets $[w]_{1}, \ldots,[w]_{n}, \sum_{i=1}^{n}[w]_{i}=1$.

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Setting:

- n assets;
- at time t, return $\left[x_{t}\right]_{i}$ for asset i, with $\mathbb{E}\left[x_{t}\right]=\mu$ and $\operatorname{Cov}\left[x_{t}\right]=C$;
- investment of wealth 1 across assets $[w]_{1}, \ldots,[w]_{n}, \sum_{i=1}^{n}[w]_{i}=1$.

Objective:

- Optimal expected gain:

$$
\operatorname{argmax}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[w^{\top} x_{t}\right]=w^{\top} \mu, \text { such that } \sum_{i=1}^{n}[w]_{i}=1
$$

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Setting:

- n assets;
- at time t, return $\left[x_{t}\right]_{i}$ for asset i, with $\mathbb{E}\left[x_{t}\right]=\mu$ and $\operatorname{Cov}\left[x_{t}\right]=C$;
- investment of wealth 1 across assets $[w]_{1}, \ldots,[w]_{n}, \sum_{i=1}^{n}[w]_{i}=1$.

Objective:

- Optimal expected gain:

$$
\operatorname{argmax}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[w^{\top} x_{t}\right]=w^{\top} \mu, \text { such that } \sum_{i=1}^{n}[w]_{i}=1
$$

- Risk minimization:

$$
\operatorname{argmin}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[\left|w^{\top}\left(x_{t}-\mu\right)\right|^{2}\right], \text { such that } \sum_{i=1}^{n}[w]_{i}=1
$$

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Setting:

- n assets;
- at time t, return $\left[x_{t}\right]_{i}$ for asset i, with $\mathbb{E}\left[x_{t}\right]=\mu$ and $\operatorname{Cov}\left[x_{t}\right]=C$;
- investment of wealth 1 across assets $[w]_{1}, \ldots,[w]_{n}, \sum_{i=1}^{n}[w]_{i}=1$.

Objective:

- Optimal expected gain:

$$
\operatorname{argmax}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[w^{\top} x_{t}\right]=w^{\top} \mu, \text { such that } \sum_{i=1}^{n}[w]_{i}=1 .
$$

- Risk minimization:

$$
\operatorname{argmin}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[\left|w^{\top}\left(x_{t}-\mu\right)\right|^{2}\right], \text { such that } \sum_{i=1}^{n}[w]_{i}=1
$$

- Risk minimization under constrained expected gain g:

$$
\operatorname{argmin}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[\left|w^{\top}\left(x_{t}-\mu\right)\right|^{2}\right] \text {, such that } \sum_{i=1}^{n}[w]_{i}=1 \text { and } \mathbb{E}\left[w^{\top} x_{t}\right] \geq g
$$

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Objective:

- Risk minimization with non-negativity constraint:

$$
\operatorname{argmin}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[\left|w^{\top}\left(x_{t}-\mu\right)\right|^{2}\right] \text {, such that } \sum_{i=1}^{n}[w]_{i}=1 \text { and } \forall i,[w]_{i} \geq 0
$$

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Objective:

- Risk minimization with non-negativity constraint:

$$
\operatorname{argmin}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[\left|w^{\top}\left(x_{t}-\mu\right)\right|^{2}\right] \text {, such that } \sum_{i=1}^{n}[w]_{i}=1 \text { and } \forall i,[w]_{i} \geq 0
$$

Overview:

- Without inequality constraint, Lagrange multipliers give the solution:

$$
w^{\star}=\frac{C^{-1} 1_{n}}{1_{n}^{\top} C^{-1} 1_{n}}
$$

Examples: the Lab Sessions

Example (1. Portfolio Optimization)

Objective:

- Risk minimization with non-negativity constraint:

$$
\operatorname{argmin}_{w \in \mathbb{R}^{n}} \mathbb{E}\left[\left|w^{\top}\left(x_{t}-\mu\right)\right|^{2}\right], \text { such that } \sum_{i=1}^{n}[w]_{i}=1 \text { and } \forall i,[w]_{i} \geq 0
$$

Overview:

- Without inequality constraint, Lagrange multipliers give the solution:

$$
w^{\star}=\frac{C^{-1} 1_{n}}{1_{n}^{\top} C^{-1} 1_{n}}
$$

- With inequality constraint, interior point method (Lab Session 1), or proximal point method (Lab Session 2).

Examples: the Lab Sessions

Example (2. Support Vector Machines)

Setting:

- Data points and labels
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in \mathbb{R}^{n} \times\{ \pm 1\} ;$
- Separating hyperplane of \mathbb{R}^{n} of the form $\mathcal{H}=\left\{x \mid x^{\top} w^{\star}+b^{\star}=0\right\}$.

Examples: the Lab Sessions

Objective: Maximize hyperplane "margin",

Example (2. Support Vector Machines)

Setting:

- Data points and labels
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in \mathbb{R}^{n} \times\{ \pm 1\} ;$
- Separating hyperplane of \mathbb{R}^{n} of the form $\mathcal{H}=\left\{x \mid x^{\top} w^{\star}+b^{\star}=0\right\}$.

Examples: the Lab Sessions

Objective: Maximize hyperplane "margin", or equivalently

$$
\left(w^{\star}, b^{\star}\right) \in \operatorname{argmin}_{w, b \in \mathbb{R}^{n}}\left\{\|w\|^{2}\right\} \text { such that } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
$$

Examples: the Lab Sessions

Objective: Maximize hyperplane "margin", or equivalently

$$
\left(w^{\star}, b^{\star}\right) \in \operatorname{argmin}_{w, b \in \mathbb{R}^{n}}\left\{\|w\|^{2}\right\} \text { such that } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
$$

Why? Distance between "supporting" hyperplanes $\mathcal{H}_{ \pm 1}: x^{\top} w^{\star}+b^{\star}= \pm 1$ for all $\left\|x_{+1}-x_{-1}\right\|, x_{ \pm 1} \in \mathcal{H}_{ \pm 1}$: implies $\left(x_{+1}-x_{-1}\right)^{\top} w^{\star}=2$. Distance max for $\left\|w^{\star}\right\|$ min.

Examples: the Lab Sessions

Objective: Maximize hyperplane "margin", or equivalently

$$
\left(w^{\star}, b^{\star}\right) \in \operatorname{argmin}_{w, b \in \mathbb{R}^{n}}\left\{\|w\|^{2}\right\} \text { such that } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
$$

Why? Distance between "supporting" hyperplanes $\mathcal{H}_{ \pm 1}: x^{\top} w^{\star}+b^{\star}= \pm 1$ for all $\left\|x_{+1}-x_{-1}\right\|, x_{ \pm 1} \in \mathcal{H}_{ \pm 1}$: implies $\left(x_{+1}-x_{-1}\right)^{\top} w^{\star}=2$. Distance max for $\left\|w^{\star}\right\|$ min.

But argmin can be empty! Relaxation to "soft-margin" SVM:

$$
\left(w^{\star}, b^{\star}\right) \in \operatorname{argmin}_{w, b \in \mathbb{R}^{p}}\left\{\frac{1}{m} \sum_{i=1}^{m} \max \left(0,1-y_{i}\left[w^{\top} x_{i}+b\right]\right)+\lambda\|w\|^{2}\right\}
$$

for some $\lambda>0$.

Examples: the Lab Sessions

Objective: Maximize hyperplane "margin", or equivalently

$$
\left(w^{\star}, b^{\star}\right) \in \operatorname{argmin}_{w, b \in \mathbb{R}^{n}}\left\{\|w\|^{2}\right\} \text { such that } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
$$

Why? Distance between "supporting" hyperplanes $\mathcal{H}_{ \pm 1}: x^{\top} w^{\star}+b^{\star}= \pm 1$ for all $\left\|x_{+1}-x_{-1}\right\|, x_{ \pm 1} \in \mathcal{H}_{ \pm 1}$: implies $\left(x_{+1}-x_{-1}\right)^{\top} w^{\star}=2$. Distance max for $\left\|w^{\star}\right\|$ min.

But argmin can be empty! Relaxation to "soft-margin" SVM:

$$
\left(w^{\star}, b^{\star}\right) \in \operatorname{argmin}_{w, b \in \mathbb{R}^{p}}\left\{\frac{1}{m} \sum_{i=1}^{m} \max \left(0,1-y_{i}\left[w^{\top} x_{i}+b\right]\right)+\lambda\|w\|^{2}\right\}
$$

for some $\lambda>0$.
Solution: Interior point or proximal methods.

Examples: the Lab Sessions

Example (3. Compressive Sensing)

Setting:

\rightarrow retrieve $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{p}, p \ll n$, with x a sparse vector;

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

- retrieve $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{p}, p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_{1}-relaxation"

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\|x\|_{1} \text { such that } y=A x
$$

with $\|x\|_{1}=\sum_{i=1}^{n}\left|[x]_{i}\right|$.

Examples: the Lab Sessions

Example (3. Compressive Sensing)
Setting:

- retrieve $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{p}, p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_{1}-relaxation"

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\|x\|_{1} \text { such that } y=A x
$$

with $\|x\|_{1}=\sum_{i=1}^{n}\left|[x]_{i}\right|$.
Remark 1: $\|\cdot\|_{1}$ is not differentiable.

Examples: the Lab Sessions

Example (3. Compressive Sensing)

Setting:

- retrieve $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{p}, p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_{1}-relaxation"

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\|x\|_{1} \text { such that } y=A x
$$

with $\|x\|_{1}=\sum_{i=1}^{n}\left|[x]_{i}\right|$.
Remark 1: $\|\cdot\|_{1}$ is not differentiable.
Remark 2: Denoting $\imath_{\Omega}(x)=0$ if $x \in \Omega$ and $\imath_{\Omega}(x)=+\infty$ if $x \notin \Omega$,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{\|x\|_{1}+v_{\{y=A x\}}\right\}
$$

Examples: the Lab Sessions

Example (3. Compressive Sensing)

Setting:

- retrieve $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{p}, p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_{1}-relaxation"

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\|x\|_{1} \text { such that } y=A x
$$

with $\|x\|_{1}=\sum_{i=1}^{n}\left|[x]_{i}\right|$.
Remark 1: $\|\cdot\|_{1}$ is not differentiable.
Remark 2: Denoting $\imath_{\Omega}(x)=0$ if $x \in \Omega$ and $\imath_{\Omega}(x)=+\infty$ if $x \notin \Omega$,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{\|x\|_{1}+\imath_{\{y=A x\}}\right\} \equiv \operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{f_{1}(x)+f_{2}(x)\right\}
$$

with f_{1}, f_{2} convex non-differentiable.

Examples: the Lab Sessions

Example (3. Compressive Sensing)

Setting:

- retrieve $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{p}, p \ll n$, with x a sparse vector;

Objective: Maximize sparsity via " ℓ_{1}-relaxation"

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\|x\|_{1} \text { such that } y=A x
$$

with $\|x\|_{1}=\sum_{i=1}^{n}\left|[x]_{i}\right|$.
Remark 1: $\|\cdot\|_{1}$ is not differentiable.
Remark 2: Denoting $\imath_{\Omega}(x)=0$ if $x \in \Omega$ and $\imath_{\Omega}(x)=+\infty$ if $x \notin \Omega$,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{\|x\|_{1}+\imath_{\{y=A x\}}\right\} \equiv \operatorname{argmin}_{x \in \mathbb{R}^{n}}\left\{f_{1}(x)+f_{2}(x)\right\}
$$

with f_{1}, f_{2} convex non-differentiable.
Solution: Proximal methods and the Douglas-Rachford splitting algorithm.

Outline

Motivation

Basics of Convex Optimization

Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization

Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Outline

Motivation

Basics of Convex Optimization
 Convex Sets

Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Convex Sets

Definition (Convex Set)
$\mathcal{C} \subset \mathcal{X}$ convex iif $\forall x, y \in \mathcal{C}$ and $\forall \lambda \in[0,1]$,

$$
(1-\lambda) x+\lambda y=x+\lambda(y-x) \in \mathcal{C}
$$

Convex Sets

Definition (Convex Set)

$\mathcal{C} \subset \mathcal{X}$ convex iif $\forall x, y \in \mathcal{C}$ and $\forall \lambda \in[0,1]$,

$$
(1-\lambda) x+\lambda y=x+\lambda(y-x) \in \mathcal{C} .
$$

Figure: Convex sets and non-convex sets (stroke out).

Convex Sets: basic properties

Remark (Ensemble manipulations on convex sets)
For convex sets $\mathcal{C}_{1}, \mathcal{C}_{2}$,
$-\mathcal{C}_{i}$ can be open, closed, bounded, unbounded.
$-\mathcal{C}_{1} \cap \mathcal{C}_{2}$ is convex.

- $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is not necessarily convex.

Convex Sets: basic properties

Remark (Ensemble manipulations on convex sets)

For convex sets $\mathcal{C}_{1}, \mathcal{C}_{2}$,

- \mathcal{C}_{i} can be open, closed, bounded, unbounded.
- $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ is convex.
- $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is not necessarily convex.

Remark (List of convex sets)

The following ensembles are convex:

- line, segment, half-line, \mathbb{R}^{n}
- a vector subspace
- hyperplanes $\left\{x, x^{\top} a=b\right\}$, half-spaces $\left\{x, x^{\top} a \leq b\right\}$
- balls $\mathcal{B}\left(x_{c} ; r\right) \equiv\left\{x,\left\|x-x_{c}\right\| \leq r\right\}$ and ellipsoids $\left\{x,\left(x-x_{c}\right)^{\top} P^{-1}\left(x-x_{c}\right) \leq r\right\}$.

Convex Sets: basic properties
Exercise (1. Ball convexity)
Show that $\mathcal{B}\left(x_{c} ; r\right) \equiv\left\{x,\left\|x-x_{c}\right\| \leq r\right\}$ is convex.

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that $\mathcal{B}\left(x_{c} ; r\right) \equiv\left\{x,\left\|x-x_{c}\right\| \leq r\right\}$ is convex.
Proof of ball convexity.
Let $x, y \in \mathcal{B}\left(x_{c} ; r\right)$. Then,
$\left\|\lambda x+(1-\lambda) y-x_{c}\right\|=\left\|\lambda\left(x-x_{c}\right)+(1-\lambda)\left(y-x_{c}\right)\right\|$

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that $\mathcal{B}\left(x_{c} ; r\right) \equiv\left\{x,\left\|x-x_{c}\right\| \leq r\right\}$ is convex.
Proof of ball convexity.
Let $x, y \in \mathcal{B}\left(x_{c} ; r\right)$. Then,
$\left\|\lambda x+(1-\lambda) y-x_{c}\right\|=\left\|\lambda\left(x-x_{c}\right)+(1-\lambda)\left(y-x_{c}\right)\right\| \leq \lambda\left\|x-x_{c}\right\|+(1-\lambda)\left\|y-x_{c}\right\| \leq r$.

Convex Sets: basic properties

Exercise (1. Ball convexity)
Show that $\mathcal{B}\left(x_{c} ; r\right) \equiv\left\{x,\left\|x-x_{c}\right\| \leq r\right\}$ is convex.
Proof of ball convexity.
Let $x, y \in \mathcal{B}\left(x_{c} ; r\right)$. Then,
$\left\|\lambda x+(1-\lambda) y-x_{c}\right\|=\left\|\lambda\left(x-x_{c}\right)+(1-\lambda)\left(y-x_{c}\right)\right\| \leq \lambda\left\|x-x_{c}\right\|+(1-\lambda)\left\|y-x_{c}\right\| \leq r$.

Exercise (2. Polyhedron convexity)
For $A \in \mathbb{R}^{1 \times n}, B \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{\prime}, d \in \mathbb{R}^{m}$, show the convexity of polyhedron

$$
\mathcal{P}=\{x, \quad A x \leq b, \quad C x=d\}
$$

Figure: A polyhedron.

Basic properties

Definition (Convex combinations)

The set of convex combinations of $x_{1}, \ldots, x_{k} \in \mathcal{S}$ is the set

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0\right\}
$$

Basic properties

Definition (Convex combinations)

The set of convex combinations of $x_{1}, \ldots, x_{k} \in \mathcal{S}$ is the set

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0\right\}
$$

This is a convex set.

Basic properties

Definition (Convex combinations)

The set of convex combinations of $x_{1}, \ldots, x_{k} \in \mathcal{S}$ is the set

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0\right\}
$$

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x_{1}, \ldots, x_{5}.

Basic properties

Definition (Convex combinations)

The set of convex combinations of $x_{1}, \ldots, x_{k} \in \mathcal{S}$ is the set

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0\right\}
$$

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x_{1}, \ldots, x_{5}.

Definition (Convex hull)

The convex hull $\operatorname{conv}(\mathcal{X})$ is the set of all convex combinations of points in \mathcal{X},

$$
\operatorname{conv}(\mathcal{X})=\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0, x_{1}, \ldots, x_{k} \in \mathcal{X}, k \geq 0\right\}
$$

Basic properties

Definition (Convex combinations)

The set of convex combinations of $x_{1}, \ldots, x_{k} \in \mathcal{S}$ is the set

$$
\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0\right\}
$$

This is a convex set.
The polyhedron (Figure 2) is the set of convex combinations of x_{1}, \ldots, x_{5}.

Definition (Convex hull)

The convex hull $\operatorname{conv}(\mathcal{X})$ is the set of all convex combinations of points in \mathcal{X},
$\operatorname{conv}(\mathcal{X})=\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid \sum_{i=1}^{k} \theta_{i}=1, \theta_{1}, \ldots, \theta_{k} \geq 0, x_{1}, \ldots, x_{k} \in \mathcal{X}, k \geq 0\right\}$.

Property (Convex sets and convex hulls)

$\operatorname{conv}(\mathcal{X})$ is the smallest convex set containing $\mathcal{X}: \mathcal{X}$ is convex iif $\mathcal{X}=\operatorname{conv}(\mathcal{X})$.

Outline

Motivation

Basics of Convex Optimization

Convex Sets

Convex Functions

```
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
Constrained Optimization and Duality
    Linearly Equality-Constrained Optimization
    Generalization to Equality and Inequality Constraints
```

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Convex Function

Definition (Epigraph of a function)
The epigraph of $f: \mathcal{X} \rightarrow \mathbb{R}$ is the set

$$
\operatorname{epi}(f)=\{(x, c) \in \mathcal{X} \times \mathbb{R}, f(x) \leq c\}
$$

Figure: Epigraph of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Convex Function

Definition (Epigraph of a function)
The epigraph of $f: \mathcal{X} \rightarrow \mathbb{R}$ is the set

$$
\operatorname{epi}(f)=\{(x, c) \in \mathcal{X} \times \mathbb{R}, f(x) \leq c\}
$$

Figure: Epigraph of a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Definition (Convex function)
A function $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif $\operatorname{epi}(f)$ is a convex set.

Convex Function

Property (Convex function)
$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) .
$$

Convex Function

Property (Convex function)
$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Convex Function

Property (Convex function)
$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Proof.
\Rightarrow Let $x, y \in \mathcal{X}$. Then $(x, f(x)),(y, f(y)) \in \operatorname{epi}(f)$.

Convex Function

Property (Convex function)
$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Proof.
\Rightarrow Let $x, y \in \mathcal{X}$. Then $(x, f(x)),(y, f(y)) \in \operatorname{epi}(f)$.
Thus so is $(\lambda x+(1-\lambda) y, \lambda f(x)+(1-\lambda) f(y))$.

Convex Function

Property (Convex function)

$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Proof.
\Rightarrow Let $x, y \in \mathcal{X}$. Then $(x, f(x)),(y, f(y)) \in \operatorname{epi}(f)$.
Thus so is $(\lambda x+(1-\lambda) y, \lambda f(x)+(1-\lambda) f(y))$.
By definition of epi (f), this implies $\lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y)$.

Convex Function

Property (Convex function)

$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex iif, for all $x, y \in \mathcal{X}$ and $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Proof.
\Rightarrow Let $x, y \in \mathcal{X}$. Then $(x, f(x)),(y, f(y)) \in \operatorname{epi}(f)$.
Thus so is $(\lambda x+(1-\lambda) y, \lambda f(x)+(1-\lambda) f(y))$.
By definition of epi (f), this implies $\lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y)$.
\Leftarrow For $x, y \in \mathcal{X},(\lambda x+(1-\lambda) y, \lambda f(x)+(1-\lambda) f(y)) \in \operatorname{epi}(f)$ and so epi (f) is convex.

Differentiable convex function

Reminder. For f differentiable at $x, \nabla f(x)=\left\{\frac{\partial f}{\partial x_{i}}(x)\right\}_{i=1}^{n}$.

Differentiable convex function

Reminder. For f differentiable at $x, \nabla f(x)=\left\{\frac{\partial f}{\partial x_{i}}(x)\right\}_{i=1}^{n}$.
Definition (Domain of a function)
The domain of $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the set $\operatorname{dom}(f)=\{x, f(x)<+\infty\}$.

Differentiable convex function

Reminder. For f differentiable at $x, \nabla f(x)=\left\{\frac{\partial f}{\partial x_{i}}(x)\right\}_{i=1}^{n}$.
Definition (Domain of a function)
The domain of $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the set $\operatorname{dom}(f)=\{x, f(x)<+\infty\}$.
Theorem (First order conditions)
For $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ differentiable in its domain, f convex iif, $\forall x, y \in \operatorname{dom}(f)$,

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)
$$

Differentiable convex function

Reminder. For f differentiable at $x, \nabla f(x)=\left\{\frac{\partial f}{\partial x_{i}}(x)\right\}_{i=1}^{n}$.
Definition (Domain of a function)
The domain of $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the set $\operatorname{dom}(f)=\{x, f(x)<+\infty\}$.
Theorem (First order conditions)
For $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ differentiable in its domain, f convex iif, $\forall x, y \in \operatorname{dom}(f)$,

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)
$$

Differentiable f : f convex iif all tangent hyperplanes of epi (f) are below the epigraph.

Differentiable convex function

Proof.
$\Rightarrow f$ convex implies, for $\lambda \in[0,1], x, y \in \mathcal{X}$,
$f(\lambda x+(1-\lambda) y)=f(y+\lambda(x-y)) \leq \lambda f(x)+(1-\lambda) f(y)=\lambda(f(x)-f(y))+f(y)$

Differentiable convex function

Proof.
$\Rightarrow f$ convex implies, for $\lambda \in[0,1], x, y \in \mathcal{X}$,

$$
f(\lambda x+(1-\lambda) y)=f(y+\lambda(x-y)) \leq \lambda f(x)+(1-\lambda) f(y)=\lambda(f(x)-f(y))+f(y)
$$

or equivalently

$$
\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y) .
$$

Differentiable convex function

Proof.
$\Rightarrow f$ convex implies, for $\lambda \in[0,1], x, y \in \mathcal{X}$,
$f(\lambda x+(1-\lambda) y)=f(y+\lambda(x-y)) \leq \lambda f(x)+(1-\lambda) f(y)=\lambda(f(x)-f(y))+f(y)$
or equivalently

$$
\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y) .
$$

Taking the limit $y \downarrow 0$ (for this: $g(\lambda)=f(y+\lambda(x-y)) \Rightarrow g^{\prime}(\lambda)=\sum_{i=1}^{n} \frac{\partial f}{\partial[x]_{i}} \frac{d[x]_{i}}{d \lambda}$),

$$
\nabla f(y)^{\top}(x-y) \leq f(x)-f(y)
$$

Differentiable convex function

Proof.
$\Rightarrow f$ convex implies, for $\lambda \in[0,1], x, y \in \mathcal{X}$,

$$
f(\lambda x+(1-\lambda) y)=f(y+\lambda(x-y)) \leq \lambda f(x)+(1-\lambda) f(y)=\lambda(f(x)-f(y))+f(y)
$$

or equivalently

$$
\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y) .
$$

Taking the limit $y \downarrow 0$ (for this: $g(\lambda)=f(y+\lambda(x-y)) \Rightarrow g^{\prime}(\lambda)=\sum_{i=1}^{n} \frac{\partial f}{\partial[x]_{i}} \frac{d[x] i}{d \lambda}$),

$$
\nabla f(y)^{\top}(x-y) \leq f(x)-f(y) .
$$

\Leftarrow For $z=\lambda x+(1-\lambda) y$,

$$
\begin{aligned}
& \text { (*) } f(x) \geq f(z)+\nabla f(z)^{\top}(x-z) \\
& (* *) f(y) \geq f(z)+\nabla f(z)^{\top}(y-z) .
\end{aligned}
$$

Differentiable convex function

Proof.
$\Rightarrow f$ convex implies, for $\lambda \in[0,1], x, y \in \mathcal{X}$,

$$
f(\lambda x+(1-\lambda) y)=f(y+\lambda(x-y)) \leq \lambda f(x)+(1-\lambda) f(y)=\lambda(f(x)-f(y))+f(y)
$$

or equivalently

$$
\frac{f(y+\lambda(x-y))-f(y)}{\lambda} \leq f(x)-f(y)
$$

Taking the limit $y \downarrow 0$ (for this: $g(\lambda)=f(y+\lambda(x-y)) \Rightarrow g^{\prime}(\lambda)=\sum_{i=1}^{n} \frac{\partial f}{\partial[x]_{i}} \frac{d[x]_{i}}{d \lambda}$),

$$
\nabla f(y)^{\top}(x-y) \leq f(x)-f(y)
$$

\Leftarrow For $z=\lambda x+(1-\lambda) y$,

$$
\begin{aligned}
& \text { (*) } f(x) \geq f(z)+\nabla f(z)^{\top}(x-z) \\
& (* *) f(y) \geq f(z)+\nabla f(z)^{\top}(y-z)
\end{aligned}
$$

Then $\lambda(*)+(1-\lambda)(* *)$ gives

$$
\lambda f(x)+(1-\lambda) f(y) \geq f(z)=f(\lambda x+(1-\lambda) y)
$$

Differentiable convex function

Detailed derivation of the first order conditions for $n=1$:

Differentiable convex function

Detailed derivation of the first order conditions for $n=1$:

- hyperplane \mathcal{H} equation given by $\omega^{\top}\left(y, c_{y}\right)+C=0$, with $(x, f(x)) \in \mathcal{H}$

Differentiable convex function

Detailed derivation of the first order conditions for $n=1$:

- hyperplane \mathcal{H} equation given by $\omega^{\top}\left(y, c_{y}\right)+C=0$, with $(x, f(x)) \in \mathcal{H}$
- hence $C=f(x)-f^{\prime}(x) x\left(\right.$ because $\left.\left(f^{\prime}(x),-1\right)^{\top}(x, f(x))+C=0\right)$

Differentiable convex function

Detailed derivation of the first order conditions for $n=1$:

- hyperplane \mathcal{H} equation given by $\omega^{\top}\left(y, c_{y}\right)+C=0$, with $(x, f(x)) \in \mathcal{H}$
- hence $C=f(x)-f^{\prime}(x) x$ (because $\left.\left(f^{\prime}(x),-1\right)^{\top}(x, f(x))+C=0\right)$
- using $c_{y} \leq f(y)$, one retrieves the first order conditions.

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.
Then, for $h \in \mathcal{X}$ and $\epsilon>0$,

$$
\begin{aligned}
& f\left(x^{\star}+\epsilon h\right)=f\left(x^{\star}\right)+\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right) \\
& f\left(x^{\star}-\epsilon h\right)=f\left(x^{\star}\right)-\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right)
\end{aligned}
$$

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.
Then, for $h \in \mathcal{X}$ and $\epsilon>0$,

$$
\begin{aligned}
& f\left(x^{\star}+\epsilon h\right)=f\left(x^{\star}\right)+\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right) \\
& f\left(x^{\star}-\epsilon h\right)=f\left(x^{\star}\right)-\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right)
\end{aligned}
$$

If $\nabla f\left(x^{\star}\right)^{\top} h \neq 0$, contradiction as $\epsilon \rightarrow 0$!

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.
Then, for $h \in \mathcal{X}$ and $\epsilon>0$,

$$
\begin{aligned}
& f\left(x^{\star}+\epsilon h\right)=f\left(x^{\star}\right)+\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right) \\
& f\left(x^{\star}-\epsilon h\right)=f\left(x^{\star}\right)-\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right)
\end{aligned}
$$

If $\nabla f\left(x^{\star}\right)^{\top} h \neq 0$, contradiction as $\epsilon \rightarrow 0$!
So $\nabla f\left(x^{\star}\right)^{\top} h=0$.

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.
Then, for $h \in \mathcal{X}$ and $\epsilon>0$,

$$
\begin{aligned}
& f\left(x^{\star}+\epsilon h\right)=f\left(x^{\star}\right)+\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right) \\
& f\left(x^{\star}-\epsilon h\right)=f\left(x^{\star}\right)-\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right)
\end{aligned}
$$

If $\nabla f\left(x^{\star}\right)^{\top} h \neq 0$, contradiction as $\epsilon \rightarrow 0$!
So $\nabla f\left(x^{\star}\right)^{\top} h=0$.
True for all h : this implies $\nabla f\left(x^{\star}\right)=0$.

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.
Then, for $h \in \mathcal{X}$ and $\epsilon>0$,

$$
\begin{aligned}
& f\left(x^{\star}+\epsilon h\right)=f\left(x^{\star}\right)+\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right) \\
& f\left(x^{\star}-\epsilon h\right)=f\left(x^{\star}\right)-\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right)
\end{aligned}
$$

If $\nabla f\left(x^{\star}\right)^{\top} h \neq 0$, contradiction as $\epsilon \rightarrow 0$!
So $\nabla f\left(x^{\star}\right)^{\top} h=0$.
True for all h : this implies $\nabla f\left(x^{\star}\right)=0$.
\Leftarrow If $\nabla f\left(x^{\star}\right)=0$ with f convex, $\forall x \in \mathcal{X}$,

$$
f(x) \geq f\left(x^{\star}\right)+\nabla f\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right)=f\left(x^{\star}\right)
$$

Differentiable convex function

Important consequence: Fermat's rule,
Theorem (Fermat's rule)
$x^{\star} \in \mathcal{X}$ minimizes $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex iif $\nabla f\left(x^{\star}\right)=0$.
Proof.
\Rightarrow Assume $\nabla f\left(x^{\star}\right) \neq 0$.
Then, for $h \in \mathcal{X}$ and $\epsilon>0$,

$$
\begin{aligned}
& f\left(x^{\star}+\epsilon h\right)=f\left(x^{\star}\right)+\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right) \\
& f\left(x^{\star}-\epsilon h\right)=f\left(x^{\star}\right)-\epsilon \nabla f\left(x^{\star}\right)^{\top} h+O\left(\epsilon^{2}\right)
\end{aligned}
$$

If $\nabla f\left(x^{\star}\right)^{\top} h \neq 0$, contradiction as $\epsilon \rightarrow 0$!
So $\nabla f\left(x^{\star}\right)^{\top} h=0$.
True for all h : this implies $\nabla f\left(x^{\star}\right)=0$.
\Leftarrow If $\nabla f\left(x^{\star}\right)=0$ with f convex, $\forall x \in \mathcal{X}$,

$$
f(x) \geq f\left(x^{\star}\right)+\nabla f\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right)=f\left(x^{\star}\right)
$$

so x^{\star} minimizes f.

Twice-differentiable convex function

Reminder: For f twice-differentiable at x, Hessian $\nabla^{2} f(x)=\left\{\frac{\partial^{2} f}{\left.\partial[x]_{i} \partial x\right]_{j}}\right\}_{i, j=1}^{n}$.

Twice-differentiable convex function

Reminder: For f twice-differentiable at x, Hessian $\nabla^{2} f(x)=\left\{\frac{\partial^{2} f}{\left.\partial[x]_{i} \partial x\right]_{j}}\right\}_{i, j=1}^{n}$.
Theorem (Second order conditions)
For $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ twice differentiable, f is convex on its domain iif $\nabla^{2} f(x)$ is semi-definite positive for all $x \in \operatorname{dom}(f)$.

Twice-differentiable convex function

Reminder: For f twice-differentiable at x, Hessian $\nabla^{2} f(x)=\left\{\frac{\partial^{2} f}{\left.\partial[x]_{i} \partial x\right]_{j}}\right\}_{i, j=1}^{n}$.
Theorem (Second order conditions)
For $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ twice differentiable, f is convex on its domain iif $\nabla^{2} f(x)$ is semi-definite positive for all $x \in \operatorname{dom}(f)$.

Remark (Case $n=1$)
For $n=1, \nabla^{2} f(x)=f^{\prime \prime}(x)$.

Twice-differentiable convex function

Reminder: For f twice-differentiable at x, Hessian $\nabla^{2} f(x)=\left\{\frac{\partial^{2} f}{\left.\partial[x]_{i} \partial x\right]_{j}}\right\}_{i, j=1}^{n}$.
Theorem (Second order conditions)
For $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ twice differentiable, f is convex on its domain iif $\nabla^{2} f(x)$ is semi-definite positive for all $x \in \operatorname{dom}(f)$.

Remark (Case $n=1$)
For $n=1, \nabla^{2} f(x)=f^{\prime \prime}(x)$. Thus, f convex iif $f^{\prime \prime}(x)>0$ (or equivalently $f^{\prime}(x)$ non-decreasing).

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.
But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h
$$

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.

But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x+\gamma h)\right] h \geq 0
$$

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.

But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x+\gamma h)\right] h \geq 0
$$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x)\right] h \geq 0$, i.e., $\nabla^{2} f \succeq 0$.

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.

But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x+\gamma h)\right] h \geq 0
$$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x)\right] h \geq 0$, i.e., $\nabla^{2} f \succeq 0$.
\Leftarrow Define $g:[0,1] \rightarrow \mathbb{R} \cup\{+\infty\}, g(t)=f(t x+(1-t) y)$.

Twice-differentiable convex function

Proof.
\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.
But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x+\gamma h)\right] h \geq 0
$$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x)\right] h \geq 0$, i.e., $\nabla^{2} f \succeq 0$.
\Leftarrow Define $g:[0,1] \rightarrow \mathbb{R} \cup\{+\infty\}, g(t)=f(t x+(1-t) y)$.
By chain rule $\left(g^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial[z]_{i}} \frac{d[z]_{i}(t)}{d t}\right.$ with $g(t) \equiv f(z(t))$, and similarly for $\left.g^{\prime \prime}(t)\right)$

$$
g^{\prime \prime}(t)=(x-y)^{\top}\left[\nabla^{2} f(t x+(1-t) y)\right](x-y) \geq 0 \quad\left(\text { since } \nabla^{2} f \succeq 0\right)
$$

Twice-differentiable convex function

Proof.

\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.

But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x+\gamma h)\right] h \geq 0
$$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x)\right] h \geq 0$, i.e., $\nabla^{2} f \succeq 0$.
\Leftarrow Define $g:[0,1] \rightarrow \mathbb{R} \cup\{+\infty\}, g(t)=f(t x+(1-t) y)$.
By chain rule $\left(g^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial[z]_{i}} \frac{d[z]_{i}(t)}{d t}\right.$ with $g(t) \equiv f(z(t))$, and similarly for $\left.g^{\prime \prime}(t)\right)$

$$
g^{\prime \prime}(t)=(x-y)^{\top}\left[\nabla^{2} f(t x+(1-t) y)\right](x-y) \geq 0 \quad\left(\text { since } \nabla^{2} f \succeq 0\right)
$$

By Taylor-Lagrange, we then have, for some $\zeta_{x}, \zeta_{y} \in[0,1]$,

$$
\left.\begin{array}{rl}
(*) f(y) & =g(0) \\
=g(t)+(0-t) g^{\prime}(t)+\frac{1}{2} t^{2} g^{\prime \prime}\left(\zeta_{y}\right) \geq g(t)-t g^{\prime}(t) \\
(* *) f(x) & =g(1)
\end{array}\right) g(t)+(1-t) g^{\prime}(t)+\frac{1}{2} t^{2} g^{\prime \prime}\left(\zeta_{x}\right) \geq g(t)+(1-t) g^{\prime}(t) . ~ \$
$$

Twice-differentiable convex function

Proof.

\Rightarrow By Taylor-Lagrange, $\forall h \in \mathcal{X}$ and $\forall \epsilon>0$,

$$
\exists \gamma \in(0, \epsilon), f(x+\epsilon h)=f(x)+\epsilon h^{\top} \nabla f(x)+\epsilon^{2} h^{\top} \nabla^{2} f(x+\gamma h) h
$$

Why? 1D Taylor-Lagrange by differentiating $g: \epsilon \mapsto f(x+\epsilon h)$.

But by convexity,

$$
f(x+\epsilon h) \geq f(x)+\epsilon \nabla f(x)^{\top} h \quad \Rightarrow \quad \forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x+\gamma h)\right] h \geq 0
$$

With $\epsilon \downarrow 0$, we obtain $\forall h \in \mathcal{X}, h^{\top}\left[\nabla^{2} f(x)\right] h \geq 0$, i.e., $\nabla^{2} f \succeq 0$.
\Leftarrow Define $g:[0,1] \rightarrow \mathbb{R} \cup\{+\infty\}, g(t)=f(t x+(1-t) y)$.
By chain rule $\left(g^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial[z]_{i}} \frac{d[z]_{i}(t)}{d t}\right.$ with $g(t) \equiv f(z(t))$, and similarly for $\left.g^{\prime \prime}(t)\right)$

$$
g^{\prime \prime}(t)=(x-y)^{\top}\left[\nabla^{2} f(t x+(1-t) y)\right](x-y) \geq 0 \quad\left(\text { since } \nabla^{2} f \succeq 0\right)
$$

By Taylor-Lagrange, we then have, for some $\zeta_{x}, \zeta_{y} \in[0,1]$,

$$
\left.\begin{array}{rl}
(*) f(y) & =g(0) \\
=g(t)+(0-t) g^{\prime}(t)+\frac{1}{2} t^{2} g^{\prime \prime}\left(\zeta_{y}\right) \geq g(t)-\operatorname{tg}^{\prime}(t) \\
(* *) f(x) & =g(1)
\end{array}\right) g(t)+(1-t) g^{\prime}(t)+\frac{1}{2} t^{2} g^{\prime \prime}\left(\zeta_{x}\right) \geq g(t)+(1-t) g^{\prime}(t) . ~ \$
$$

Using $(1-t)(*)+t(* *)$, we conclude $t f(x)+(1-t) f(y) \geq g(t)=f(t x+(1-t) y)$.

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
```


Basic Algorithms for Convex Optimization

Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods
Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints
Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions
```

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- fifferentiable everywhere on \mathcal{X};
- Ω unbounded.

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- fifferentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- fifferentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.
Algorithm terminates when either:

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- f differentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.
Algorithm terminates when either:

- $\left\|x_{k+1}-x_{k}\right\|<\epsilon$: the algorithm no longer progresses in \mathcal{X};

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- f differentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.
Algorithm terminates when either:

- $\left\|x_{k+1}-x_{k}\right\|<\epsilon$: the algorithm no longer progresses in \mathcal{X};
- $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\epsilon$: the cost no longer progresses

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- f differentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.
Algorithm terminates when either:

- $\left\|x_{k+1}-x_{k}\right\|<\epsilon$: the algorithm no longer progresses in \mathcal{X};
- $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\epsilon$: the cost no longer progresses ($\nRightarrow x_{k}$ converges!);

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- f differentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.
Algorithm terminates when either:

- $\left\|x_{k+1}-x_{k}\right\|<\epsilon$: the algorithm no longer progresses in \mathcal{X};
- $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\epsilon$: the cost no longer progresses ($\nRightarrow x_{k}$ converges!);
- $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$: cost almost flat

Convex optimization algorithms: the unconstrained differentiable case

Reminder: our objective is to solve

$$
x^{\star} \in \operatorname{argmin}_{x \in \Omega \subset \mathcal{X}}\{f(x)\} .
$$

Assumption (Unconstrained Ω, differentiable f)

- f differentiable everywhere on \mathcal{X};
- Ω unbounded.

Definition (Iterative algorithms)
Sequentially evaluate f at positions x_{1}, x_{2}, \ldots with x_{k+1} a function of x_{k}.
Algorithm terminates when either:

- $\left\|x_{k+1}-x_{k}\right\|<\epsilon$: the algorithm no longer progresses in \mathcal{X};
- $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\epsilon$: the cost no longer progresses ($\nRightarrow x_{k}$ converges!);
- $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$: cost almost flat (close to $\nabla f\left(x^{*}\right)=0$ but maybe far from x^{\star}).

Convex optimization algorithms: descent methods

Definition (Descent Method)

Descent method is an algorithm outputing $x_{1}, x_{2}, \ldots \in \mathcal{X}$ of the form

$$
x_{k+1}=x_{k}+t_{k} \Delta x_{k}, \quad \text { step size } \quad t_{k}>0, \quad \text { increment } \Delta x_{k}
$$

such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ if $x_{k} \notin \operatorname{argmin} f$ and $f\left(x_{k+1}\right)=f\left(x_{k}\right)$ if $x_{k} \in \operatorname{argmin} f$.

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

- too slow descent: we may have $\lim _{k} f\left(x_{k}\right)>f\left(x^{\star}\right)$;

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

- too slow descent: we may have $\lim _{k} f\left(x_{k}\right)>f\left(x^{*}\right)$;
- $f\left(x_{k}\right) \rightarrow f\left(x^{\star}\right)$ does not imply that x_{k} converges at all (periodic behavior of x_{k} !).

Convex optimization algorithms: descent methods

Remark (Convergence (or not) of descent algorithms)
For f with non-empty set of minima, descent algorithms converge, however not necessarily to local minimum:

- too slow descent: we may have $\lim _{k} f\left(x_{k}\right)>f\left(x^{*}\right)$;
- $f\left(x_{k}\right) \rightarrow f\left(x^{\star}\right)$ does not imply that x_{k} converges at all (periodic behavior of x_{k} !).

Descent sequences either not converging (top) or not reaching minimum (bottom).

Convex optimization algorithms: descent methods

Important property: for $x_{k}, x_{k+1} \in \mathcal{X}$, by first order condition

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right) \geq f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Convex optimization algorithms: descent methods

Important property: for $x_{k}, x_{k+1} \in \mathcal{X}$, by first order condition

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right) \geq f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

As such, letting x_{1}, x_{2}, \ldots defined by

$$
x_{k+1}=x_{k}+t_{k} \Delta x_{k}
$$

we have

$$
f\left(x_{k+1}\right) \geq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k+1}-x_{k}\right)=f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Convex optimization algorithms: descent methods

Important property: for $x_{k}, x_{k+1} \in \mathcal{X}$, by first order condition

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right) \geq f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

As such, letting x_{1}, x_{2}, \ldots defined by

$$
x_{k+1}=x_{k}+t_{k} \Delta x_{k}
$$

we have

$$
f\left(x_{k+1}\right) \geq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k+1}-x_{k}\right)=f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

and thus x_{1}, x_{2}, \ldots cannot be a descent method sequence unless $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k} \leq 0$.

Convex optimization algorithms: descent methods

Important property: for $x_{k}, x_{k+1} \in \mathcal{X}$, by first order condition

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right) \geq f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

As such, letting x_{1}, x_{2}, \ldots defined by

$$
x_{k+1}=x_{k}+t_{k} \Delta x_{k},
$$

we have

$$
f\left(x_{k+1}\right) \geq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k+1}-x_{k}\right)=f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

and thus x_{1}, x_{2}, \ldots cannot be a descent method sequence unless $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k} \leq 0$.
Property (Descent direction)
Necessary condition for x_{1}, x_{2}, \ldots to be a descent sequence,

$$
\nabla f\left(x_{k}\right)^{\top} \Delta x_{k} \leq 0
$$

where $\Delta x_{k}=x_{k+1}-x_{k}$, and equality reached iif $x_{k} \in \arg \min f$.

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function $f(x)=[x]_{1}^{2}+[x]_{2}^{2}$. Initialized at $x_{1}=[1,1]$.

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function $f(x)=[x]_{1}^{2}+[x]_{2}^{2}$. Initialized at $x_{1}=[1,1]$.

Although $\Delta x_{1}=[-1,1 / 2]$ has acute angle with $-\nabla f\left(x_{1}\right)$,

$$
x_{2}=[0,3 / 2]=x_{1}+\Delta x_{1}
$$

increases rather than decreases f.

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function $f(x)=[x]_{1}^{2}+[x]_{2}^{2}$. Initialized at $x_{1}=[1,1]$.

Although $\Delta x_{1}=[-1,1 / 2]$ has acute angle with $-\nabla f\left(x_{1}\right)$,

$$
x_{2}=[0,3 / 2]=x_{1}+\Delta x_{1}
$$

increases rather than decreases f.

Yet, for small $t, x_{1}+t \Delta x_{1}$ is descent direction (red circle).

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function $f(x)=[x]_{1}^{2}+[x]_{2}^{2}$. Initialized at $x_{1}=[1,1]$.

Although $\Delta x_{1}=[-1,1 / 2]$ has acute angle with $-\nabla f\left(x_{1}\right)$,

$$
x_{2}=[0,3 / 2]=x_{1}+\Delta x_{1}
$$

increases rather than decreases f.

Yet, for small $t, x_{1}+t \Delta x_{1}$ is descent direction (red circle).
The condition is "locally sufficient" with small steps and f locally twice-differentiable; indeed, by Taylor

$$
f\left(x_{k+1}\right)=f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k}+O\left(t_{k}^{2}\left\|\Delta x_{k}\right\|^{2}\right)
$$

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function $f(x)=[x]_{1}^{2}+[x]_{2}^{2}$. Initialized at $x_{1}=[1,1]$.

Although $\Delta x_{1}=[-1,1 / 2]$ has acute angle with $-\nabla f\left(x_{1}\right)$,

$$
x_{2}=[0,3 / 2]=x_{1}+\Delta x_{1}
$$

increases rather than decreases f.

Yet, for small $t, x_{1}+t \Delta x_{1}$ is descent direction (red circle).
The condition is "locally sufficient" with small steps and f locally twice-differentiable; indeed, by Taylor

$$
f\left(x_{k+1}\right)=f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k}+O\left(t_{k}^{2}\left\|\Delta x_{k}\right\|^{2}\right)
$$

so that, $\forall t_{k}>0$ small, $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

Convex optimization algorithms: descent methods

The condition is not sufficient!

Function $f(x)=[x]_{1}^{2}+[x]_{2}^{2}$. Initialized at $x_{1}=[1,1]$.

Although $\Delta x_{1}=[-1,1 / 2]$ has acute angle with $-\nabla f\left(x_{1}\right)$,

$$
x_{2}=[0,3 / 2]=x_{1}+\Delta x_{1}
$$

increases rather than decreases f.

Yet, for small $t, x_{1}+t \Delta x_{1}$ is descent direction (red circle).
The condition is "locally sufficient" with small steps and f locally twice-differentiable; indeed, by Taylor

$$
f\left(x_{k+1}\right)=f\left(x_{k}\right)+t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k}+O\left(t_{k}^{2}\left\|\Delta x_{k}\right\|^{2}\right)
$$

so that, $\forall t_{k}>0$ small, $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.
\Rightarrow Careful control of step sizes needed!

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|$ maximal when $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}$ both negative and of maximal absolute value.

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|$ maximal when $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}$ both negative and of maximal absolute value.

For $\left\|\Delta x_{k}\right\|=1$, optimal when

$$
\Delta x_{k}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}
$$

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|$ maximal when $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}$ both negative and of maximal absolute value.

For $\left\|\Delta x_{k}\right\|=1$, optimal when

$$
\Delta x_{k}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}
$$

Leads to popular gradient descent algorithm.
Definition (Gradient Descent Algorithm)
$x_{1} \in \mathcal{X}$ and, for all $k \geq 1$,

$$
x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right), \quad t_{1}, t_{2}, \ldots>0 .
$$

Convex optimization algorithms: descent methods

Remark: Still in small step size limit, gain $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|$ maximal when $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}$ both negative and of maximal absolute value.

For $\left\|\Delta x_{k}\right\|=1$, optimal when

$$
\Delta x_{k}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}
$$

Leads to popular gradient descent algorithm.
Definition (Gradient Descent Algorithm)
$x_{1} \in \mathcal{X}$ and, for all $k \geq 1$,

$$
x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right), \quad t_{1}, t_{2}, \ldots>0 .
$$

Remark: Often, constant step, i.e., $t_{k}=t$ constant:

- easy: does not request fine-tuning of t_{k},
- but suboptimal.

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: a descent sequence x_{1}, x_{2}, \ldots.

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: a descent sequence x_{1}, x_{2}, \ldots..
Remark (On step size)

- [Line search]

$$
t_{k} \in \operatorname{argmin}_{t>0} f\left(x_{k}+t \Delta x_{k}\right)
$$

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: a descent sequence x_{1}, x_{2}, \ldots..
Remark (On step size)

- [Line search]

$$
t_{k} \in \operatorname{argmin}_{t>0} f\left(x_{k}+t \Delta x_{k}\right)
$$

But can be expensive (second optimization or full line search).

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)
Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: a descent sequence x_{1}, x_{2}, \ldots.

Remark (On step size)

- [Line search]

$$
t_{k} \in \operatorname{argmin}_{t>0} f\left(x_{k}+t \Delta x_{k}\right)
$$

But can be expensive (second optimization or full line search).

- [Backtracking] simplified line search: $t^{(0)}=1$ and, for some $0<\alpha, \beta<1$, $t^{(j+1)}=\beta t^{(j)}$ until

$$
f\left(x_{k}+t^{(j+1)} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t^{(j+1)} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: a descent sequence x_{1}, x_{2}, \ldots.

Remark (On step size)

- [Line search]

$$
t_{k} \in \operatorname{argmin}_{t>0} f\left(x_{k}+t \Delta x_{k}\right)
$$

But can be expensive (second optimization or full line search).

- [Backtracking] simplified line search: $t^{(0)}=1$ and, for some $0<\alpha, \beta<1$, $t^{(j+1)}=\beta t^{(j)}$ until

$$
f\left(x_{k}+t^{(j+1)} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t^{(j+1)} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: meets Armijo-Goldstein condition!

Convex optimization algorithms: descent methods

Definition (Armijo-Goldstein condition)

Given Δx_{k} with $\left\|\Delta x_{k}\right\|=1$ and $\nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<0$, and $\alpha \in(0,1), t_{k}$ satisfies Armijo-Goldstein condition if

$$
f\left(x_{k}+t_{k} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t_{k} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: a descent sequence x_{1}, x_{2}, \ldots.

Remark (On step size)

- [Line search]

$$
t_{k} \in \operatorname{argmin}_{t>0} f\left(x_{k}+t \Delta x_{k}\right)
$$

But can be expensive (second optimization or full line search).

- [Backtracking] simplified line search: $t^{(0)}=1$ and, for some $0<\alpha, \beta<1$, $t^{(j+1)}=\beta t^{(j)}$ until

$$
f\left(x_{k}+t^{(j+1)} \Delta x_{k}\right)<f\left(x_{k}\right)+\alpha t^{(j+1)} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Remark: meets Armijo-Goldstein condition!
Always achievable: as $t^{(j)} \rightarrow 0$,

$$
f\left(x_{k}+t^{(j+1)} \Delta x_{k}\right) \simeq f\left(x_{k}\right)+t^{(j)} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k}<f\left(x_{k}\right)+\alpha t^{(j+1)} \nabla f\left(x_{k}\right)^{\top} \Delta x_{k} .
$$

Convex optimization algorithms: convergence of gradient descent

Theorem (Convergence of Gradient Descent with Constant Step Size) $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex, twice continuously differentiable, with L-Lipschitz ∇f :

$$
\forall x, y \in \mathcal{X} \quad\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| .
$$

Then gradient descent with constant step size $t \leq \frac{1}{L}$ convergences to a minimum of f :

$$
x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x} f(x) .
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^{2} f(x) \preceq L I_{n}$:

Convex optimization algorithms: convergence of gradient descent

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^{2} f(x) \preceq L I_{n}$: for $x, u \in \mathcal{X}$

$$
\begin{aligned}
f(x+\epsilon u) & =f(x)+\epsilon \nabla f(x)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x) u+o\left(\epsilon^{2}\right) \\
f(x) & =f(x+\epsilon u)-\epsilon \nabla f(x+\epsilon u)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x+\epsilon u) u+o\left(\epsilon^{2}\right) .
\end{aligned}
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^{2} f(x) \preceq L I_{n}$: for $x, u \in \mathcal{X}$

$$
\begin{aligned}
f(x+\epsilon u) & =f(x)+\epsilon \nabla f(x)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x) u+o\left(\epsilon^{2}\right) \\
f(x) & =f(x+\epsilon u)-\epsilon \nabla f(x+\epsilon u)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x+\epsilon u) u+o\left(\epsilon^{2}\right) .
\end{aligned}
$$

Summing and dividing by ϵ^{2} :

$$
\frac{(\nabla f(x+\epsilon u)-\nabla f(x))^{\top} u}{\epsilon}=\frac{1}{2} u^{\top}\left(\nabla^{2} f(x)+\nabla^{2} f(x+\epsilon u)\right) u+o(1)
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^{2} f(x) \preceq L I_{n}$: for $x, u \in \mathcal{X}$

$$
\begin{aligned}
f(x+\epsilon u) & =f(x)+\epsilon \nabla f(x)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x) u+o\left(\epsilon^{2}\right) \\
f(x) & =f(x+\epsilon u)-\epsilon \nabla f(x+\epsilon u)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x+\epsilon u) u+o\left(\epsilon^{2}\right) .
\end{aligned}
$$

Summing and dividing by ϵ^{2} :

$$
\frac{(\nabla f(x+\epsilon u)-\nabla f(x))^{\top} u}{\epsilon}=\frac{1}{2} u^{\top}\left(\nabla^{2} f(x)+\nabla^{2} f(x+\epsilon u)\right) u+o(1)
$$

By Cauchy-Schwarz and the Lipschitz condition,

$$
\frac{1}{2} u^{\top}\left(\nabla^{2} f(x)+\nabla^{2} f(x+\epsilon u)\right) u+o(1) \leq \frac{\|\nabla f(x+\epsilon u)-\nabla f(x)\|\|u\|}{\epsilon} \leq L\|u\|^{2} .
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

1. Prelim. Lipschitz condition on ∇f implies $\nabla^{2} f(x) \preceq L I_{n}$: for $x, u \in \mathcal{X}$

$$
\begin{aligned}
f(x+\epsilon u) & =f(x)+\epsilon \nabla f(x)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x) u+o\left(\epsilon^{2}\right) \\
f(x) & =f(x+\epsilon u)-\epsilon \nabla f(x+\epsilon u)^{\top} u+\frac{1}{2} \epsilon^{2} u^{\top} \nabla^{2} f(x+\epsilon u) u+o\left(\epsilon^{2}\right) .
\end{aligned}
$$

Summing and dividing by ϵ^{2} :

$$
\frac{(\nabla f(x+\epsilon u)-\nabla f(x))^{\top} u}{\epsilon}=\frac{1}{2} u^{\top}\left(\nabla^{2} f(x)+\nabla^{2} f(x+\epsilon u)\right) u+o(1)
$$

By Cauchy-Schwarz and the Lipschitz condition,

$$
\frac{1}{2} u^{\top}\left(\nabla^{2} f(x)+\nabla^{2} f(x+\epsilon u)\right) u+o(1) \leq \frac{\|\nabla f(x+\epsilon u)-\nabla f(x)\|\|u\|}{\epsilon} \leq L\|u\|^{2} .
$$

So, as $\epsilon \rightarrow 0$,

$$
u^{\top} \nabla^{2} f(x) u \leq L\|u\|^{2}, \quad \forall u \in \mathcal{X}
$$

Convex optimization algorithms: convergence of gradient descent Proof.
2. Core of Proof. Since f convex $(*)$ and $\nabla^{2} f(x) \preceq L I_{n}(* *)$, for $x, y \in \mathcal{X}$,

$$
\begin{aligned}
(*) f(y) & \geq f(x)+\nabla f(x)^{\top}(y-x) \\
(* *) f(y) & =f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \\
& \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2} L\|y-x\|^{2}
\end{aligned}
$$

$(\zeta=x+\lambda(y-x)$ for some $\lambda \in[0,1])$.

Convex optimization algorithms: convergence of gradient descent Proof.
2. Core of Proof. Since f convex $(*)$ and $\nabla^{2} f(x) \preceq L I_{n}(* *)$, for $x, y \in \mathcal{X}$,

$$
\begin{aligned}
(*) f(y) & \geq f(x)+\nabla f(x)^{\top}(y-x) \\
(* *) f(y) & =f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \\
& \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2} L\|y-x\|^{2}
\end{aligned}
$$

$(\zeta=x+\lambda(y-x)$ for some $\lambda \in[0,1])$.
From ($* *$),

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k+1}-x_{k}\right)+\frac{1}{2} L\left\|x_{k+1}-x_{k}\right\|^{2} \\
& =f\left(x_{k}\right)-t\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2} L t^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& =f\left(x_{k}\right)-\left(1-\frac{1}{2} L t\right) t\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

Convex optimization algorithms: convergence of gradient descent Proof.
2. Core of Proof. Since f convex $(*)$ and $\nabla^{2} f(x) \preceq L I_{n}(* *)$, for $x, y \in \mathcal{X}$,

$$
\begin{aligned}
(*) f(y) & \geq f(x)+\nabla f(x)^{\top}(y-x) \\
(* *) f(y) & =f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \\
& \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2} L\|y-x\|^{2}
\end{aligned}
$$

$(\zeta=x+\lambda(y-x)$ for some $\lambda \in[0,1])$.
From ($* *$),

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k+1}-x_{k}\right)+\frac{1}{2} L\left\|x_{k+1}-x_{k}\right\|^{2} \\
& =f\left(x_{k}\right)-t\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2} L t^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& =f\left(x_{k}\right)-\left(1-\frac{1}{2} L t\right) t\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

We now use $t \leq 1 / L$:

$$
\begin{equation*}
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\left(\leq f\left(x_{k}\right)\right) \tag{2}
\end{equation*}
$$

with equality iif $\nabla f\left(x_{k}\right)=0$

Convex optimization algorithms: convergence of gradient descent Proof.
2. Core of Proof. Since f convex $(*)$ and $\nabla^{2} f(x) \preceq L I_{n}(* *)$, for $x, y \in \mathcal{X}$,

$$
\begin{aligned}
(*) f(y) & \geq f(x)+\nabla f(x)^{\top}(y-x) \\
(* *) f(y) & =f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \\
& \leq f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2} L\|y-x\|^{2}
\end{aligned}
$$

$(\zeta=x+\lambda(y-x)$ for some $\lambda \in[0,1])$.
From ($* *$),

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k+1}-x_{k}\right)+\frac{1}{2} L\left\|x_{k+1}-x_{k}\right\|^{2} \\
& =f\left(x_{k}\right)-t\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2} L t^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& =f\left(x_{k}\right)-\left(1-\frac{1}{2} L t\right) t\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

We now use $t \leq 1 / L$:

$$
\begin{equation*}
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\left(\leq f\left(x_{k}\right)\right) \tag{2}
\end{equation*}
$$

with equality iif $\nabla f\left(x_{k}\right)=0 \Rightarrow$ gradient descent is a descent algorithm.

Convex optimization algorithms: convergence of gradient descent Proof.
3. Convergence to minimum. From (*), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right)
$$

Convex optimization algorithms: convergence of gradient descent
Proof.
3. Convergence to minimum. From (*), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right) \quad \Leftrightarrow \quad f(x) \leq f\left(x^{\star}\right)+\nabla f(x)^{\top}\left(x-x^{\star}\right)
$$

Convex optimization algorithms: convergence of gradient descent Proof.
3. Convergence to minimum. From (*), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right) \quad \Leftrightarrow \quad f(x) \leq f\left(x^{\star}\right)+\nabla f(x)^{\top}\left(x-x^{\star}\right)
$$

So in particular, from (2), $\left(f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right)$

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

3. Convergence to minimum. From ($*$), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right) \quad \Leftrightarrow \quad f(x) \leq f\left(x^{\star}\right)+\nabla f(x)^{\top}\left(x-x^{\star}\right)
$$

So in particular, from (2), $\left(f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right)$

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq f\left(x^{\star}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
$$

Convex optimization algorithms: convergence of gradient descent Proof.
3. Convergence to minimum. From ($*$), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right) \quad \Leftrightarrow \quad f(x) \leq f\left(x^{\star}\right)+\nabla f(x)^{\top}\left(x-x^{\star}\right)
$$

So in particular, from (2), $\left(f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right)$

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq f\left(x^{\star}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
$$

We need to relate $\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)$ to $t\left\|\nabla f\left(x_{k}\right)\right\|^{2}$:

$$
\left\|x_{k}-x^{\star}-t \nabla f\left(x_{k}\right)\right\|^{2}=\left\|x_{k}-x^{\star}\right\|^{2}+t^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}-2 t \nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)
$$

Convex optimization algorithms: convergence of gradient descent Proof.
3. Convergence to minimum. From ($*$), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right) \quad \Leftrightarrow \quad f(x) \leq f\left(x^{\star}\right)+\nabla f(x)^{\top}\left(x-x^{\star}\right) .
$$

So in particular, from (2), $\left(f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right)$

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq f\left(x^{\star}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
$$

We need to relate $\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)$ to $t\left\|\nabla f\left(x_{k}\right)\right\|^{2}$:

$$
\left\|x_{k}-x^{\star}-t \nabla f\left(x_{k}\right)\right\|^{2}=\left\|x_{k}-x^{\star}\right\|^{2}+t^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}-2 t \nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)
$$

which yields

$$
f\left(x_{k+1}\right) \leq f\left(x^{\star}\right)+\frac{1}{2 t}(\left\|x_{k}-x^{\star}\right\|^{2}-\|\underbrace{x_{k}-t \nabla f\left(x_{k}\right)}_{x_{k+1}}-x^{\star}\|^{2}) .
$$

Convex optimization algorithms: convergence of gradient descent Proof.
3. Convergence to minimum. From ($*$), for any $x^{\star} \in \operatorname{argmin} f$ and $x \in \mathcal{X}$,

$$
f\left(x^{\star}\right) \geq f(x)+\nabla f(x)^{\top}\left(x^{\star}-x\right) \quad \Leftrightarrow \quad f(x) \leq f\left(x^{\star}\right)+\nabla f(x)^{\top}\left(x-x^{\star}\right)
$$

So in particular, from (2), $\left(f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right)$

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq f\left(x^{\star}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
$$

We need to relate $\nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)$ to $t\left\|\nabla f\left(x_{k}\right)\right\|^{2}$:

$$
\left\|x_{k}-x^{\star}-t \nabla f\left(x_{k}\right)\right\|^{2}=\left\|x_{k}-x^{\star}\right\|^{2}+t^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}-2 t \nabla f\left(x_{k}\right)^{\top}\left(x_{k}-x^{\star}\right)
$$

which yields

$$
f\left(x_{k+1}\right) \leq f\left(x^{\star}\right)+\frac{1}{2 t}(\left\|x_{k}-x^{\star}\right\|^{2}-\|\underbrace{x_{k}-t \nabla f\left(x_{k}\right)}_{x_{k+1}}-x^{\star}\|^{2}) .
$$

Summing for $k=1, \ldots, K$, RHS telescopes:

$$
\underbrace{\sum_{k=1}^{K} f\left(x_{k+1}\right)-f\left(x^{\star}\right)}_{\geq K\left(f\left(x_{K}\right)-f\left(x^{\star}\right)\right)} \leq \frac{1}{2 t}\left(\left\|x_{1}-x^{\star}\right\|^{2}-\left\|x_{K}-x^{\star}\right\|^{2}\right) \leq \frac{1}{2 t}\left\|x_{1}-x^{\star}\right\|^{2}
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

So finally, as $K \rightarrow \infty$

$$
f\left(x_{K}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 K t}\left\|x_{1}-x^{\star}\right\|^{2} \rightarrow 0
$$

Convex optimization algorithms: convergence of gradient descent

Proof.

So finally, as $K \rightarrow \infty$

$$
f\left(x_{K}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 K t}\left\|x_{1}-x^{\star}\right\|^{2} \rightarrow 0
$$

x_{K} may not converge, but $f\left(x_{K}\right) \rightarrow f\left(x^{\star}\right)$.

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- BUT requires small steps $(<1 / L)$: in most cases, difficult to evaluate;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- BUT requires small steps $(<1 / L)$: in most cases, difficult to evaluate;
- strong constraints on f : bounded $\nabla^{2} f$ bounded (f cannot be super-quadratic), risk of "bouncing or diverging steps";

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- BUT requires small steps ($<1 / L$): in most cases, difficult to evaluate;
- strong constraints on f : bounded $\nabla^{2} f$ bounded (f cannot be super-quadratic), risk of "bouncing or diverging steps";
- f needs be everywhere differentiable for gradient to be evaluated;

Convex optimization algorithms: convergence of gradient descent

Remark (Advantages/limitations of gradient descent)

- simple to implement: for f not easily differentiable, gradient approximation $\left\{\left(f\left(x_{k}+\epsilon e_{i}\right)-f\left(x_{k}\right)\right) / \epsilon\right\}_{i=1}^{n}$ with $\left[e_{i}\right]_{j}=\delta_{i}^{j} i$-th canonical vector;
- quite flexible, generalizes in many ways: when f not perfectly known, stochastic gradient descent (averages well on the long run);
- ensured convergence for fixed steps: "no" step size adaptation required;
- BUT requires small steps $(<1 / L)$: in most cases, difficult to evaluate;
- strong constraints on f : bounded $\nabla^{2} f$ bounded (f cannot be super-quadratic), risk of "bouncing or diverging steps";
- f needs be everywhere differentiable for gradient to be evaluated;
- needs unbounded Ω : $x_{k}+t \nabla f\left(x_{k}\right)$ remains within the domain of f.

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{1}-x^{\star}\right\|^{2} .
$$

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{1}-x^{\star}\right\|^{2} .
$$

i.e., 100 steps lead to 1% error:

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{1}-x^{\star}\right\|^{2} .
$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{1}-x^{\star}\right\|^{2} .
$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate. We can do much better!

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{1}-x^{\star}\right\|^{2} .
$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!
Theorem (Linear Convergence of Gradient Descent)
$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex, twice continuously differentiable, and $\forall x \in \mathcal{X}$,

$$
I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}, \quad \text { for some } L \geq I>0 .
$$

Then, ofr gradient descent algorithm with step size $t \leq \frac{1}{L}$,

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \alpha C^{k}, \quad C<1
$$

Convex optimization algorithms: convergence speed of gradient descent

Remark: From the proof, convergence speed satisfies at least

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \frac{1}{2 k t}\left\|x_{1}-x^{\star}\right\|^{2} .
$$

i.e., 100 steps lead to 1% error: this is quite slow!, called sublinear convergence rate.

We can do much better!
Theorem (Linear Convergence of Gradient Descent)
$f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ convex, twice continuously differentiable, and $\forall x \in \mathcal{X}$,

$$
I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}, \quad \text { for some } L \geq I>0 .
$$

Then, ofr gradient descent algorithm with step size $t \leq \frac{1}{L}$,

$$
f\left(x_{k}\right)-f\left(x^{\star}\right) \leq \alpha C^{k}, \quad C<1
$$

Convergence is said linear.

Convex optimization algorithms: convergence speed of gradient descent Proof.
We already know, since $t \leq \frac{1}{L}$,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

Convex optimization algorithms: convergence speed of gradient descent Proof.
We already know, since $t \leq \frac{1}{L}$,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

from which

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq f\left(x_{k}\right)-f\left(x^{\star}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2} . \tag{3}
\end{equation*}
$$

Convex optimization algorithms: convergence speed of gradient descent Proof.
We already know, since $t \leq \frac{1}{L}$,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

from which

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq f\left(x_{k}\right)-f\left(x^{\star}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2} . \tag{3}
\end{equation*}
$$

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,
$f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x)$

Convex optimization algorithms: convergence speed of gradient descent Proof.
We already know, since $t \leq \frac{1}{L}$,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

from which

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq f\left(x_{k}\right)-f\left(x^{\star}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2} . \tag{3}
\end{equation*}
$$

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,

$$
f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \geq f(x)+\nabla f(x)^{\top}(y-x)+\frac{l}{2}\|y-x\|^{2}
$$

Convex optimization algorithms: convergence speed of gradient descent Proof.
We already know, since $t \leq \frac{1}{L}$,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

from which

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq f\left(x_{k}\right)-f\left(x^{\star}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2} . \tag{3}
\end{equation*}
$$

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,
$f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \geq f(x)+\nabla f(x)^{\top}(y-x)+\frac{I}{2}\|y-x\|^{2}$
Right-hand side minimized for $y=x-\frac{1}{l} \nabla f(x)$ (differentiate along y): $\forall x, y \in \mathcal{X}$,

$$
f(y) \geq f(x)-\frac{1}{2 l}\|\nabla f(x)\|^{2}
$$

Convex optimization algorithms: convergence speed of gradient descent Proof.
We already know, since $t \leq \frac{1}{L}$,

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2}
$$

from which

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq f\left(x_{k}\right)-f\left(x^{\star}\right)-\frac{1}{2} t\left\|\nabla f\left(x_{k}\right)\right\|^{2} \tag{3}
\end{equation*}
$$

Also, by Taylor expansion: $\forall x, y \in \mathcal{X}$,
$f(y)=f(x)+\nabla f(x)^{\top}(y-x)+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(\zeta)(y-x) \geq f(x)+\nabla f(x)^{\top}(y-x)+\frac{I}{2}\|y-x\|^{2}$
Right-hand side minimized for $y=x-\frac{1}{l} \nabla f(x)$ (differentiate along y): $\forall x, y \in \mathcal{X}$,

$$
f(y) \geq f(x)-\frac{1}{2 l}\|\nabla f(x)\|^{2}
$$

Applied to $y=x^{\star}$ and $x=x_{k}$,

$$
-\frac{t}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq t /\left(f\left(x^{\star}\right)-f\left(x_{k}\right)\right)
$$

Convex optimization algorithms: convergence speed of gradient descent

Proof.

Back to (3), this implies

$$
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq(1-t l)\left(f\left(x_{k}\right)-f\left(x^{\star}\right)\right), \quad 1-t l=C<1 \text { (by assumption). }
$$

Convex optimization algorithms: convergence speed of gradient descent

Proof.

Back to (3), this implies

$$
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq(1-t l)\left(f\left(x_{k}\right)-f\left(x^{\star}\right)\right), \quad 1-t l=C<1 \text { (by assumption). }
$$

Applied to $k=1, \ldots, K$, this is

$$
f\left(x_{K+1}\right)-f\left(x^{\star}\right) \leq C^{K}\left(f\left(x_{1}\right)-f\left(x^{\star}\right)\right) .
$$

Convex optimization algorithms: Newton's method

Intuition of Newton's method: second-order Taylor expansion of f

$$
f(x+h)=\underbrace{f(x)+\nabla f(x)^{\top} h+\frac{1}{2} h^{\top} \nabla^{2} f(x) h}_{\equiv \hat{f}(x+h)}+o\left(\|h\|^{2}\right) .
$$

Convex optimization algorithms: Newton's method

Intuition of Newton's method: second-order Taylor expansion of f

$$
f(x+h)=\underbrace{f(x)+\nabla f(x)^{\top} h+\frac{1}{2} h^{\top} \nabla^{2} f(x) h}_{\equiv \hat{f}(x+h)}+o\left(\|h\|^{2}\right)
$$

Idea:

- approximate $f(x+h)$ by $\hat{f}(x+h)$ for every $x \in \mathcal{X}$
- solve local minimization of $f(x+h)$ via minimization of $\hat{f}(x+h)$ for h, i.e., for

$$
h=-\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)
$$

Convex optimization algorithms: Newton's method

Intuition of Newton's method: second-order Taylor expansion of f

$$
f(x+h)=\underbrace{f(x)+\nabla f(x)^{\top} h+\frac{1}{2} h^{\top} \nabla^{2} f(x) h}_{\equiv \hat{f}(x+h)}+o\left(\|h\|^{2}\right)
$$

Idea:

- approximate $f(x+h)$ by $\hat{f}(x+h)$ for every $x \in \mathcal{X}$
- solve local minimization of $f(x+h)$ via minimization of $\hat{f}(x+h)$ for h, i.e., for

$$
h=-\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)
$$

Definition (Newton's Method)
For f twice-differentiable and $\nabla^{2} f(x) \succ 0$ for all $x \in \mathcal{X}$. Then Newton's method:

$$
\begin{cases}\Delta x_{k} & =-\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \\ t_{k} & =1\end{cases}
$$

Convex optimization algorithms: Newton's method

Figure: (left) Gradient descent fast on hyperplane-shaped f; (right) Newton improves convergence speed, while not following the steepest descent.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since $\nabla^{2} f(x) \succ 0$,

$$
-\nabla f(x)^{\top}\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \leq 0
$$

with equality for $\nabla f\left(x_{k}\right)=0$: Newton's method is a valid descent method.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since $\nabla^{2} f(x) \succ 0$,

$$
-\nabla f(x)^{\top}\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \leq 0
$$

with equality for $\nabla f\left(x_{k}\right)=0$: Newton's method is a valid descent method.

Remark

- linear invariance: if $x=A y$ and $g(y)=f(x)=f(A y)$, and $\left\{x_{k}\right\}$ is a Newton descent on f,

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since $\nabla^{2} f(x) \succ 0$,

$$
-\nabla f(x)^{\top}\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \leq 0
$$

with equality for $\nabla f\left(x_{k}\right)=0$: Newton's method is a valid descent method.

Remark

- linear invariance: if $x=A y$ and $g(y)=f(x)=f(A y)$, and $\left\{x_{k}\right\}$ is a Newton descent on f, then $y_{k+1}=A x_{k+1}$ is a Newton descent on g.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since $\nabla^{2} f(x) \succ 0$,

$$
-\nabla f(x)^{\top}\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \leq 0
$$

with equality for $\nabla f\left(x_{k}\right)=0$: Newton's method is a valid descent method.

Remark

- linear invariance: if $x=A y$ and $g(y)=f(x)=f(A y)$, and $\left\{x_{k}\right\}$ is a Newton descent on f, then $y_{k+1}=A x_{k+1}$ is a Newton descent on g. Not true for gradient descent!

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since $\nabla^{2} f(x) \succ 0$,

$$
-\nabla f(x)^{\top}\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \leq 0
$$

with equality for $\nabla f\left(x_{k}\right)=0$: Newton's method is a valid descent method.

Remark

- linear invariance: if $x=A y$ and $g(y)=f(x)=f(A y)$, and $\left\{x_{k}\right\}$ is a Newton descent on f, then $y_{k+1}=A x_{k+1}$ is a Newton descent on g. Not true for gradient descent!
- If $\nabla^{2} f(x)$ almost singular, Newton's method can be very slow and even diverge.

Convex optimization algorithms: Newton's method

Property (Newton's Method is a Descent Method)
Since $\nabla^{2} f(x) \succ 0$,

$$
-\nabla f(x)^{\top}\left[\nabla^{2} f\left(x_{k}\right)\right] \nabla f\left(x_{k}\right) \leq 0
$$

with equality for $\nabla f\left(x_{k}\right)=0$: Newton's method is a valid descent method.

Remark

- linear invariance: if $x=A y$ and $g(y)=f(x)=f(A y)$, and $\left\{x_{k}\right\}$ is a Newton descent on f, then $y_{k+1}=A x_{k+1}$ is a Newton descent on g. Not true for gradient descent!
- If $\nabla^{2} f(x)$ almost singular, Newton's method can be very slow and even diverge.
- For $n \gg 1$, can be extremely costly (inversion of $\nabla^{2} f\left(x_{k}\right)$ for every k !).

Convex optimization algorithms: Newton's method

Solution: to avoid singular $\nabla^{2} f$, Newton with a step-size adaption,

Convex optimization algorithms: Newton's method

Solution: to avoid singular $\nabla^{2} f$, Newton with a step-size adaption,
Definition (Damped Newton's Method)
Damped Newton's method:

$$
x_{k+1}=x_{k}-t_{k}\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

with t_{k} obtained by backtracking line search.

Convex optimization algorithms: Newton's method

Solution: to avoid singular $\nabla^{2} f$, Newton with a step-size adaption,
Definition (Damped Newton's Method)
Damped Newton's method:

$$
x_{k+1}=x_{k}-t_{k}\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

with t_{k} obtained by backtracking line search.

Theorem (Convergence of damped Newton's method) Assume $I_{n} \preceq \nabla^{2} f(x) \preceq L I_{n}$ and $\nabla^{2} f$ is M-Lipschitz, i.e.,

$$
\forall x, y,\left\|\nabla^{2} f(y)-\nabla^{2} f(x)\right\| \leq M\|y-x\|
$$

Then damped Newton's method converges sublinearly then quadratically as soon as $\left\|\nabla f\left(x_{k}\right)\right\|<\eta$ for some small $\eta>0$; besides, from this point on, $t_{k}=1$.

Convex optimization algorithms: Newton's method
We only show the second part of the proof and take $t_{k}=1$.

Convex optimization algorithms: Newton's method

We only show the second part of the proof and take $t_{k}=1$.
Proof.
First write

$$
\begin{aligned}
\left\|\nabla f\left(x_{k+1}\right)\right\| & =\|\nabla f\left(x_{k}+\Delta x_{k}\right) \underbrace{-\nabla f\left(x_{k}\right)-\nabla^{2} f\left(x_{k}\right) \Delta x_{k}}_{=0}\| \\
& =\left\|\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}+u \Delta x_{k}\right)-\nabla^{2} f\left(x_{k}\right)\right) \Delta x_{k} d u\right\| \\
& \leq \frac{M}{2}\left\|\Delta x_{k}\right\|^{2}=\frac{M}{2}\left\|\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)\right\|^{2} \leq \frac{M}{2 I^{2}}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

Convex optimization algorithms: Newton's method

We only show the second part of the proof and take $t_{k}=1$.
Proof.
First write

$$
\begin{aligned}
\left\|\nabla f\left(x_{k+1}\right)\right\| & =\|\nabla f\left(x_{k}+\Delta x_{k}\right) \underbrace{-\nabla f\left(x_{k}\right)-\nabla^{2} f\left(x_{k}\right) \Delta x_{k}}_{=0}\| \\
& =\left\|\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}+u \Delta x_{k}\right)-\nabla^{2} f\left(x_{k}\right)\right) \Delta x_{k} d u\right\| \\
& \leq \frac{M}{2}\left\|\Delta x_{k}\right\|^{2}=\frac{M}{2}\left\|\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)\right\|^{2} \leq \frac{M}{2 I^{2}}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

Multiplying both sides by $M /\left(2 /^{2}\right)$,

$$
\frac{M}{2 I^{2}}\left\|\nabla f\left(x_{K}\right)\right\| \leq\left(\frac{M}{2 I^{2}}\left\|\nabla f\left(x_{k_{0}}\right)\right\|\right)^{2}
$$

Convex optimization algorithms: Newton's method

We only show the second part of the proof and take $t_{k}=1$.
Proof.
First write

$$
\begin{aligned}
\left\|\nabla f\left(x_{k+1}\right)\right\| & =\|\nabla f\left(x_{k}+\Delta x_{k}\right) \underbrace{-\nabla f\left(x_{k}\right)-\nabla^{2} f\left(x_{k}\right) \Delta x_{k}}_{=0}\| \\
& =\left\|\int_{0}^{1}\left(\nabla^{2} f\left(x_{k}+u \Delta x_{k}\right)-\nabla^{2} f\left(x_{k}\right)\right) \Delta x_{k} d u\right\| \\
& \leq \frac{M}{2}\left\|\Delta x_{k}\right\|^{2}=\frac{M}{2}\left\|\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)\right\|^{2} \leq \frac{M}{2 I^{2}}\left\|\nabla f\left(x_{k}\right)\right\|^{2} .
\end{aligned}
$$

Multiplying both sides by $M /\left(2 /^{2}\right)$,

$$
\frac{M}{2 I^{2}}\left\|\nabla f\left(x_{K}\right)\right\| \leq\left(\frac{M}{21^{2}}\left\|\nabla f\left(x_{k_{0}}\right)\right\|\right)^{2}
$$

Iterated over $k=k_{0}, \ldots, K$,

$$
\left\|\nabla f\left(x_{K}\right)\right\| \leq \alpha C^{2^{K-k_{0}}}
$$

with $C=\frac{M}{2 I^{2}}\left\|\nabla f\left(x_{k_{0}}\right)\right\|<1$ if $\left\|\nabla f\left(x_{k_{0}}\right)\right\|<\eta=\frac{2 I^{2}}{M}$.

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
```

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

```
Constrained Optimization and Duality
    Linearly Equality-Constrained Optimization
    Generalization to Equality and Inequality Constraints
```

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Example: if we impose $\forall i,[x]_{i}>0$, what if gradient descent points to $[x]_{i}<0$?

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Example: if we impose $\forall i,[x]_{i}>0$, what if gradient descent points to $[x]_{i}<0$?
Example (Linear Programming)

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x\right\} \text { such that } A x \leq b \quad(A x \leq b \text { understood entry-wise })
$$

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Example: if we impose $\forall i,[x]_{i}>0$, what if gradient descent points to $[x]_{i}<0$?
Example (Linear Programming)

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x\right\} \text { such that } A x \leq b \quad(A x \leq b \text { understood entry-wise })
$$

This is equivalent to

$$
\min _{x \in \mathbb{R}^{n}, A x \leq b} c^{\top} x
$$

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Example: if we impose $\forall i,[x]_{i}>0$, what if gradient descent points to $[x]_{i}<0$?
Example (Linear Programming)

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x\right\} \text { such that } A x \leq b \quad(A x \leq b \text { understood entry-wise })
$$

This is equivalent to

$$
\min _{x \in \mathbb{R}^{n}, A x \leq b} c^{\top} x \Leftrightarrow \min _{x \in \mathbb{R}^{n}} c^{\top} x+\imath_{\{A x \leq b\}}(x) .
$$

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Example: if we impose $\forall i,[x]_{i}>0$, what if gradient descent points to $[x]_{i}<0$?
Example (Linear Programming)

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x\right\} \text { such that } A x \leq b \quad(A x \leq b \text { understood entry-wise })
$$

This is equivalent to

$$
\min _{x \in \mathbb{R}^{n}, A x \leq b} c^{\top} x \Leftrightarrow \min _{x \in \mathbb{R}^{n}} c^{\top} x+\imath_{\{A x \leq b\}}(x) .
$$

Solution: a corner point of Ω !

Inequality constrained optimization

Setup: So far, $\Omega \subset \mathcal{X}$ is unbounded. What if Ω has strict boundaries?
Example: if we impose $\forall i,[x]_{i}>0$, what if gradient descent points to $[x]_{i}<0$?

Example (Linear Programming)

$$
\min _{x \in \mathbb{R}^{n}}\left\{c^{\top} x\right\} \text { such that } A x \leq b \quad(A x \leq b \text { understood entry-wise })
$$

This is equivalent to

$$
\min _{x \in \mathbb{R}^{n}, A x \leq b} c^{\top} x \Leftrightarrow \min _{x \in \mathbb{R}^{n}} c^{\top} x+\imath_{\{A x \leq b\}}(x) .
$$

Solution: a corner point of Ω !

Figure: Linear Programming. (left) Simplex method; (right) barrier method.

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, \quad i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.
Generic solution: Interior point (or barrier) method:

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, \quad i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.
Generic solution: Interior point (or barrier) method:

- relax $f(x)$ via additional cost on barriers of constraint set.

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.
Generic solution: Interior point (or barrier) method:

- relax $f(x)$ via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for $\mu>0$, let

$$
\phi(x ; \mu) \equiv f(x)-\mu \sum_{i=1}^{m} \log \left(c_{i}(x)\right)
$$

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.
Generic solution: Interior point (or barrier) method:

- relax $f(x)$ via additional cost on barriers of constraint set.

Definition (Barrier Method)
For f continuously differentiable, for $\mu>0$, let

$$
\phi(x ; \mu) \equiv f(x)-\mu \sum_{i=1}^{m} \log \left(c_{i}(x)\right) .
$$

- Start with $x_{0}(\mu) \in \mathcal{X}$ such that $\forall i, c_{i}\left(x_{0}(\mu)\right)>0$,

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.
Generic solution: Interior point (or barrier) method:

- relax $f(x)$ via additional cost on barriers of constraint set.

Definition (Barrier Method)

For f continuously differentiable, for $\mu>0$, let

$$
\phi(x ; \mu) \equiv f(x)-\mu \sum_{i=1}^{m} \log \left(c_{i}(x)\right) .
$$

- Start with $x_{0}(\mu) \in \mathcal{X}$ such that $\forall i, c_{i}\left(x_{0}(\mu)\right)>0$,
- descent algorithm on

$$
\min _{x \in \mathbb{R}^{n}} \phi(x ; \mu)
$$

with solution $x^{\star}(\mu)$.

Inequality constrained optimization: the barrier method

Considered problem:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { such that } c_{i}(x) \geq 0, i=1, \ldots, m
$$

where $c_{i}(x)=a_{i}^{\top} x-b_{i}$ for some $a_{i}, b_{i} \in \mathbb{R}^{n}$.
Generic solution: Interior point (or barrier) method:

- relax $f(x)$ via additional cost on barriers of constraint set.

Definition (Barrier Method)

For f continuously differentiable, for $\mu>0$, let

$$
\phi(x ; \mu) \equiv f(x)-\mu \sum_{i=1}^{m} \log \left(c_{i}(x)\right) .
$$

- Start with $x_{0}(\mu) \in \mathcal{X}$ such that $\forall i, c_{i}\left(x_{0}(\mu)\right)>0$,
- descent algorithm on

$$
\min _{x \in \mathbb{R}^{n}} \phi(x ; \mu)
$$

with solution $x^{\star}(\mu)$.

- decrease μ and, starting from the previous $x^{\star}(\mu)$, repeat.

Inequality constrained optimization: the barrier method

Figure: Barrier Method. (left) Level sets of f and constraint set: algorithm "stuck"; (right) Level sets of $f-\mu \sum_{i=1}^{m} \log \left(c_{i}(x)\right)$ and constraint set: algorithm finds approximation for x^{\star}.

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)
Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;

Inequality constrained optimization: the barrier method
Remark (Difficulties of Barrier Method)
Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:
- initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:
- initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
- exacerbated for solutions near or at a constraint (solution hard to reach!).

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:
- initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
- exacerbated for solutions near or at a constraint (solution hard to reach!).
- on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:
- initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
- exacerbated for solutions near or at a constraint (solution hard to reach!).
- on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.
- barrier method only valid for inequality constraints.

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:
- initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
- exacerbated for solutions near or at a constraint (solution hard to reach!).
- on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.
- barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f.

Inequality constrained optimization: the barrier method

Remark (Difficulties of Barrier Method)

Far from ideal...:

- descent directions may be invalid: line-search or backtrack necessary to stay in Ω;
- costly double-iteration with refined μ; often difficult to handle:
- initialization point in next μ-step must be close to μ-step solution to avoid slow descents (but too small μ-updates slows convergence).
- exacerbated for solutions near or at a constraint (solution hard to reach!).
- on stark barriers, step sizes need very thin adapting: avoid "jumps" over solution.
- barrier method only valid for inequality constraints.

Consequence: barrier method not often used in practice, but flexible to all f.

Figure: Barrier Method. (left) Sequence of $\phi(x ; \mu)$ approx; (right) Difficulty raised by sharp minima and "ping-ponging" effect.

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
```


Constrained Optimization and Duality

Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
```

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Linear constraints

$\min _{x \in \mathcal{X}} f(x)$ such that $h_{i}(x)=0, i=1, \ldots, p$.
(4)

Linear constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } h_{i}(x)=0, i=1, \ldots, p . \tag{4}
\end{equation*}
$$

Theorem
If x^{\star} solution to (4), then $\exists \lambda_{1}, \ldots, \lambda_{p} \in \mathbb{R}$ such that

$$
\nabla f\left(x^{\star}\right)=\sum_{i=1}^{p}\left(-\lambda_{i}\right) \nabla h_{i}\left(x^{\star}\right) .
$$

Linear constraints

Geometric Proof for $p=1$.

1. Gradient orthogonal to level sets: level set $\ell_{c}(g) \equiv\{x \mid g(x)=c\}$.

Linear constraints

Geometric Proof for $p=1$.

1. Gradient orthogonal to level sets: level set $\ell_{c}(g) \equiv\{x \mid g(x)=c\}$. For $h \in \mathcal{X}$ such that $g(x)=g(x+h)=c$ and $\|h\| \rightarrow 0$,

$$
0=(g(x+h)-g(x)) /\|h\|=\nabla g(x)^{\top}(h /\|h\|)+o(1)
$$

Linear constraints

Geometric Proof for $p=1$.

1. Gradient orthogonal to level sets: level set $\ell_{c}(g) \equiv\{x \mid g(x)=c\}$. For $h \in \mathcal{X}$ such that $g(x)=g(x+h)=c$ and $\|h\| \rightarrow 0$,

$$
0=(g(x+h)-g(x)) /\|h\|=\nabla g(x)^{\top}(h /\|h\|)+o(1)
$$

Thus $\nabla g(x)$ orthogonal to $\ell_{c}(g)$.

Linear constraints

Geometric Proof for $p=1$.

1. Gradient orthogonal to level sets: level set $\ell_{c}(g) \equiv\{x \mid g(x)=c\}$.

For $h \in \mathcal{X}$ such that $g(x)=g(x+h)=c$ and $\|h\| \rightarrow 0$,

$$
0=(g(x+h)-g(x)) /\|h\|=\nabla g(x)^{\top}(h /\|h\|)+o(1)
$$

Thus $\nabla g(x)$ orthogonal to $\ell_{c}(g)$.
2. Gradient of f and h aligned at local minimum: see Figure. In particular true for x^{\star}, so $\exists \lambda$ such that $\nabla f\left(x^{\star}\right)=\lambda \nabla h\left(x^{\star}\right)$.

Linear constraints

Geometric Proof for $p=1$.

1. Gradient orthogonal to level sets: level set $\ell_{c}(g) \equiv\{x \mid g(x)=c\}$.

For $h \in \mathcal{X}$ such that $g(x)=g(x+h)=c$ and $\|h\| \rightarrow 0$,

$$
0=(g(x+h)-g(x)) /\|h\|=\nabla g(x)^{\top}(h /\|h\|)+o(1)
$$

Thus $\nabla g(x)$ orthogonal to $\ell_{c}(g)$.
2. Gradient of f and h aligned at local minimum: see Figure. In particular true for x^{\star}, so $\exists \lambda$ such that $\nabla f\left(x^{\star}\right)=\lambda \nabla h\left(x^{\star}\right)$.

3. When minimum of f coincides with $h(x)=0$: formula still holds with $\lambda=0$.

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h_{i} : find x such that $f(x)+\sum_{i} \lambda_{i} h_{i}(x)$ has zero gradient for some $\lambda_{1}, \ldots, \lambda_{p}$.

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h_{i} : find x such that $f(x)+\sum_{i} \lambda_{i} h_{i}(x)$ has zero gradient for some $\lambda_{1}, \ldots, \lambda_{p}$.

Definition (Lagrange dual function)
For $\lambda \in \mathbb{R}^{p}$, Lagrange dual g of f is

$$
\begin{aligned}
g(\lambda) & =\inf _{x \in \mathcal{X}} L(x ; \lambda) \\
L(x ; \lambda) & \equiv f(x)+\sum_{i=1}^{p} \lambda_{i} h_{i}(x) .
\end{aligned}
$$

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h_{i} : find x such that $f(x)+\sum_{i} \lambda_{i} h_{i}(x)$ has zero gradient for some $\lambda_{1}, \ldots, \lambda_{p}$.

Definition (Lagrange dual function)
For $\lambda \in \mathbb{R}^{p}$, Lagrange dual g of f is

$$
\begin{aligned}
g(\lambda) & =\inf _{x \in \mathcal{X}} L(x ; \lambda) \\
L(x ; \lambda) & \equiv f(x)+\sum_{i=1}^{p} \lambda_{i} h_{i}(x) .
\end{aligned}
$$

The coefficients $\lambda_{1}, \ldots, \lambda_{p}$ are called the Lagrange multipliers.

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h_{i} : find x such that $f(x)+\sum_{i} \lambda_{i} h_{i}(x)$ has zero gradient for some $\lambda_{1}, \ldots, \lambda_{p}$.

Definition (Lagrange dual function)
For $\lambda \in \mathbb{R}^{p}$, Lagrange dual g of f is

$$
\begin{aligned}
g(\lambda) & =\inf _{x \in \mathcal{X}} L(x ; \lambda) \\
L(x ; \lambda) & \equiv f(x)+\sum_{i=1}^{p} \lambda_{i} h_{i}(x) .
\end{aligned}
$$

The coefficients $\lambda_{1}, \ldots, \lambda_{p}$ are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x^{\star} solution, since $h_{i}\left(x^{\star}\right)=0$, we have for all $\lambda \in \mathbb{R}^{p}$,

$$
g(\lambda)=\inf _{x \in \mathcal{X}} L(x ; \lambda) \leq L\left(x^{\star} ; \lambda\right)=f\left(x^{\star}\right) .
$$

Linear constraints: Lagrange dual

Consequence: Necessary condition for extremum for f under the constraints h_{i} : find x such that $f(x)+\sum_{i} \lambda_{i} h_{i}(x)$ has zero gradient for some $\lambda_{1}, \ldots, \lambda_{p}$.

Definition (Lagrange dual function)
For $\lambda \in \mathbb{R}^{p}$, Lagrange dual g of f is

$$
\begin{aligned}
g(\lambda) & =\inf _{x \in \mathcal{X}} L(x ; \lambda) \\
L(x ; \lambda) & \equiv f(x)+\sum_{i=1}^{p} \lambda_{i} h_{i}(x)
\end{aligned}
$$

The coefficients $\lambda_{1}, \ldots, \lambda_{p}$ are called the Lagrange multipliers.

Property (Lagrange dual as lower bound)
For x^{\star} solution, since $h_{i}\left(x^{\star}\right)=0$, we have for all $\lambda \in \mathbb{R}^{p}$,

$$
g(\lambda)=\inf _{x \in \mathcal{X}} L(x ; \lambda) \leq L\left(x^{\star} ; \lambda\right)=f\left(x^{\star}\right) .
$$

In particular

$$
\sup _{\lambda \in \mathbb{R}^{p}} g(\lambda) \leq f\left(x^{\star}\right)
$$

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$
\sup _{\lambda \in \mathbb{R}^{n}} g(\lambda)=\sup _{\lambda \in \mathbb{R}^{p}}\left\{\inf _{x \in \mathcal{X}} L(x ; \lambda)\right\}
$$

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$
\sup _{\lambda \in \mathbb{R}^{n}} g(\lambda)=\sup _{\lambda \in \mathbb{R}^{p}}\left\{\inf _{x \in \mathcal{X}} L(x ; \lambda)\right\}
$$

We denote $\lambda^{\star} \in \mathbb{R}^{n}$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$
\sup _{\lambda \in \mathbb{R}^{n}} g(\lambda)=\sup _{\lambda \in \mathbb{R}^{p}}\left\{\inf _{x \in \mathcal{X}} L(x ; \lambda)\right\}
$$

We denote $\lambda^{\star} \in \mathbb{R}^{n}$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

- $g\left(\lambda^{\star}\right)-f\left(x^{\star}\right) \geq 0$ is the duality gap

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$
\sup _{\lambda \in \mathbb{R}^{n}} g(\lambda)=\sup _{\lambda \in \mathbb{R}^{p}}\left\{\inf _{x \in \mathcal{X}} L(x ; \lambda)\right\}
$$

We denote $\lambda^{\star} \in \mathbb{R}^{n}$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

- $g\left(\lambda^{\star}\right)-f\left(x^{\star}\right) \geq 0$ is the duality gap
- if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$
\sup _{\lambda \in \mathbb{R}^{n}} g(\lambda)=\sup _{\lambda \in \mathbb{R}^{p}}\left\{\inf _{x \in \mathcal{X}} L(x ; \lambda)\right\}
$$

We denote $\lambda^{\star} \in \mathbb{R}^{n}$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

- $g\left(\lambda^{\star}\right)-f\left(x^{\star}\right) \geq 0$ is the duality gap
- if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property

Lagrange dual $\lambda \mapsto g(\lambda)$ is concave, irrespective of f (convex or not!).

Linear constraints: Lagrange dual

Definition (Lagrange dual problem)

$$
\sup _{\lambda \in \mathbb{R}^{n}} g(\lambda)=\sup _{\lambda \in \mathbb{R}^{p}}\left\{\inf _{x \in \mathcal{X}} L(x ; \lambda)\right\}
$$

We denote $\lambda^{\star} \in \mathbb{R}^{n}$ any point of $\operatorname{argmax}_{\lambda} g(\lambda)$ (maybe empty).

- $g\left(\lambda^{\star}\right)-f\left(x^{\star}\right) \geq 0$ is the duality gap
- if duality gap is zero, the original (primal) problem is solved by Lagrange dual.

Property

Lagrange dual $\lambda \mapsto g(\lambda)$ is concave, irrespective of f (convex or not!).
Proof.
For $\lambda_{1}, \lambda_{2} \in \mathbb{R}^{p}, \alpha \in[0,1]$,

$$
\begin{aligned}
g\left(\alpha \lambda_{1}+(1-\alpha) \lambda_{2}\right) & =\inf _{x \in \mathcal{X}}\left\{\alpha\left(f(x)+\sum_{i=1}^{p} \lambda_{1 i} h_{i}(x)\right)+(1-\alpha)\left(f(x)+\sum_{i=1}^{p} \lambda_{2 i} h_{i}(x)\right)\right\} \\
& \geq \alpha \inf _{x \in \mathcal{X}}\left\{f(x)+\sum_{i=1}^{p} \lambda_{1 i} h_{i}(x)\right\}+(1-\alpha) \inf _{x \in \mathcal{X}}\left\{f(x)+\sum_{i=1}^{p} \lambda_{2 i} h_{i}(x)\right\} \\
& =\alpha g\left(\lambda_{1}\right)+(1-\alpha) g\left(\lambda_{2}\right)
\end{aligned}
$$

(inequality follows from $\left.\inf _{x}\left\{f_{1}(x)+f_{2}(x)\right\} \geq \inf _{x}\left\{f_{1}(x)\right\}+\inf _{x}\left\{f_{2}(x)\right\}\right)$. \square

Linear constraints: strong duality

Remarks:

- $\inf _{\lambda}-g(\lambda)$ convex: dual can be solved by standard unconstrained convex optimization.

Linear constraints: strong duality

Remarks:

- $\inf _{\lambda}-g(\lambda)$ convex: dual can be solved by standard unconstrained convex optimization.
- if f not convex ($\min f$ difficult to solve), at least $\max g$ can be solved: lower bounding $\min f$.

Linear constraints: strong duality

Remarks:

- $\inf _{\lambda}-g(\lambda)$ convex: dual can be solved by standard unconstrained convex optimization.
- if f not convex ($\min f$ difficult to solve), at least $\max g$ can be solved: lower bounding $\min f$.

Theorem (Slater's condition for strong duality)
If $\exists x \in \mathcal{X}$ such that $\forall i, h_{i}(x)=0$ (feasibility), f is convex and h_{i} affine $\left.h_{i}(x)=a_{i}^{\top} x+b_{i}\right)$, then strong duality holds.

Proof.
Let $\bar{\lambda} \in \mathbb{R}^{p}$ be such that $\nabla f\left(x^{\star}\right)=\sum_{i=1}^{p}\left(-\bar{\lambda}_{i}\right) \nabla h_{i}\left(x^{\star}\right)$. Then

$$
g(\bar{\lambda})=\inf _{x \in \mathcal{X}} f(x)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}(x)=f\left(x^{\star}\right) .
$$

Linear constraints: strong duality

Remarks:

- $\inf _{\lambda}-g(\lambda)$ convex: dual can be solved by standard unconstrained convex optimization.
- if f not convex ($\min f$ difficult to solve), at least $\max g$ can be solved: lower bounding $\min f$.

Theorem (Slater's condition for strong duality)
If $\exists x \in \mathcal{X}$ such that $\forall i, h_{i}(x)=0$ (feasibility), f is convex and h_{i} affine $\left(h_{i}(x)=a_{i}^{\top} x+b_{i}\right)$, then strong duality holds.

Proof.

Let $\bar{\lambda} \in \mathbb{R}^{p}$ be such that $\nabla f\left(x^{\star}\right)=\sum_{i=1}^{p}\left(-\bar{\lambda}_{i}\right) \nabla h_{i}\left(x^{\star}\right)$. Then

$$
g(\bar{\lambda})=\inf _{x \in \mathcal{X}} f(x)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}(x)=f\left(x^{\star}\right) .
$$

Indeed, $x \mapsto f(x)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}(x)$ convex (h_{i} affine), so minimal at zero gradient: true for x having same cost as x^{\star}, i.e., $f\left(x^{\star}\right)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}\left(x^{\star}\right)=f\left(x^{\star}\right)$.

Linear constraints: strong duality

Remarks:

- $\inf _{\lambda}-g(\lambda)$ convex: dual can be solved by standard unconstrained convex optimization.
- if f not convex ($\min f$ difficult to solve), at least $\max g$ can be solved: lower bounding $\min f$.

Theorem (Slater's condition for strong duality)
If $\exists x \in \mathcal{X}$ such that $\forall i, h_{i}(x)=0$ (feasibility), f is convex and h_{i} affine $\left.h_{i}(x)=a_{i}^{\top} x+b_{i}\right)$, then strong duality holds.

Proof.

Let $\bar{\lambda} \in \mathbb{R}^{p}$ be such that $\nabla f\left(x^{\star}\right)=\sum_{i=1}^{p}\left(-\bar{\lambda}_{i}\right) \nabla h_{i}\left(x^{\star}\right)$. Then

$$
g(\bar{\lambda})=\inf _{x \in \mathcal{X}} f(x)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}(x)=f\left(x^{\star}\right) .
$$

Indeed, $x \mapsto f(x)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}(x)$ convex (h_{i} affine), so minimal at zero gradient: true for x having same cost as x^{\star}, i.e., $f\left(x^{\star}\right)+\sum_{i=1}^{p} \bar{\lambda}_{i} h_{i}\left(x^{\star}\right)=f\left(x^{\star}\right)$.
As a consequence,

$$
\begin{aligned}
& g\left(\lambda^{\star}\right)=\max _{\lambda \in \mathbb{R}^{p}} g(\lambda) \geq g(\bar{\lambda})=f\left(x^{\star}\right) \\
& g\left(\lambda^{\star}\right) \leq f\left(x^{\star}\right)
\end{aligned}
$$

so $g\left(\lambda^{\star}\right)=f\left(x^{\star}\right)$.

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
```

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Equality and inequality constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m \text { and } h_{j}(x)=0, j=1, \ldots, p . \tag{5}
\end{equation*}
$$

Equality and inequality constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m \text { and } h_{j}(x)=0, j=1, \ldots, p . \tag{5}
\end{equation*}
$$

Method: For inequalities, additional multipliers.

Equality and inequality constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m \text { and } h_{j}(x)=0, j=1, \ldots, p . \tag{5}
\end{equation*}
$$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be positive.

Equality and inequality constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m \text { and } h_{j}(x)=0, j=1, \ldots, p . \tag{5}
\end{equation*}
$$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be positive.

Equality and inequality constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m \text { and } h_{j}(x)=0, j=1, \ldots, p . \tag{5}
\end{equation*}
$$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be positive.

- if, at minimum, constraint enforced (minimum at edge), inequality becomes equality: Lagrangian multiplier non zero and positive (see figure).

Equality and inequality constraints

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \text { such that } g_{i}(x) \leq 0, i=1, \ldots, m \text { and } h_{j}(x)=0, j=1, \ldots, p \tag{5}
\end{equation*}
$$

Method: For inequalities, additional multipliers. Main difference: multipliers imposed to be positive.

- if, at minimum, constraint enforced (minimum at edge), inequality becomes equality: Lagrangian multiplier non zero and positive (see figure).
- if constraint not enforced (minimum within constraint set), then Lagrange multiplier is zero.

Equality and inequality constraints

Definition (Lagrange Dual Problem)
Lagrange dual of (5) is

$$
\begin{aligned}
\max _{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}_{+}^{m}} g(\lambda, \nu), \quad g(\lambda, \nu) & \equiv \inf _{x \in \mathcal{X}} L(x ; \lambda, \nu) \\
L(x ; \lambda, \nu) & \equiv f(x)+\sum_{i=1}^{m} \nu_{i} g_{i}(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x) .
\end{aligned}
$$

Equality and inequality constraints

Definition (Lagrange Dual Problem)

Lagrange dual of (5) is

$$
\begin{aligned}
\max _{\lambda \in \mathbb{R}^{P}, \nu \in \mathbb{R}_{+}^{m}} g(\lambda, \nu), \quad g(\lambda, \nu) & \equiv \inf _{x \in \mathcal{X}} L(x ; \lambda, \nu) \\
L(x ; \lambda, \nu) & \equiv f(x)+\sum_{i=1}^{m} \nu_{i} g_{i}(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x) .
\end{aligned}
$$

Theorem (Slater's Condition)
For f be convex, g_{i} convex, h_{j} affine, and $\exists x \in \mathcal{X}$ such that $h_{i}(x)=0$ and $g_{j}(x) \leq 0$ for all i, j (feasibility). Then strong duality holds.

Equality and inequality constraints

Definition (Lagrange Dual Problem)

Lagrange dual of (5) is

$$
\begin{aligned}
\max _{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}_{+}^{m}} g(\lambda, \nu), \quad g(\lambda, \nu) & \equiv \inf _{x \in \mathcal{X}} L(x ; \lambda, \nu) \\
L(x ; \lambda, \nu) & \equiv f(x)+\sum_{i=1}^{m} \nu_{i} g_{i}(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x) .
\end{aligned}
$$

Theorem (Slater's Condition)

For f be convex, g_{i} convex, h_{j} affine, and $\exists x \in \mathcal{X}$ such that $h_{i}(x)=0$ and $g_{j}(x) \leq 0$ for all i, j (feasibility). Then strong duality holds.

Remark:

- for g_{j} convex, $\mathcal{G}_{j}=\left\{x \mid g_{j}(x) \leq 0\right\}$ is convex.
- for h_{i} affine, $\mathcal{H}_{i}=\left\{x \mid h_{i}(x)=0\right\}$ also convex (but not if h_{i} convex!).

Equality and inequality constraints

Definition (Lagrange Dual Problem)

Lagrange dual of (5) is

$$
\begin{aligned}
\max _{\lambda \in \mathbb{R}^{p}, \nu \in \mathbb{R}_{+}^{m}} g(\lambda, \nu), \quad g(\lambda, \nu) & \equiv \inf _{x \in \mathcal{X}} L(x ; \lambda, \nu) \\
L(x ; \lambda, \nu) & \equiv f(x)+\sum_{i=1}^{m} \nu_{i} g_{i}(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x) .
\end{aligned}
$$

Theorem (Slater's Condition)

For f be convex, g_{i} convex, h_{j} affine, and $\exists x \in \mathcal{X}$ such that $h_{i}(x)=0$ and $g_{j}(x) \leq 0$ for all i, j (feasibility). Then strong duality holds.

Remark:

- for g_{j} convex, $\mathcal{G}_{j}=\left\{x \mid g_{j}(x) \leq 0\right\}$ is convex.
- for h_{i} affine, $\mathcal{H}_{i}=\left\{x \mid h_{i}(x)=0\right\}$ also convex (but not if h_{i} convex!).
- Hence,

$$
x^{\star}=\arg \min _{\mathcal{X} \cap\left(\cap_{j} \mathcal{G}_{j}\right) \cap\left(\cap_{i} \mathcal{H}_{i}\right)} f(x)
$$

i.e., minimising convex f over convex set.

Outline

Motivation

Basics of Convex Optimization
Convex Sets
Convex Functions

Basic Algorithms for Convex Optimization
Descent methods and gradient descent
Inequality Constraints and Barrier Methods

Constrained Optimization and Duality
Linearly Equality-Constrained Optimization
Generalization to Equality and Inequality Constraints

Advanced Methods

Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
Constrained Optimization and Duality
    Linearly Equality-Constrained Optimization
    Generalization to Equality and Inequality Constraints
```

Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions

Non-differentiable optimization

Setup: f convex but not everywhere differentiable.

Non-differentiable optimization

Setup: f convex but not everywhere differentiable.

Figure: Examples of not-everywhere differentiable convex functions

Non-differentiable optimization: subgradient
Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

\longrightarrow can be used to define ∇f for convex f : only linear function satisfying inequality.

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

\longrightarrow can be used to define ∇f for convex f : only linear function satisfying inequality.
Generalization: subdifferential of convex f :
Definition (Subdifferential)
Let $f: \mathcal{X} \rightarrow \mathbb{R}$. The subdifferential ∂f of f is

$$
\begin{aligned}
\partial f: \mathcal{X} & \rightarrow 2^{\mathcal{X}} \\
x & \mapsto\left\{u \in \mathcal{X} \mid \forall z \in \mathcal{X}, f(x) \leq f(z)+u^{\top}(x-z)\right\} .
\end{aligned}
$$

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

\longrightarrow can be used to define ∇f for convex f : only linear function satisfying inequality.
Generalization: subdifferential of convex f :
Definition (Subdifferential)
Let $f: \mathcal{X} \rightarrow \mathbb{R}$. The subdifferential ∂f of f is

$$
\begin{aligned}
\partial f: \mathcal{X} & \rightarrow 2^{\mathcal{X}} \\
x & \mapsto\left\{u \in \mathcal{X} \mid \forall z \in \mathcal{X}, f(x) \leq f(z)+u^{\top}(x-z)\right\} .
\end{aligned}
$$

Careful: $\partial f(x)$ is a set-valued function: members of the set are the subderivatives.

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

\longrightarrow can be used to define ∇f for convex f : only linear function satisfying inequality.
Generalization: subdifferential of convex f :
Definition (Subdifferential)
Let $f: \mathcal{X} \rightarrow \mathbb{R}$. The subdifferential ∂f of f is

$$
\begin{aligned}
\partial f: \mathcal{X} & \rightarrow 2^{\mathcal{X}} \\
x & \mapsto\left\{u \in \mathcal{X} \mid \forall z \in \mathcal{X}, f(x) \leq f(z)+u^{\top}(x-z)\right\} .
\end{aligned}
$$

Careful: $\partial f(x)$ is a set-valued function: members of the set are the subderivatives.
Property
For convex $f, \partial f(x)$ at those x where f is differentiable is a singleton:

$$
\partial f(x)=\{\nabla f(x)\}
$$

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

\longrightarrow can be used to define ∇f for convex f : only linear function satisfying inequality.
Generalization: subdifferential of convex f :
Definition (Subdifferential)
Let $f: \mathcal{X} \rightarrow \mathbb{R}$. The subdifferential ∂f of f is

$$
\begin{aligned}
\partial f: \mathcal{X} & \rightarrow 2^{\mathcal{X}} \\
x & \mapsto\left\{u \in \mathcal{X} \mid \forall z \in \mathcal{X}, f(x) \leq f(z)+u^{\top}(x-z)\right\} .
\end{aligned}
$$

Careful: $\partial f(x)$ is a set-valued function: members of the set are the subderivatives.
Property
For convex $f, \partial f(x)$ at those x where f is differentiable is a singleton:

$$
\partial f(x)=\{\nabla f(x)\} .
$$

Proof.
Let $u \in \partial f(x)$, hence $x \in \arg \min _{z \in \mathcal{X}} f(z)-u^{\top} z . i$

Non-differentiable optimization: subgradient

Reminder: first order conditions for convex differentiable $f: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$,

$$
\forall x, z \in \operatorname{dom}(f), \quad f(z) \geq f(x)+\nabla f(x)^{\top}(z-x)
$$

\longrightarrow can be used to define ∇f for convex f : only linear function satisfying inequality.
Generalization: subdifferential of convex f :
Definition (Subdifferential)
Let $f: \mathcal{X} \rightarrow \mathbb{R}$. The subdifferential ∂f of f is

$$
\begin{aligned}
\partial f: \mathcal{X} & \rightarrow 2^{\mathcal{X}} \\
x & \mapsto\left\{u \in \mathcal{X} \mid \forall z \in \mathcal{X}, f(x) \leq f(z)+u^{\top}(x-z)\right\} .
\end{aligned}
$$

Careful: $\partial f(x)$ is a set-valued function: members of the set are the subderivatives.

Property

For convex $f, \partial f(x)$ at those x where f is differentiable is a singleton:

$$
\partial f(x)=\{\nabla f(x)\} .
$$

Proof.
Let $u \in \partial f(x)$, hence $x \in \arg \min _{z \in \mathcal{X}} f(z)-u^{\top} z$. i
Since f differentiable at x, first order condition gives $\nabla f(x)=u$.

Non-differentiable optimization: subgradient

Non-differentiable optimization: subgradient

Property (Subdifferential as a convex set)
$\partial f(x)$ is a nonempty convex compact set.

Non-differentiable optimization: subgradient

Property (Subdifferential as a convex set)
$\partial f(x)$ is a nonempty convex compact set.
Property (Subdifferential as union of supporting hyperplanes) $\partial f(x)$ consists of the hyperplanes that support epi (f) at $(x, f(x))$.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Proof.
$\Rightarrow \partial f\left(x^{\star}\right)$ must (at least) contain 0 , since $x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)+0^{\top} x$.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Proof.
$\Rightarrow . \partial f\left(x^{\star}\right)$ must (at least) contain 0 , since $x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)+0^{\top} x$.
$\Leftarrow 0 \in \partial f(x) \Longrightarrow x \in \arg \min _{z \in \mathcal{X}} f(z)$, but then x must be a solution.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Proof.

$\Rightarrow . \partial f\left(x^{\star}\right)$ must (at least) contain 0 , since $x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)+0^{\top} x$.
$\Leftarrow 0 \in \partial f(x) \Longrightarrow x \in \arg \min _{z \in \mathcal{X}} f(z)$, but then x must be a solution.
Careful: looking for 0 in one of the sets $\partial f(x), x \in \mathcal{X}$, different from looking for singleton $\{0\}$ among the sets $\partial f(x), x \in \mathcal{X}$.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Proof.
$\Rightarrow . \partial f\left(x^{\star}\right)$ must (at least) contain 0 , since $x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)+0^{\top} x$.
$\Leftarrow 0 \in \partial f(x) \Longrightarrow x \in \arg \min _{z \in \mathcal{X}} f(z)$, but then x must be a solution.
Careful: looking for 0 in one of the sets $\partial f(x), x \in \mathcal{X}$, different from looking for singleton $\{0\}$ among the sets $\partial f(x), x \in \mathcal{X}$.

Definition (Subgradient algorithm)

Under conditions of gradient descent theorem, with all Lipschitz subgradients, subgradient algorithm:

1. $x_{k+1}=x_{k}-t_{k} u_{k}$, for any $u_{k} \in \partial f\left(x_{k}\right)$
2. $f_{\text {best }}^{k+1}=\min \left\{f_{\text {best }}^{k}, f\left(x_{k+1}\right)\right\}$.

Non-differentiable optimization: subgradient

Theorem (Fermat's rule extension)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex,

$$
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) .
$$

Proof.
$\Rightarrow . \partial f\left(x^{\star}\right)$ must (at least) contain 0 , since $x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)+0^{\top} x$.
$\Leftarrow 0 \in \partial f(x) \Longrightarrow x \in \arg \min _{z \in \mathcal{X}} f(z)$, but then x must be a solution.
Careful: looking for 0 in one of the sets $\partial f(x), x \in \mathcal{X}$, different from looking for singleton $\{0\}$ among the sets $\partial f(x), x \in \mathcal{X}$.

Definition (Subgradient algorithm)

Under conditions of gradient descent theorem, with all Lipschitz subgradients, subgradient algorithm:

1. $x_{k+1}=x_{k}-t_{k} u_{k}$, for any $u_{k} \in \partial f\left(x_{k}\right)$
2. $f_{\text {best }}^{k+1}=\min \left\{f_{\text {best }}^{k}, f\left(x_{k+1}\right)\right\}$.

Remark: 2nd step underlies major weakness of the method (rarely used in practice): algorithm is not a descent method.

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
Constrained Optimization and Duality
    Linearly Equality-Constrained Optimization
    Generalization to Equality and Inequality Constraints
Advanced Methods
Non-Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions
```


From subgradient to proximal

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator $\left(\imath_{\Omega}(x)=0\right.$ if $x \in \Omega$ and $=+\infty$ if not), define

$$
\min _{x \in \mathcal{X}} \frac{1}{2}\|x-y\|^{2}+\imath_{\Omega}(x)
$$

From subgradient to proximal

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator $\left(\imath_{\Omega}(x)=0\right.$ if $x \in \Omega$ and $=+\infty$ if not), define

$$
\min _{x \in \mathcal{X}} \frac{1}{2}\|x-y\|^{2}+\imath_{\Omega}(x)
$$

Show that x^{\star} is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$.

From subgradient to proximal

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator $\left(\imath_{\Omega}(x)=0\right.$ if $x \in \Omega$ and $=+\infty$ if not), define

$$
\min _{x \in \mathcal{X}} \frac{1}{2}\|x-y\|^{2}+\imath_{\Omega}(x)
$$

Show that x^{\star} is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$.
Projection and proximity: x^{\star} is the "proximal" point of y :

From subgradient to proximal

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator $\left(\imath_{\Omega}(x)=0\right.$ if $x \in \Omega$ and $=+\infty$ if not), define

$$
\min _{x \in \mathcal{X}} \frac{1}{2}\|x-y\|^{2}+\imath_{\Omega}(x)
$$

Show that x^{\star} is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$.
Projection and proximity: x^{\star} is the "proximal" point of y :

- stays close to x (through $\|\cdot-y\|^{2}$ term)

From subgradient to proximal

Exercise (The Projection Operator)

For Ω a convex set and \imath_{Ω} the set indicator $\left(\imath_{\Omega}(x)=0\right.$ if $x \in \Omega$ and $=+\infty$ if not), define

$$
\min _{x \in \mathcal{X}} \frac{1}{2}\|x-y\|^{2}+\imath_{\Omega}(x)
$$

Show that x^{\star} is the (Euclidean) projection of y onto $\Omega \cap \mathcal{X}$.
Projection and proximity: x^{\star} is the "proximal" point of y :

- stays close to x (through $\|\cdot-y\|^{2}$ term)
- simultaneously (approximately) minimizes objective function, here \imath_{Ω}.

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, proximal operator prox_{f} of f is

$$
\begin{aligned}
\operatorname{prox}_{f}: & \mathcal{X} \\
& \rightarrow \mathcal{X} \\
x & \mapsto \underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2}\|y-x\|^{2}\right\} .
\end{aligned}
$$

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, proximal operator prox_{f} of f is

$$
\begin{aligned}
& \operatorname{prox}_{f}: \mathcal{X} \\
& x \mathcal{X} \\
& x \mapsto \underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2}\|y-x\|^{2}\right\} .
\end{aligned}
$$

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, proximal operator prox_{f} of f is

$$
\begin{aligned}
\operatorname{prox}_{f}: \mathcal{X} & \rightarrow \mathcal{X} \\
x & \mapsto \underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2}\|y-x\|^{2}\right\} .
\end{aligned}
$$

Remark: proximal point operator is single-valued.

Non-differentiable optimization: proximal methods

Definition (The Proximal (Point) Operator)

For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, proximal operator prox_{f} of f is

$$
\begin{aligned}
\operatorname{prox}_{f}: \mathcal{X} & \rightarrow \mathcal{X} \\
x & \mapsto \underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2}\|y-x\|^{2}\right\} .
\end{aligned}
$$

Remark: proximal point operator is single-valued. Not obvious! See next!

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Strictly monotone: equality only for $x=y$.

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Strictly monotone: equality only for $x=y$.

Figure: Monotone (left) and strictly monotone (right) operators.

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Strictly monotone: equality only for $x=y$.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator) Inverse of the strictly monotone operator is single-valued.

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Strictly monotone: equality only for $x=y$.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.
Proof.
Proof by contradiction. Let $x \in \mathcal{X}$ with $\delta_{x} \in D(x)$. Suppose $\exists x^{\prime}$ with $\delta_{x} \in D\left(x^{\prime}\right)$.

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Strictly monotone: equality only for $x=y$.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.
Proof.
Proof by contradiction. Let $x \in \mathcal{X}$ with $\delta_{x} \in D(x)$. Suppose $\exists x^{\prime}$ with $\delta_{x} \in D\left(x^{\prime}\right)$. But, by strict monotonicity, $0<\left(\delta_{x}-\delta_{x}\right)^{\top}\left(x-x^{\prime}\right)=0$:

Non-differentiable optimization: proximal methods
Definition ((Strictly) Monotone operator)
Operator $D: \mathcal{X} \rightarrow 2^{\mathcal{X}}$ is monotone if

$$
\forall x, y \in \mathcal{X}, D: d_{x} \in D(x), d_{y} \in D(y) \Longrightarrow\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Strictly monotone: equality only for $x=y$.

Figure: Monotone (left) and strictly monotone (right) operators.

Property (Inverse of a strictly monotone operator)
Inverse of the strictly monotone operator is single-valued.
Proof.
Proof by contradiction. Let $x \in \mathcal{X}$ with $\delta_{x} \in D(x)$. Suppose $\exists x^{\prime}$ with $\delta_{x} \in D\left(x^{\prime}\right)$. But, by strict monotonicity, $0<\left(\delta_{x}-\delta_{x}\right)^{\top}\left(x-x^{\prime}\right)=0$: by contradiction, inverse of D is single-valued.

Non-differentiable optimization: proximal methods

Property
The operator prox_{f} is single-valued (and thus well-defined).

Non-differentiable optimization: proximal methods

Property
The operator prox $_{f}$ is single-valued (and thus well-defined).
Proof.
Idea. ∂f is a monotone operator: $\forall d_{x} \in \partial f(x), d_{y} \in \partial f(y)$,

$$
\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Non-differentiable optimization: proximal methods

Property

The operator prox $_{f}$ is single-valued (and thus well-defined).
Proof.
Idea. ∂f is a monotone operator: $\forall d_{x} \in \partial f(x), d_{y} \in \partial f(y)$,

$$
\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Follows from summing $f(x) \geq f(y)+d_{y}^{\top}(x-y)$ and $f(y) \geq f(x)+d_{x}^{\top}(y-x)$ (1st order relations).

Non-differentiable optimization: proximal methods

Property

The operator prox_{f} is single-valued (and thus well-defined).
Proof.
Idea. ∂f is a monotone operator: $\forall d_{x} \in \partial f(x), d_{y} \in \partial f(y)$,

$$
\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Follows from summing $f(x) \geq f(y)+d_{y}^{\top}(x-y)$ and $f(y) \geq f(x)+d_{x}^{\top}(y-x)$ (1st order relations).
Implies I $+\partial f$ strictly monotone operator:

$$
\left(\left(y+d_{y}\right)-\left(x+d_{x}\right)\right)^{\top}(y-x)=\left(d_{y}-d_{x}\right)^{\top}(y-x)+\|y-x\|^{2}>0
$$

Non-differentiable optimization: proximal methods

Property

The operator prox_{f} is single-valued (and thus well-defined).
Proof.
Idea. ∂f is a monotone operator: $\forall d_{x} \in \partial f(x), d_{y} \in \partial f(y)$,

$$
\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Follows from summing $f(x) \geq f(y)+d_{y}^{\top}(x-y)$ and $f(y) \geq f(x)+d_{x}^{\top}(y-x)$ (1st order relations).
Implies I $+\partial f$ strictly monotone operator:

$$
\left(\left(y+d_{y}\right)-\left(x+d_{x}\right)\right)^{\top}(y-x)=\left(d_{y}-d_{x}\right)^{\top}(y-x)+\|y-x\|^{2}>0
$$

For $y \in \operatorname{prox}_{f}(x)\left(=\operatorname{argmin}_{z} f(z)+\frac{1}{2}\|z-x\|^{2}\right)$, 1st order optimality says

$$
0 \in \partial f(y)+y-x=(I+\partial f)(y)-x \quad \Leftrightarrow \quad y \in(I+\partial f)^{-1}(x)
$$

Non-differentiable optimization: proximal methods

Property

The operator prox_{f} is single-valued (and thus well-defined).
Proof.
Idea. ∂f is a monotone operator: $\forall d_{x} \in \partial f(x), d_{y} \in \partial f(y)$,

$$
\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Follows from summing $f(x) \geq f(y)+d_{y}^{\top}(x-y)$ and $f(y) \geq f(x)+d_{x}^{\top}(y-x)$ (1st order relations).
Implies I $+\partial f$ strictly monotone operator:

$$
\left(\left(y+d_{y}\right)-\left(x+d_{x}\right)\right)^{\top}(y-x)=\left(d_{y}-d_{x}\right)^{\top}(y-x)+\|y-x\|^{2}>0
$$

For $y \in \operatorname{prox}_{f}(x)\left(=\operatorname{argmin}_{z} f(z)+\frac{1}{2}\|z-x\|^{2}\right)$, 1st order optimality says

$$
0 \in \partial f(y)+y-x=(I+\partial f)(y)-x \quad \Leftrightarrow \quad y \in(I+\partial f)^{-1}(x)
$$

But inverse of strictly monotone $I+\partial f$ single-valued!

Non-differentiable optimization: proximal methods

Property

The operator prox_{f} is single-valued (and thus well-defined).
Proof.
Idea. ∂f is a monotone operator: $\forall d_{x} \in \partial f(x), d_{y} \in \partial f(y)$,

$$
\left(d_{y}-d_{x}\right)^{\top}(y-x) \geq 0
$$

Follows from summing $f(x) \geq f(y)+d_{y}^{\top}(x-y)$ and $f(y) \geq f(x)+d_{x}^{\top}(y-x)$ (1st order relations).
Implies I $+\partial f$ strictly monotone operator:

$$
\left(\left(y+d_{y}\right)-\left(x+d_{x}\right)\right)^{\top}(y-x)=\left(d_{y}-d_{x}\right)^{\top}(y-x)+\|y-x\|^{2}>0
$$

For $y \in \operatorname{prox}_{f}(x)\left(=\operatorname{argmin}_{z} f(z)+\frac{1}{2}\|z-x\|^{2}\right)$, 1st order optimality says

$$
0 \in \partial f(y)+y-x=(I+\partial f)(y)-x \quad \Leftrightarrow \quad y \in(I+\partial f)^{-1}(x)
$$

But inverse of strictly monotone $I+\partial f$ single-valued!
Consequence. Uniqueness of prox $_{f}$ makes optimization simpler: f may have multiple minima, $\operatorname{prox}_{f}(x)$ always unique.

Non-differentiable optimization: proximal methods

Remark (Properties of prox $_{f}$)
 For $\lambda>0$,

$$
\operatorname{prox}_{\lambda f}(x)=\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda}\|x-y\|^{2}\right\} .
$$

Non-differentiable optimization: proximal methods

Remark (Properties of prox $_{f}$)
For $\lambda>0$,

$$
\operatorname{prox}_{\lambda f}(x)=\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda}\|x-y\|^{2}\right\} .
$$

For differentiable f,

$$
y=\operatorname{prox}_{\lambda f}(x)=x-\lambda \nabla f(y) \Longleftrightarrow y+\nabla f(y)=x
$$

Non-differentiable optimization: proximal methods

Remark (Properties of prox $_{f}$)
For $\lambda>0$,

$$
\operatorname{prox}_{\lambda f}(x)=\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda}\|x-y\|^{2}\right\} .
$$

For differentiable f,

$$
y=\operatorname{prox}_{\lambda f}(x)=x-\lambda \nabla f(y) \Longleftrightarrow y+\nabla f(y)=x
$$

Consequence. Iterating prox $_{f}$ (from x to y) resembles "backward gradient ascent": if started from y, step along gradient at destination point points to starting point (with λ the step size).

Non-differentiable optimization: proximal methods

Remark (Properties of prox $_{f}$)
For $\lambda>0$,

$$
\operatorname{prox}_{\lambda f}(x)=\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda}\|x-y\|^{2}\right\} .
$$

For differentiable f,

$$
y=\operatorname{prox}_{\lambda f}(x)=x-\lambda \nabla f(y) \Longleftrightarrow y+\nabla f(y)=x
$$

Consequence. Iterating prox $_{f}($ from x to y) resembles "backward gradient ascent": if started from y, step along gradient at destination point points to starting point (with λ the step size).

Still for differentiable f,

$$
\nabla\left(f(y)+\frac{1}{2 \lambda}\|y-x\|^{2}\right)=\nabla f(y)+\frac{1}{\lambda}(x-y)
$$

Non-differentiable optimization: proximal methods

Remark (Properties of prox $_{f}$)

For $\lambda>0$,

$$
\operatorname{prox}_{\lambda f}(x)=\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda}\|x-y\|^{2}\right\} .
$$

For differentiable f,

$$
y=\operatorname{prox}_{\lambda f}(x)=x-\lambda \nabla f(y) \Longleftrightarrow y+\nabla f(y)=x
$$

Consequence. Iterating prox $_{f}$ (from x to y) resembles "backward gradient ascent": if started from y, step along gradient at destination point points to starting point (with λ the step size).

Still for differentiable f,

$$
\nabla\left(f(y)+\frac{1}{2 \lambda}\|y-x\|^{2}\right)=\nabla f(y)+\frac{1}{\lambda}(x-y) .
$$

Thus, at $y=x, f$ and $f+\frac{1}{2 \lambda}\|x-\cdot\|^{2}$ have same value and gradient: prox_{f} minimizes "local approximation" of f.

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox $_{f}$:

$$
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right) .
$$

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox $_{f}$:

$$
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
$$

Proof.
Follows from:

$$
\begin{aligned}
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) & \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)+\left(x^{\star}-x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
\end{aligned}
$$

(last line from $x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right) \Longrightarrow x^{\star} \in \arg \min _{x} f(x)$).

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox_{f} :

$$
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
$$

Proof.
Follows from:

$$
\begin{aligned}
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) & \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)+\left(x^{\star}-x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
\end{aligned}
$$

(last line from $x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right) \Longrightarrow x^{\star} \in \arg \min _{x} f(x)$).
Consequence: Suggests that fixed-point algorithm $x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right)$ converges to minimum of f.

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox_{f} :

$$
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
$$

Proof.
Follows from:

$$
\begin{aligned}
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) & \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)+\left(x^{\star}-x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
\end{aligned}
$$

(last line from $x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right) \Longrightarrow x^{\star} \in \arg \min _{x} f(x)$).
Consequence: Suggests that fixed-point algorithm $x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right)$ converges to minimum of f. But... does it converge?

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox_{f} :

$$
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
$$

Proof.
Follows from:

$$
\begin{aligned}
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) & \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)+\left(x^{\star}-x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
\end{aligned}
$$

(last line from $x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right) \Longrightarrow x^{\star} \in \arg \min _{x} f(x)$).
Consequence: Suggests that fixed-point algorithm $x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right)$ converges to minimum of f. But... does it converge?

- prox_{f} unfortunately not contractive (i.e., α-Lipschitz with $\alpha \in(0,1)$ so that $\left.\left\|x_{k+1}-x^{\star}\right\| \leq \alpha\left\|x_{k}-x^{\star}\right\|\right)$

Non-differentiable optimization: proximal methods

Key property:

Property (Proximal fixed-points and minimizers)
Minimizers of f are the fixed points of prox_{f} :

$$
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
$$

Proof.
Follows from:

$$
\begin{aligned}
x^{\star} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} f(x) & \Leftrightarrow 0 \in \partial f\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \partial f\left(x^{\star}\right)+\left(x^{\star}-x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right)
\end{aligned}
$$

(last line from $x^{\star}=\operatorname{prox}_{f}\left(x^{\star}\right) \Longrightarrow x^{\star} \in \arg \min _{x} f(x)$).
Consequence: Suggests that fixed-point algorithm $x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right)$ converges to minimum of f. But... does it converge?

- prox_{f} unfortunately not contractive (i.e., α-Lipschitz with $\alpha \in(0,1)$ so that $\left.\left\|x_{k+1}-x^{\star}\right\| \leq \alpha\left\|x_{k}-x^{\star}\right\|\right)$
- but prox ${ }_{f}$ firmly non-expansive!

Non-differentiable optimization: proximal methods
Definition (Non-expansiveness)
$g: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$
\|g(x)-g(y)\| \leq\|x-y\| .
$$

Non-differentiable optimization: proximal methods
Definition (Non-expansiveness)
$g: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$
\|g(x)-g(y)\| \leq\|x-y\| .
$$

i.e., g is 1-Lipschitz.

Non-differentiable optimization: proximal methods
Definition (Non-expansiveness)
$g: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$
\|g(x)-g(y)\| \leq\|x-y\| .
$$

i.e., g is 1 -Lipschitz.

Definition (Firm non-expansiveness)
$g: \mathcal{X} \rightarrow \mathcal{X}$ firmly non-expansive if $\exists G: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive with $g=\frac{1}{2}(I+G)$.

Non-differentiable optimization: proximal methods
Definition (Non-expansiveness)
$g: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive if $\forall x, y \in \mathcal{X}$,

$$
\|g(x)-g(y)\| \leq\|x-y\|
$$

i.e., g is 1-Lipschitz.

Definition (Firm non-expansiveness)
$g: \mathcal{X} \rightarrow \mathcal{X}$ firmly non-expansive if $\exists G: \mathcal{X} \rightarrow \mathcal{X}$ non-expansive with $g=\frac{1}{2}(I+G)$.

Figure: Non-expansive g (left) and firmly non-expansive g (right).

Non-differentiable optimization: proximal methods

Theorem
For convex $f, \operatorname{prox}_{f}: \mathcal{X} \rightarrow \mathcal{X}, x \mapsto \operatorname{argmin}_{y} f(y)+\frac{1}{2}\|x-y\|^{2}$ firmly non-expansive.

Non-differentiable optimization: proximal methods

Theorem
For convex $f, \operatorname{prox}_{f}: \mathcal{X} \rightarrow \mathcal{X}, x \mapsto \operatorname{argmin}_{y} f(y)+\frac{1}{2}\|x-y\|^{2}$ firmly non-expansive.
Proof.
Idea: Prove that $2 \operatorname{prox}_{f}-I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$
\begin{aligned}
\left\|\left(2 \operatorname{prox}_{f}(x)-x\right)-\left(2 \operatorname{prox}_{f}(y)-y\right)\right\|^{2} & \leq\|x-y\|^{2} \\
\Leftrightarrow \quad\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) & \leq 0 .
\end{aligned}
$$

Non-differentiable optimization: proximal methods

Theorem
For convex $f, \operatorname{prox}_{f}: \mathcal{X} \rightarrow \mathcal{X}, x \mapsto \operatorname{argmin}_{y} f(y)+\frac{1}{2}\|x-y\|^{2}$ firmly non-expansive.
Proof.
Idea: Prove that $2 \operatorname{prox}_{f}-I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$
\begin{aligned}
\left\|\left(2 \operatorname{prox}_{f}(x)-x\right)-\left(2 \operatorname{prox}_{f}(y)-y\right)\right\|^{2} & \leq\|x-y\|^{2} \\
\Leftrightarrow \quad\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) & \leq 0 .
\end{aligned}
$$

For this, recall ∂f is monotone: for $a=\operatorname{prox}_{f}(x)$ and $b=\operatorname{prox}_{f}(y)$, then

$$
x-a \in \partial f(a) \quad \text { and } \quad y-b \in \partial f(b)
$$

Non-differentiable optimization: proximal methods

Theorem
For convex $f, \operatorname{prox}_{f}: \mathcal{X} \rightarrow \mathcal{X}, x \mapsto \operatorname{argmin}_{y} f(y)+\frac{1}{2}\|x-y\|^{2}$ firmly non-expansive.
Proof.
Idea: Prove that $2 \operatorname{prox}_{f}-I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$
\begin{aligned}
&\left\|\left(2 \operatorname{prox}_{f}(x)-x\right)-\left(2 \operatorname{prox}_{f}(y)-y\right)\right\|^{2} \leq\|x-y\|^{2} \\
& \Leftrightarrow \quad\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \leq 0 .
\end{aligned}
$$

For this, recall ∂f is monotone: for $a=\operatorname{prox}_{f}(x)$ and $b=\operatorname{prox}_{f}(y)$, then

$$
x-a \in \partial f(a) \quad \text { and } \quad y-b \in \partial f(b)
$$

Thus

$$
\left(\left(x-\operatorname{prox}_{f}(x)\right)-\left(y-\operatorname{prox}_{f}(y)\right)\right)^{\top}\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right) \geq 0 .
$$

Non-differentiable optimization: proximal methods

Theorem
For convex $f, \operatorname{prox}_{f}: \mathcal{X} \rightarrow \mathcal{X}, x \mapsto \operatorname{argmin}_{y} f(y)+\frac{1}{2}\|x-y\|^{2}$ firmly non-expansive.
Proof.
Idea: Prove that $2 \operatorname{prox}_{f}-I$ non-expansive, i.e., $\forall x, y \in \mathcal{X}$,

$$
\begin{aligned}
&\left\|\left(2 \operatorname{prox}_{f}(x)-x\right)-\left(2 \operatorname{prox}_{f}(y)-y\right)\right\|^{2} \leq\|x-y\|^{2} \\
& \Leftrightarrow \quad\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \leq 0 .
\end{aligned}
$$

For this, recall ∂f is monotone: for $a=\operatorname{prox}_{f}(x)$ and $b=\operatorname{prox}_{f}(y)$, then

$$
x-a \in \partial f(a) \quad \text { and } \quad y-b \in \partial f(b)
$$

Thus

$$
\left(\left(x-\operatorname{prox}_{f}(x)\right)-\left(y-\operatorname{prox}_{f}(y)\right)\right)^{\top}\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right) \geq 0 .
$$

Implies

$$
\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \geq\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} \geq 0
$$

Non-differentiable optimization: proximal methods

Main property:

Theorem (The Proximal Point Algorithm)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, $x_{1} \in \mathcal{X}$, let

$$
x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right), \quad \forall k \geq 1
$$

Then $x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\{f(x)\}$.

Non-differentiable optimization: proximal methods

Main property:

Theorem (The Proximal Point Algorithm)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, $x_{1} \in \mathcal{X}$, let

$$
x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right), \quad \forall k \geq 1 .
$$

Then $x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\{f(x)\}$.
Proof.

$$
\begin{aligned}
& \left\|x_{k+1}-x_{k}\right\|^{2} \\
& =\left\|\operatorname{prox}_{f}\left(x_{k}\right)-x_{k}\right\|^{2} \\
& =\left\|\left(\operatorname{prox}_{f}\left(x_{k}\right)-x_{k}\right)-\left(\operatorname{prox}_{f}\left(x^{\star}\right)-x^{\star}\right)\right\|^{2} \\
& =\left\|\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right\|^{2}+\left\|x_{k}-x^{\star}\right\|^{2}-2\left(\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right)^{\top}\left(x_{k}-x^{\star}\right) \\
& \leq\left\|x_{k}-x^{\star}\right\|^{2}-\left\|\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right\|^{2} .
\end{aligned}
$$

Non-differentiable optimization: proximal methods

Main property:

Theorem (The Proximal Point Algorithm)
For $f: \mathcal{X} \rightarrow \mathbb{R}$ convex, $x_{1} \in \mathcal{X}$, let

$$
x_{k+1}=\operatorname{prox}_{f}\left(x_{k}\right), \quad \forall k \geq 1 .
$$

Then $x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\{f(x)\}$.

Proof.

$$
\begin{aligned}
& \left\|x_{k+1}-x_{k}\right\|^{2} \\
& =\left\|\operatorname{prox}_{f}\left(x_{k}\right)-x_{k}\right\|^{2} \\
& =\left\|\left(\operatorname{prox}_{f}\left(x_{k}\right)-x_{k}\right)-\left(\operatorname{prox}_{f}\left(x^{\star}\right)-x^{\star}\right)\right\|^{2} \\
& =\left\|\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right\|^{2}+\left\|x_{k}-x^{\star}\right\|^{2}-2\left(\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right)^{\top}\left(x_{k}-x^{\star}\right) \\
& \leq\left\|x_{k}-x^{\star}\right\|^{2}-\left\|\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right\|^{2} .
\end{aligned}
$$

Last inequality uses firm non-expansiveness of prox $_{f}$:

$$
\left(\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right)^{\top}\left(x_{k}-x^{\star}\right) \geq\left\|\operatorname{prox}_{f}\left(x_{k}\right)-\operatorname{prox}_{f}\left(x^{\star}\right)\right\|^{2} \geq 0
$$

Non-differentiable optimization: proximal methods

Proof.

Geometric interpretation:

$$
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|
$$

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

$$
\begin{aligned}
& \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \leq 0 \\
\Longleftrightarrow & 2\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-2\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y)+\|x-y\|^{2} \leq\|x-y\|^{2} \\
\Longleftrightarrow & \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}+\left\|\left(I-\operatorname{prox}_{f}\right)(y)-\left(I-\operatorname{prox}_{f}\right)(x)\right\|^{2} \leq\|x-y\|^{2}
\end{aligned}
$$

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

$$
\begin{aligned}
& \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \leq 0 \\
\Longleftrightarrow & 2\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-2\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y)+\|x-y\|^{2} \leq\|x-y\|^{2} \\
\Longleftrightarrow & \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}+\left\|\left(I-\operatorname{prox}_{f}\right)(y)-\left(I-\operatorname{prox}_{f}\right)(x)\right\|^{2} \leq\|x-y\|^{2}
\end{aligned}
$$

In particular

$$
\begin{aligned}
\left\|x_{k+1}-x^{\star}\right\|^{2}+\left\|x_{k+1}-x_{k}\right\|^{2} & \leq\left\|x_{k}-x^{\star}\right\|^{2} \\
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} & \leq\|x-y\|^{2} .
\end{aligned}
$$

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

$$
\begin{aligned}
& \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \leq 0 \\
\Longleftrightarrow & 2\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-2\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y)+\|x-y\|^{2} \leq\|x-y\|^{2} \\
\Longleftrightarrow & \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}+\left\|\left(I-\operatorname{prox}_{f}\right)(y)-\left(I-\operatorname{prox}_{f}\right)(x)\right\|^{2} \leq\|x-y\|^{2}
\end{aligned}
$$

In particular

$$
\begin{aligned}
\left\|x_{k+1}-x^{\star}\right\|^{2}+\left\|x_{k+1}-x_{k}\right\|^{2} & \leq\left\|x_{k}-x^{\star}\right\|^{2} \\
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} & \leq\|x-y\|^{2} .
\end{aligned}
$$

Summing over $k=1, \ldots, K$:

$$
K\left\|x_{K+1}-x_{K}\right\|^{2} \leq\left\|x_{1}-x^{\star}\right\|^{2}-\left\|x_{K+1}-x^{\star}\right\|^{2} \leq\left\|x_{1}-x^{\star}\right\|^{2}
$$

Non-differentiable optimization: proximal methods

Proof.

Recall now (non-expansiveness equivalence):

$$
\begin{aligned}
& \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y) \leq 0 \\
\Longleftrightarrow & 2\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}-2\left(\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right)^{\top}(x-y)+\|x-y\|^{2} \leq\|x-y\|^{2} \\
\Longleftrightarrow & \left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2}+\left\|\left(I-\operatorname{prox}_{f}\right)(y)-\left(I-\operatorname{prox}_{f}\right)(x)\right\|^{2} \leq\|x-y\|^{2}
\end{aligned}
$$

In particular

$$
\begin{aligned}
\left\|x_{k+1}-x^{\star}\right\|^{2}+\left\|x_{k+1}-x_{k}\right\|^{2} & \leq\left\|x_{k}-x^{\star}\right\|^{2} \\
\left\|\operatorname{prox}_{f}(x)-\operatorname{prox}_{f}(y)\right\|^{2} & \leq\|x-y\|^{2} .
\end{aligned}
$$

Summing over $k=1, \ldots, K$:

$$
K\left\|x_{K+1}-x_{K}\right\|^{2} \leq\left\|x_{1}-x^{\star}\right\|^{2}-\left\|x_{K+1}-x^{\star}\right\|^{2} \leq\left\|x_{1}-x^{\star}\right\|^{2}
$$

and thus

$$
\left\|x_{K+1}-x_{K}\right\| \leq \frac{1}{\sqrt{K}}\left\|x_{1}-x^{\star}\right\| \rightarrow 0
$$

as $K \rightarrow \infty$, i.e., $\left\|\operatorname{prox}_{f}\left(x_{k}\right)-x_{k}\right\| \rightarrow 0$.

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in $\lambda f(\lambda>0)$: not affecting algorithm, but possibly performance;

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in $\lambda f(\lambda>0)$: not affecting algorithm, but possibly performance;
- but 2 main difficulties:
- prox_{f} can be difficult to evaluate

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in $\lambda f(\lambda>0)$: not affecting algorithm, but possibly performance;
- but 2 main difficulties:
- prox_{f} can be difficult to evaluate
- in worst case, sublinear convergence rate.

Non-differentiable optimization: proximal methods

Remark (On proximal point algorithm)

- does not need differentiable f, does not have step size constraint;
- one can change f in $\lambda f(\lambda>0)$: not affecting algorithm, but possibly performance;
- but 2 main difficulties:
- prox_{f} can be difficult to evaluate
- in worst case, sublinear convergence rate.

Table of classical prox operators:

f	$\operatorname{prox}_{f}(x)$	$\nabla f(x)-$		
0	x	0		
$\imath_{\Omega}(x)$	$P_{\Omega}(x)$	-		
$\imath_{\mathbb{R}_{+}^{n}}(x)$	$\left\{\max \left([x]_{i}, 0\right)\right\}_{i=1}^{N}$	-		
$\lambda\\|x\\|_{1}$	$\left\{\operatorname{sgn}\left([x]_{i}\right) \max \left(\left\|[x]_{i}\right\|-\lambda, 0\right)\right\}_{i=1}^{n}$	-		
$\imath_{\{\bar{x}, A \bar{x}=y\}}(x)$	$x+A^{\top}\left(A A^{\top}\right)^{-1}(y-A x)$	-		
$\frac{1}{2}\\|A x-y\\|^{2}$	$\left(I_{n}+A^{\top} A\right)^{-1}\left(x+A^{\top} y\right)$	$A^{\top}(A x-y)$		
$x^{\top} A^{\top} y$	$x-A^{\top} y$	$A^{\top} y$		
$\frac{1}{2} x^{\top} A x$	$\left(I_{n}+A\right)^{-1} x$	$A x$		

Outline

```
Motivation
Basics of Convex Optimization
    Convex Sets
    Convex Functions
Basic Algorithms for Convex Optimization
    Descent methods and gradient descent
    Inequality Constraints and Barrier Methods
Constrained Optimization and Duality
    Linearly Equality-Constrained Optimization
    Generalization to Equality and Inequality Constraints
Advanced Methods
Non－Differentiable Convex Functions
The Proximal Operator Approach
Minimization of the Sum of Two Functions
```

\square

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f_{1} and f_{2},

$$
\min _{x \in \mathcal{X}} f_{1}(x)+f_{2}(x)
$$

Non-differentiable optimization: sum of two functions
Two-function optimization problem: for any convex f_{1} and f_{2},

$$
\min _{x \in \mathcal{X}} f_{1}(x)+f_{2}(x)
$$

Crucial example:

- $f_{1}(x)=\imath_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- f_{2} any convex function (our previous f).

Non-differentiable optimization: sum of two functions

Two-function optimization problem: for any convex f_{1} and f_{2},

$$
\min _{x \in \mathcal{X}} f_{1}(x)+f_{2}(x)
$$

Crucial example:

- $f_{1}(x)=\imath_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- f_{2} any convex function (our previous f).

Case of differentiable convex f_{2} : with L-Lipschitz gradient ∇f_{2} (f_{1} only convex).

Non-differentiable optimization: sum of two functions

Two-function optimization problem: for any convex f_{1} and f_{2},

$$
\min _{x \in \mathcal{X}} f_{1}(x)+f_{2}(x)
$$

Crucial example:

- $f_{1}(x)=\imath_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- f_{2} any convex function (our previous f).

Case of differentiable convex f_{2} : with L-Lipschitz gradient ∇f_{2} (f_{1} only convex). Then:

$$
\begin{aligned}
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\{f_{1}(x)+f_{2}(x)\right\} & \Leftrightarrow 0 \in \partial f_{1}\left(x^{\star}\right)+\nabla f_{2}\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \gamma \partial f_{1}\left(x^{\star}\right)+\gamma \nabla f_{2}\left(x^{\star}\right) \\
& \Leftrightarrow x^{\star} \in x^{\star}+\gamma \partial f_{1}\left(x^{\star}\right)+\gamma \nabla f_{2}\left(x^{\star}\right) \\
& \Leftrightarrow x^{\star}-\gamma \nabla f_{2}\left(x^{\star}\right) \in x^{\star}+\gamma \partial f_{1}\left(x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{\gamma f_{1}}\left(\left(I-\gamma \nabla f_{2}\right)\left(x^{\star}\right)\right) \\
& \Leftrightarrow x^{\star}=\left(\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)\right)\left(x^{\star}\right) .
\end{aligned}
$$

Non-differentiable optimization: sum of two functions

Two-function optimization problem: for any convex f_{1} and f_{2},

$$
\min _{x \in \mathcal{X}} f_{1}(x)+f_{2}(x)
$$

Crucial example:

- $f_{1}(x)=\imath_{\Omega}(x)$ for convex $\Omega \subset \mathcal{X}$
- f_{2} any convex function (our previous f).

Case of differentiable convex f_{2} : with L-Lipschitz gradient ∇f_{2} (f_{1} only convex). Then:

$$
\begin{aligned}
x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\{f_{1}(x)+f_{2}(x)\right\} & \Leftrightarrow 0 \in \partial f_{1}\left(x^{\star}\right)+\nabla f_{2}\left(x^{\star}\right) \\
& \Leftrightarrow 0 \in \gamma \partial f_{1}\left(x^{\star}\right)+\gamma \nabla f_{2}\left(x^{\star}\right) \\
& \Leftrightarrow x^{\star} \in x^{\star}+\gamma \partial f_{1}\left(x^{\star}\right)+\gamma \nabla f_{2}\left(x^{\star}\right) \\
& \Leftrightarrow x^{\star}-\gamma \nabla f_{2}\left(x^{\star}\right) \in x^{\star}+\gamma \partial f_{1}\left(x^{\star}\right) \\
& \Leftrightarrow x^{\star}=\operatorname{prox}_{\gamma f_{1}}\left(\left(I-\gamma \nabla f_{2}\right)\left(x^{\star}\right)\right) \\
& \Leftrightarrow x^{\star}=\left(\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)\right)\left(x^{\star}\right) .
\end{aligned}
$$

Consequence: equivalent to finding fixed-point for:

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right) .
$$

Non-differentiable optimization: sum of two functions
Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive.

Non-differentiable optimization: sum of two functions
Remark (On parameter γ)
γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive. Only true if $\gamma<\frac{1}{L}$!

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)

γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive. Only true if $\gamma<\frac{1}{L}$!
Theorem (Forward-Backward Splitting algorithm)
For $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex with f_{2} differentiable and with L-Lipschitz gradient, let

$$
\begin{aligned}
x_{1} & \in \mathcal{X} \\
x_{k+1} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)\right), \quad k \geq 1 .
\end{aligned}
$$

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)

γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive. Only true if $\gamma<\frac{1}{L}$!
Theorem (Forward-Backward Splitting algorithm)
For $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex with f_{2} differentiable and with L-Lipschitz gradient, let

$$
\begin{aligned}
x_{1} & \in \mathcal{X} \\
x_{k+1} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)\right), \quad k \geq 1 .
\end{aligned}
$$

Then, as $k \rightarrow \infty$,

$$
x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\{f_{1}(x)+f_{2}(x)\right\} .
$$

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)

γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive. Only true if $\gamma<\frac{1}{L}$!
Theorem (Forward-Backward Splitting algorithm)
For $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex with f_{2} differentiable and with L-Lipschitz gradient, let

$$
\begin{aligned}
x_{1} & \in \mathcal{X} \\
x_{k+1} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)\right), \quad k \geq 1 .
\end{aligned}
$$

Then, as $k \rightarrow \infty$,

$$
x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\{f_{1}(x)+f_{2}(x)\right\} .
$$

Why forward-backward splitting?

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)

γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive. Only true if $\gamma<\frac{1}{L}$!
Theorem (Forward-Backward Splitting algorithm)
For $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex with f_{2} differentiable and with L-Lipschitz gradient, let

$$
\begin{aligned}
x_{1} & \in \mathcal{X} \\
x_{k+1} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)\right), \quad k \geq 1 .
\end{aligned}
$$

Then, as $k \rightarrow \infty$,

$$
x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\{f_{1}(x)+f_{2}(x)\right\} .
$$

Why forward-backward splitting? Two-step approach:

1. move from x_{k} to $\tilde{x}_{k} \equiv x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)$, i.e., gradient descent step on f_{2} (forward progression to minimizing f_{2});

Non-differentiable optimization: sum of two functions

Remark (On parameter γ)

γ seems artificial. But, to ensure convergence of fixed-point algorithm,

$$
\operatorname{prox}_{\gamma f_{1}} \circ\left(I-\gamma \nabla f_{2}\right)
$$

must be firmly non-expansive. Only true if $\gamma<\frac{1}{L}$!
Theorem (Forward-Backward Splitting algorithm)
For $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex with f_{2} differentiable and with L-Lipschitz gradient, let

$$
\begin{aligned}
x_{1} & \in \mathcal{X} \\
x_{k+1} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)\right), \quad k \geq 1 .
\end{aligned}
$$

Then, as $k \rightarrow \infty$,

$$
x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\{f_{1}(x)+f_{2}(x)\right\} .
$$

Why forward-backward splitting? Two-step approach:

1. move from x_{k} to $\tilde{x}_{k} \equiv x_{k}-\gamma \nabla f_{2}\left(x_{k}\right)$, i.e., gradient descent step on f_{2} (forward progression to minimizing f_{2});
2. move from \tilde{x}_{k} to $x_{k+1}=\operatorname{prox}_{\gamma f_{1}}\left(\tilde{x}_{k}\right)$, i.e., "backward" move from \tilde{x}_{k} to $x_{k+1}=\left(I+\partial f_{1}\right)^{-1}\left(\tilde{x}_{k}\right)$.

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable $f=f_{2}$ under convex constraints given by f_{1},

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable $f=f_{2}$ under convex constraints given by f_{1}, e.g.,

$$
\min _{x \in \Omega} f(x)
$$

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable $f=f_{2}$ under convex constraints given by f_{1}, e.g.,

$$
\min _{x \in \Omega} f(x) \Leftrightarrow \min _{x \in \mathcal{X}} \imath_{\Omega}(x)+f(x)
$$

Non-differentiable optimization: sum of two functions

Remark (Forward-Backward Splitting in Practice)
Very convenient in practice to minimize convex differentiable $f=f_{2}$ under convex constraints given by f_{1}, e.g.,

$$
\min _{x \in \Omega} f(x) \Leftrightarrow \min _{x \in \mathcal{X}} \imath_{\Omega}(x)+f(x)
$$

Main advantage: constrained minimization turned into a much simpler unconstrained minimization of two functions.

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} :

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Why? Follows from:

$$
x=\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)(x)
$$

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Why? Follows from:

$$
x=\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)(x) \quad \Leftrightarrow \quad x=2 \operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-(2 \tilde{x}-x)
$$

where $\tilde{x} \equiv \operatorname{prox}_{\gamma f_{1}}(x)$ (i.e., $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Why? Follows from:

$$
x=\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)(x) \quad \Leftrightarrow \quad x=2 \operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-(2 \tilde{x}-x)
$$

where $\tilde{x} \equiv \operatorname{prox}_{\gamma f_{1}}(x)$ (i.e., $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Further equivalent to

$$
\begin{aligned}
& \Leftrightarrow 0=\operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-\tilde{x} \\
& \Leftrightarrow 2 \tilde{x}-x \in\left(\gamma \partial f_{2}+I\right)(\tilde{x}) \\
& \Leftrightarrow \tilde{x}-x \in \gamma \partial f_{2}(\tilde{x}) \\
& \Leftrightarrow 0 \in \gamma \partial f_{1}(x)+\gamma \partial f_{2}(x)
\end{aligned}
$$

(last line uses $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Why? Follows from:

$$
x=\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)(x) \quad \Leftrightarrow \quad x=2 \operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-(2 \tilde{x}-x)
$$

where $\tilde{x} \equiv \operatorname{prox}_{\gamma f_{1}}(x)$ (i.e., $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Further equivalent to

$$
\begin{aligned}
& \Leftrightarrow 0=\operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-\tilde{x} \\
& \Leftrightarrow 2 \tilde{x}-x \in\left(\gamma \partial f_{2}+I\right)(\tilde{x}) \\
& \Leftrightarrow \tilde{x}-x \in \gamma \partial f_{2}(\tilde{x}) \\
& \Leftrightarrow 0 \in \gamma \partial f_{1}(x)+\gamma \partial f_{2}(x)
\end{aligned}
$$

(last line uses $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Major issue: only non-expansive iterations;

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Why? Follows from:

$$
x=\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)(x) \quad \Leftrightarrow \quad x=2 \operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-(2 \tilde{x}-x)
$$

where $\tilde{x} \equiv \operatorname{prox}_{\gamma f_{1}}(x)$ (i.e., $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Further equivalent to

$$
\begin{aligned}
& \Leftrightarrow 0=\operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-\tilde{x} \\
& \Leftrightarrow 2 \tilde{x}-x \in\left(\gamma \partial f_{2}+I\right)(\tilde{x}) \\
& \Leftrightarrow \tilde{x}-x \in \gamma \partial f_{2}(\tilde{x}) \\
& \Leftrightarrow 0 \in \gamma \partial f_{1}(x)+\gamma \partial f_{2}(x)
\end{aligned}
$$

(last line uses $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Major issue: only non-expansive iterations; does not guarantee convergence.

Non-differentiable optimization: sum of two functions

Relaxing differentiable f_{2} : Proceeding as before, algorithm now iterates

$$
\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)
$$

Why? Follows from:

$$
x=\left(2 \operatorname{prox}_{\gamma f_{2}}-I\right) \circ\left(2 \operatorname{prox}_{\gamma f_{1}}-I\right)(x) \quad \Leftrightarrow \quad x=2 \operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-(2 \tilde{x}-x)
$$

where $\tilde{x} \equiv \operatorname{prox}_{\gamma f_{1}}(x)$ (i.e., $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Further equivalent to

$$
\begin{aligned}
& \Leftrightarrow 0=\operatorname{prox}_{\gamma f_{2}}(2 \tilde{x}-x)-\tilde{x} \\
& \Leftrightarrow 2 \tilde{x}-x \in\left(\gamma \partial f_{2}+I\right)(\tilde{x}) \\
& \Leftrightarrow \tilde{x}-x \in \gamma \partial f_{2}(\tilde{x}) \\
& \Leftrightarrow 0 \in \gamma \partial f_{1}(x)+\gamma \partial f_{2}(x)
\end{aligned}
$$

(last line uses $x-\tilde{x} \in \gamma \partial f_{1}(\tilde{x})$).
Major issue: only non-expansive iterations; does not guarantee convergence.
Solution: add extra $\rho \in(0,1)$ in algorithm steps.

Non-differentiable optimization: sum of two functions

Theorem (Douglas-Rachford Splitting)
Let $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex. For $x_{0} \in \mathcal{X}, \lambda>0, \rho \in(0,1)$, and $k \geq 1$, let

$$
\begin{aligned}
\tilde{x}_{k} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}\right) \\
x_{k+1} & =x_{k}+2 \rho\left(\operatorname{prox}_{\gamma f_{2}}\left(2 \tilde{x}_{k}-x_{k}\right)-\tilde{x}_{k}\right) .
\end{aligned}
$$

Non-differentiable optimization: sum of two functions

Theorem (Douglas-Rachford Splitting)

Let $f_{1}, f_{2}: \mathcal{X} \rightarrow \mathbb{R}$ convex. For $x_{0} \in \mathcal{X}, \lambda>0, \rho \in(0,1)$, and $k \geq 1$, let

$$
\begin{aligned}
\tilde{x}_{k} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}\right) \\
x_{k+1} & =x_{k}+2 \rho\left(\operatorname{prox}_{\gamma f_{2}}\left(2 \tilde{x}_{k}-x_{k}\right)-\tilde{x}_{k}\right) .
\end{aligned}
$$

Then, as $k \rightarrow \infty$,

$$
x_{k} \rightarrow x^{\star} \in \operatorname{argmin}_{x \in \mathcal{X}} f_{1}(x)+f_{2}(x) .
$$

The End.

