
INF231:
Functional Algorithmic and Programming

Lecture 7: Tree-based structures

Academic Year 2023 - 2024

About Trees
Some motivation and intuition

Presidency of a University:
President

VP Admin

advsr1 advsr2 . . .

VP Research

advsr1 advsr2 . . .

VP Formation

advsr1 advsr2 . . .

Remark
I "root" at the topmost level
I nodes with/without "subtrees"
I Hierarchical structure
I Implicit order or hierarchy. . . or not
I possible repetition

�

2 / 32

About Trees
Some motivation and intuition

Widely used in computer science mostly because of its notion of hierarchy:
(contrarily to lists)
I sorting
I storing "efficiently"

(e.g., a file system where files are organized in directories)
I compiling: programs are represented with trees
I structured documents, e.g., a web page
I modelling

<html>

<header>

<title> <meta> . . .

<body>

. . .

/

home/

toto/

work/ games/

titi/ . . .

usr/

local/

bin/

etc/ lib/

3 / 32

Defining trees
The definition

Definition (Tree)

A tree is a hierarchical recursive data structure which is either:
I empty
I a node containing a data and (sub) trees

Stores together data of the same type (similarly to list)

President

VP Admin

advsr1 advsr2 . . .

VP Research

advsr1 advsr2 . . .

VP Formation

advsr1 advsr2 . . .

4 / 32

Defining trees
Some vocabulary

Vocabulary

I The topmost node is called the root
I The data associated to a node is called its label / content
I The sub trees of a node are called the children
I The node directly containing subtrees is called the father of the subtrees
I The node containing subtrees is called an ancestor of the subtrees
I A node with an empty tree is called a leaf or a terminal node
I A branch of a tree is the list of nodes corresponding to a path from the

root to a leaf
I level of a node: length of the branch to this node
I depth of a tree: the maximal level of the nodes in the tree
I size of a tree: the number of nodes in the tree

Remark Constraints can be put on, e.g.,
I the (maximal) number of children a node can have (e.g., binary trees: 2

children per node)
I how labels are ordered in the tree

�
5 / 32

An example

Example (A tree)

100

30

45 70 12

74

8 7

28

10 84

45

32

I root: 100
I labels: 100, 30, 64, 28, 45, 70, 12, 8, 7, 10, 84, 32
I leaves: 45, 70, 12, 8, 7, 10, 84, 32
I children of 30 are 45, 70, 12
I 100 is the direct father of 30
I 100 is at level 0, 7 is at level 2
I the depth of the tree is 3
I [100;30;12] is a path

6 / 32

Outline

Binary trees

Binary Search Trees

Binary trees
Definition and example

Definition (Binary Tree)

A tree is a binary tree if each node has at most two children (possibly empty)
Mathematically:

Bt(Elt) = {EmptyT} ∪ {Node(tL, e, tR) | e ∈ Elt ∧ tL, tR ∈ Bt(Elt)}

Example (Binary trees of integers)
Bt(N) = {EmptyT} ∪ {Node(tL, e, tR) | e ∈ N ∧ tL, tR ∈ Bt(N)}

Example (Binary tree)
100

30

70 12

74

8 7

’d’

’s’

’l’

’a’

"animal"

"mammal"

"dog" "cow"

"insect"

"bee" "fly"

7 / 32

Binary trees
Vocabulary

Vocabulary

I The first (resp. second) child is also called the left-hand (resp.
right-hand) subtree

I A binary tree t is complete if size(t) = 2depth(t) − 1

Example (Binary tree)
100

30

70 12

74

8 7

’d’

’s’

’l’

’a’

"animal"

"mammal"

"dog" "cow"

"insect"

"bee" "fly"

8 / 32

Binary trees of integers
In OCaml

type binary_tree =
| Empty
| Node of int * binary_tree * binary_tree

type binary_tree =
| Empty
| Node of binary_tree * int * binary_tree

type binary_tree =
| Empty
| Node of binary_tree * binary_tree * int

Remark
I Three equivalent definitions
I The type binary_tree has two constructors
I The constructor EmptyT (empty tree) is a constant
I The constructor Node is doubly recursive

�

9 / 32

Binary trees
Examples

Example (Defining a tree in OCaml)

100

30 74

let bt1 =
Node (100,

Node (30,EmptyT,EmptyT),
Node (74,EmptyT,EmptyT)

)

Example (Another tree)

100

30

70 12

74

8 7

let bt2 =
Node(

100,
Node(30,

Node(70,EmptyT,EmptyT),
Node(12,EmptyT,EmptyT)
),

Node(74,
Node(8,EmptyT,EmptyT),
Node(7,EmptyT,EmptyT)
)

)
;;

10 / 32

Some (classical) functions on trees

Example (Depth)
The maximal level of the nodes

let rec depth (t:binary_tree):int=
match t with

| EmptyT→ 0
| Node (_, t1, t2)→ 1+ max (depth t1) (depth t2)

Exercise
Define the two following functions
I sum: returns the sum of the elements of a tree
I maximum returns the maximal integer in the tree. Warning this function

should not be called on an empty tree

11 / 32

Binary trees
Let’s parameterize binary trees

We can parameterize binary trees by a type (polymorphism)

type α binary_tree =
| EmptyT
| Node of α * α binary_tree * α binary_tree

Many possible sorts of binary trees: int binary_tree,
char binary_tree, string binary_tree,. . .

Remark The element of type α can be placed equivalently in the middle or
on the right �

DEMO: Defining some binary trees

12 / 32

Polymorphic Binary trees
Some functions

Example (Belongs to)
Is an element of type α in an α binary_tree?

let rec belongsto (elt:α) (t:α bintree):bool =
match t with

| Empty→ false
| Node (e,tl,tr)→ (e=elt) || belongsto elt tl || belongsto elt tr

Example (The list of labels of a tree)
Given an α binary_tree, returns the α list of labels

let rec labels (t:α bintree):α list=
match t with

| Empty→ []
| Node (elt,tl,tr)→ (labels tl)@elt::(labels tr)

13 / 32

Polymorphic Binary trees
Some functions - let’s practice

Exercise: Define the following functions

I size: returns the size of the tree (the number of nodes)
I leaves: given an α bintree returns the α list of leaves of this tree
I maptree: applies a given function to all elements of an α bintree

I mirror: returns the mirror image of an α bintree

’a’

’n’

’h’ ’p’

’b’

’l’ ’w’

...

...

...

’a’

’b’

’w’ ’l’

’n’

’p’ ’h’

14 / 32

Browsing a binary tree

Given a binary search tree, several functions are defined by "browsing the
tree"

When encountering a Node (elt, lst, rst), there are several possibilities
according to the "moment" when elt is treated:
I treat elt, then browse lst, then browse rst: prefix browsing
I treat lst, then browse elt, then browse rst: infix browsing
I browse lst, then browse rst, then treat elt: suffix browsing

15 / 32

Iterators on binary tree

Iterator on a binary tree: fold_left_right_root: applies a function f

I to the root, and
I the results of left subtrees and right subtrees

let rec fold_lrr (f:α→ β → β → β) (acc:β) (t:α bintree):β=
match t with
Empty→ acc

| Node (elt, l, r)→
let rl = fold_lrr f acc l
and rr = fold_lrr f acc r

in f elt rl rr

16 / 32

Using iterators

Defining functions using iterators

Using the function fold_lrr, redefine the following functions:
I size

I depth

I mirror

17 / 32

Pathes in a tree

Exercise: Pathes in a binary tree: function pathes

The purpose is to define a function that computes maximal pathes in a tree:
I How can we represent a path and a set of pathes?
I Define a function add_to_each that adds an element as the head to

each path in a set of pathes
I Using the previously defined function define the function pathes

18 / 32

Binary trees
Some properties and how to prove them

Properties of size and depth

I depth(t) ≤ size(t)
I size(t) ≤ 2depth(t)−1

How to prove them?

Structural induction to prove some property P

Consider Bt(Elt) = {EmptyT} ∪ {Node(tL, e, tR) | e ∈ Elt ∧ tL, tR ∈ Bt(Elt)}
To show that ∀t ∈ Bt(Elt) : P(t)
I prove P(Et)
I prove

∀tL, tR ∈ Bt(Elt) : P(tL) ∧ P(tR)⇒ (∀e ∈ Elt : P(Node(tL, e, tR))

Exercise: some proofs

Prove the above properties using structural induction

20 / 32

Outline

Binary trees

Binary Search Trees

Motivation

Let us come back on the belongsto function:

let rec belongsto (elt:α) (t:α bintree):bool =
match t with

| Empty→ false
| Node (e,tl,tr)→ (e=elt) || belongsto elt tl || belongsto elt tr

100

30

45 70 12

74

8 7

28

10 84 32

How can we be sure that an element does not belong to the tree?
↪→ one has to browse the whole tree
(similarly to what would happen with a list)

Search time depends on the size of the tree

→ solution consists in sorting the elements of the tree

21 / 32

Binary Search Tree: definition

Definition: Binary Search Tree (BST)

A binary search tree is a binary tree s.t. for every node of the tree of the form
Node(elt,lst,rst), where e is the data carried out by the node, and lsb
(resp. rsb) is the left (resp. right) sub tree of the node, we have:
I lst, rst are binary search trees
I elements of lst are all lesser than or equal to e

I e is (strictly) lesser than all elements in rst

Remark
I Binary search trees suppose that the set of the elements of the tree has

a total ordering relation
I "lesser than" in the definition is understood w.r.t. this ordering relation
I Elements can be of any type: int, string, students. . . as long as

there is an ordering relation

�

22 / 32

Binary Search Tree
(counter) Example

Example (A binary search tree)

10

5

3 9

30

70

Example (NOT a binary search tree)

100

30

45 12

74

8 7

23 / 32

Revisiting the belongsto function

We can exploit the property of binary search trees

Example (Does an element belong to a binary search tree?)

let rec belongsto (elt:α) (t:α bst):bool=
match t with

| Empty→ false
| Node (e, lbst, rbst)→

(e=elt)
|| (e>elt) && belongsto elt lbst
|| (e<elt) && belongsto elt rbst

One subtree examined at each recursive call

Some sort of "dichotomic" search

24 / 32

An execution of belongsto

Let’s search 9 in the following tree:

10

5

3 9

30

70

searching 9 in Node(10,...,...)
9 < 10 ⇒ searching 9 in Node(5,...,...)
9 > 5 ⇒ searching 9 in Node(9,...,...)
9 = 9 ⇒ true

DEMO: Tracing belongsto 9 ...

25 / 32

Browsing a tree

Given a binary search tree, how to put the elements in order in a list?
↪→ browsing the tree

When encountering a Node (elt, lst, rst), there are several possibilities
according to the "moment" when elt is treated:
I place elt, then lst, then rst: prefix browsing
I place lst, then elt, then rst: infix browsing
I place lst, then rst, then elt: suffix browsing

Following the property of binary search trees, the infix browsing gives us the
solution:

let rec tolistinorder (t: α bst):α list=
match t with
Empty→ []

| Node (elt, lbst, rbst)→
(tolistinorder lbst)@elt::tolistinorder rbst

26 / 32

Insertion in a binary search tree
Insert the element as a leaf (simplest method)

Objective: insert an element elt in a binary search tree t

I preserve the binary search tree property
I insert the element as a leaf of the tree

Example (Inserting two elements)
10

5

3

30

70

9−→

10

5

3 9

30

70

24−→

10

5

3 9

30

24 70

Idea: recursively distinguish two cases
I t is empty, then by inserting elt we obtain Node(elt, Empty, Empty)
I t is not empty, then it is of the form Node(e,lbst,rbst), then

I if elt <= e, then elt should be placed in lbst
I if elt > e, then elt should be placed in rbst

27 / 32

Insertion in a binary search tree
Insert the element as a root

Objective: insert an element elt in a binary search tree t

I preserve the binary search tree property
I insert the element as the root of the tree

Example (Inserting two elements)

10

5

2 7

30

70

9−→

9

5

2 7

10

30

70

24−→

24

9

5

2 7

10

30

70

Idea: proceed in two steps:
I "cut" the tree into two binary search subtrees l and r s.t.

I l contains all elements smaller than elt
I r contains all elements greater than elt

I Build the tree Node (elt,l,r)

28 / 32

Binary Search Tree
Let’s practice insertion

Exercise: insertion as a leaf
Define the function insert that inserts an element in a BST, as a leaf

Exercise: insertion as the root
Define the functions:
I cut that cuts a binary search tree as described before
I insert that inserts an element in a binary tree as the root, using cut

Exercise: Binary Search Tree creation

Define two functions create_bst that, given a list of elements create a
binary search tree of the elements in the list, using the two insertion methods

29 / 32

Suppressing an element in a BST

Suppressing an element in elt a BST consists in:

1. Identify the subtree Node(elt, lst, rst)
(where suppression should occur)

2. Suppress the greatest element max of lst
→ we obtain a BST lstprime

3. Build the tree Node(max,lstprime, rst)

Example (Suppressing 30)
10

5

2 7

30

24

15 28

70
step1−→

10

5

2 7

30

24

15 28

70
step2−→

24

15
step3−→

10

5

2 7

28

24

15

70

30 / 32

Binary Search Tree
Let’s practice suppression

Exercise: suppression in a tree

Define the functions:
I remove_max that remove the greatest element in a tree

To ease the definition of the subsequent function, it is better if this
function returns both the maximal element and the new tree

I suppression that suppresses an element in a BST

Exercise: Is a Binary Tree a Binary Search Tree?

Define the function is_bst that checks whether a binary tree is a BST

31 / 32

Conclusion

Summary:
About trees:
I Hierarchical "objects"
I Doubly recursive data type
I Two variants (binary trees and binary search trees) (there exist many

others)
I Several functions to manipulate them

32 / 32

	Binary trees
	Binary Search Trees

