INF231: Functional Algorithmic and Programming Lecture 3: Advanced types

Academic Year 2023 - 2024

Modelling information/concepts

What is modelling?

Why modelling?

How to model?

- defining specific data types
- defining functions manipulating these data types

Defining a type

The general form

```
type t = ... (* possibly with constraints *)
```

Now we are going to see how we can define some more complex types using existing types...

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Defining a synonym type

Motivations:

- context-specific types
- easier to remember
- re-use

General syntax:

```
type new_type = existing_type
    (* possibly with informative usage constraints *)
```

Example (Soldes)

- type price = float (* > 0 *)
- type rate = int (* 0, ..., 99 *)
- Defining a function to reduce prices:
 - Description: reducedPrice(p,r) is the price p reduced by r%
 - ▶ Profile: reducedPrice: price * rate → price
 - Examples: reducedPrice(100., 25) = 75.

(note that it is more meaningful than the "anonymous signature" reducedPrice: float * int \rightarrow float)

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Enumerated types

Motivation: How can we model/define/use:

- the family of a card? $\{ \blacklozenge, \heartsuit, \diamondsuit, \clubsuit \}$
- the color of a card? {black, white}

From a mathematical point of view: sets defined extensively \hookrightarrow i.e., by an *explicit enumeration*

Defining an enumerated type in OCaml:

```
type new_type = Value_1 | Value_2 | ... | Value_n
```

Remark

- Capital letters are mandatory
- new_type is said to be an enumerated type
- Value_1, ..., Value_n are said to be symbolic constants
- Value_1, ..., Value_n are of type new_type
- Implicit order between constants (consequence of the definition)

Enumerated types: Some examples

Painting / Modelling a card game

Example (Some paint colors)

type paint = | Red | Blue | Yellow

Example (Types of a Card game)

DEMO: types of card game

Example (Color of a family)

Returning the color associated to a family card

- Description: colorFamily returns the family of a given card.
 - Heart and Diamond are associated to White
 - Spade and Club are associated to Black
- ▶ Signature: colorFamily: family → color

Examples: colorFamily Spade = Black, ...

Back to the language constructs: **pattern-matching** Your best friend

One of the most powerful features of OCaml (and functional languages) Pattern-matching: computation by **case analysis** Specified by the following syntax:

```
match expression with
  | pattern_1→ expression_1
  | pattern_2 → expression_2
  ...
  | pattern_n → expression_n
```

Meaning:

 expression is matched against the patterns, i.e., its value is evaluated and then compared to the patterns in order
 "matching" depends on the type of expression!

the expression associated to the first matching pattern is returned

Remark

- First vertical bar is optional
- may use _ as a wild-card (should be the last pattern)

(Pattern) Matching on an example

```
Example (colorFamily using if...then...else)
```

```
let colorFamily(f:family):color =
    if (f=Spade || f = Club) then Black
    else (* necessarily f = Heart || f = Diamond *)
    White
```

Example (colorFamily using pattern-matching)

```
let colorFamily (f:family):color =
  match f with
    | Spade → Black
    | Club → Black
    | Heart → White
    | Diamond → White
```

(Pattern) Matching on an example

The card game with more concise pattern-matching

Example (colorFamily using a more concise pattern-matching)

```
let colorFamily (f:family):color =
  match f with
  Spade | Club → Black
  | Heart | Diamond → White
```

Example (colorFamily using an even more concise pattern-matching)

```
let colorFamily (f:family):color =
  match f with
   Spade | Club → Black
   |_ → White
```

Example (colorFamily using an even even more concise pattern-matching)

```
let colorFamily = function | Spade | Club \rightarrow Black | _ \rightarrow White
```

Pattern-matching for enumerated types

To the enumerated type

```
type newtype = Value_1 | Value_2 | ... | Value_n
```

is associated the pattern matching

Rules

- Pattern-matching "follows" the definition of the type (not necessarily with the same order)
- ▶ expression_i for $i \in \{1, ..., n\}$ should be of the same type
- Should be exhaustive (or use the wild-card symbol _)

Let's practice enumerated types

Exercise

- Define the enumerated type month which represents the twelve months of the year
- \blacktriangleright Define the function <code>nb_of_days:month</code> \rightarrow <code>int</code> which associates to each month its number of days

Matching (also) works (more or less) with (some) predefined types

Pattern-matching is a generalization of the if...then...else... \hookrightarrow works with existing/predefined types: int, bool, float, char, string

```
Example (Is an integer an even number?)

let is_even (n:int):bool =

match n with

|0 \rightarrow true

|1 \rightarrow false

|2 \rightarrow true

|n \rightarrow if n \mod 2 = 0 then true else false
```

Example (Is a character in upper case?)

```
let is_uppercase (c:char) = match c with

'A' \rightarrow true

|'B' \rightarrow true

|...(* 23 conditions *)

|'Z' \rightarrow true

| c \rightarrow false
```

Example (Matching with floats is dangerous)

```
match 4.3 - .1.2 with

3.1 \rightarrow \text{true} \rightarrow \text{false} \rightarrow \text{returns false}
```

Some shortcuts with pattern-matching

For enumerated types

"Disjuncting equivalent patterns":

match something with

 $\begin{array}{cccc} & & & & & \\ | p1 \rightarrow v & & & & \\ | p2 \rightarrow v & & & \\ & & & \\ & & & \\ | pm \rightarrow v & & & \\ & & & \\ & & & \\ \end{array} \end{array} \begin{array}{ccccc} \text{match something with} & & \\ & & & \\ & & & \\ | p1 | p2 | pm \rightarrow v & \\ & & \\ & & \\ & & \\ \end{array}$

Example ("Disjuncting equivalent patterns")

Some shortcuts with pattern-matching - ctd

For characters

"Leveraging the order between characters":

```
match something with
                                              ...
match something with
                                              |p1..pm \rightarrow v
 ...
                                              . . . .
 |p1 \rightarrow v
                                                             or
 | p2 \rightarrow v
                                       \rightarrow 
  ...
                                            match something with
 | pm \rightarrow v
                                              ...
  ....
                                              | pm .. p1 \rightarrow v
```

where <code>p1, .., pm</code> are *consecutive* characters and <code>p1</code> and <code>pm</code> are the minimal and the maximal characters (not necessarily in this order)

Example ("Leveraging the order between the elements of characters")

```
\begin{array}{ccc} \texttt{let is\_uppercase(c:char)} & \texttt{let is\_uppercase(c:char)} \\ \texttt{= match c with} \\ \texttt{`A' ...`Z' \rightarrow true} & \texttt{or} & \texttt{amatch c with} \\ \texttt{`c \rightarrow false} & \texttt{`z' ...`A' \rightarrow true} \\ \texttt{|c \rightarrow false} & \texttt{|c \rightarrow false} \end{array}
```

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Product type: motivating example(s) and connection with maths

Example (Some complex numbers)

How can we model complex numbers? In maths, we define:

$$\mathbb{C} = \{ a + ib \mid a \in \mathbb{R}, b \in \mathbb{R} \}$$

Z	а	b
3.0 + <i>i</i> * 2.5	3.0	2.5
12.0 + <i>i</i> * 1.5	12.0	1.5
(1.0+i)*(1.0-i)		

Actually, we could also define:

$$\mathbb{C} = \mathbb{R} \times \mathbb{R}$$

The operation \times is the Cartesian product of sets

Example (Defining card)

Same reasoning can be followed if we want to define the type of a card...

(Cartesian) Product (of) type

We can build Cartesian product of types, i.e., pairs of object of different types:

Type Constructor	Value Constructors
$\alpha*\beta$	●,●
int*int	1,2
<pre>int*float</pre>	1,2.0

DEMO: A couple of pairs

Defining new product types:

```
type new_type = existing_type1 * existing_type2
```

Two basic operations on pairs:

Deconstruction on pairs (hidden pattern matching):

let (x1,x2) = (v1,v2) in expression_using_x1_and_x2

 \hookrightarrow defines the identifiers $\mathtt{x1}$ and $\mathtt{x2}$ locally

General Cartesian product of types

Same principle

Can be generalized to *n*-tuples:

- type definition/constrcution: let my_type = type1 * type2 * ... * typen
- value construction: v1,v2,...,vn
- value deconstruction:

```
let (x1,...,xn) = (v1,...,vn) in expression
(* expression is depending on x1,...,xn *)
```

DEMO: Generalized Product types

Let's practice product type

Exercise: Getting familiar with tuples

- Define the type pair_of_int which implements pairs of integers
- Define the function swap which swaps the integers in a pair_of_int
- Implement a function my_fst which behaves as the predefined function fst on pairs_of_int

Exercise on Complex numbers

- Define the type complex which corresponds to complex numbers
- \blacktriangleright Define function <code>real_part</code> of type <code>complex</code> \rightarrow float which returns the real part of a complex number
- \blacktriangleright Define function <code>im_part</code> of type <code>complex</code> \rightarrow <code>float</code> which returns the imaginary part of a complex number
- ▶ Define function conjugation: complex \rightarrow complex Remainder: the conjugation of a + b.i is a b.i

Let's practice more Geometry and vectors

Exercise on vectors

- Define the type vect which corresponds to vectors in the plane
- ▶ Define the function sum : vect → vect → vect which performs the sum of two vectors
- What is the type of the function which implements the scalar product?
- ▶ Implement a function which performs the scalar product of two vectors Remainder: scalar product of two vectors \vec{u} , \vec{v} : $||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos(\vec{u}, \vec{v})$ with $\cos(\vec{u}, \vec{v}) = \frac{u_x \cdot v_x + u_y \cdot v_y}{||\vec{u}|| \cdot ||\vec{v}||}$
- A vector can represent the position of a point in the plane. The rotation of angle θ of a point of coordinates (x, y) around the origin is expressed by the formula:

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \cdot \begin{pmatrix} x\\ y \end{pmatrix}$$

Implement the function rotation: float \rightarrow vect \rightarrow vect such that rotation angle v makes the vector designated by v rotating of an angle angle

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Motivating union types

Mixing carrots and cabbage

... in the context of OCaml type system

Some concepts that we cannot model yet:

- How to build a type figure which can represent circles, triangles, quadrilaterals?
- How to build a type which allows to represent a full color palette ?

How to build a card game which can represent various games?

Back to the paint

_

Introducing Union types through an example

Type definition	Filtering
type paint =	<pre>let is_blue (p:paint):bool = match p with</pre>
Blue Yellow	$ $ Blue \rightarrow true
Red	Yellow \rightarrow false Red \rightarrow false

Remark The type paint contains three constant constructors

How can we add to the set of paints, some new paints that do not have a name, but only reference number?

Back to the paint

Introducing Union types through an example

Type definition	Filtering
type paint = Blue Yellow Red Number of int	<pre>let is_blue (p:paint):bool = match p with Blue → true Yellow → false Red → false Number i → false</pre>

Remark

- Type paint has 3 constant constructors and one non constant constructor.
- Number 14 represents the paint numbered 14 (in an imaginary catalogue)

Back to the paint

▶ ...

Introducing Union types through an example

Type definition	Filtering
type paint =	let is_blue (p:paint):bool =
Blue	match p with
Yellow	$ $ Blue \rightarrow true
Red	$Yellow \rightarrow false$
(* palette RGB *)	$ $ Red \rightarrow false
RGB of int * int * int	$ $ RGB (r,g,b) \rightarrow r = 0 && g = 0 && b = 255

Type paint has three constant constructors and two non-constant constructors

- RGB(255,0,0) corresponds to red
- RGB(255,255,0) corresponds to yellow

Union types (aka union type, tagged union, algebraic data types) The general form

Syntax of union types:

```
type new_type =
    Identifier_1 of type_1
    Identifier_2 of type_2
    ...
    Identifier_n of type_n
```

Note that:

- ▶ Identifier_i, *i* ∈ [1, *n*], is an explicit name called a constructor
- the definition "of type_i" is optional
- type_i, $i \in [1, n]$, can be any (existing) type
- Constructor name must be capitalized

Expression Declaration (of some type t):

```
let expression = Identifier v
```

(if Identifier of tt is a constructor of type t and ${\tt v}$ is a value of type tt) Remark

Union types are a generalization of enumerated types

An example: Generalization of int and float

Having two different sets of operations for ${\tt int}$ and ${\tt float}$ is sometimes annoying

```
Let's define Numbers = \mathbb{R} \cup \mathbb{N}
```

```
type numbers = INTEGER of int | REAL of float
```

(INTEGER, REAL sont des contructeurs de type)

Let's define additions on two numbers:

```
let add ((nb1,nb2):number*number):number= match (nb1,nb2) with
| (INTEGER(n1), INTEGER(n2)) → INTEGER(n1 + n2)
| (INTEGER(n), REAL(r)) → REAL((float_of_int n) +. r)
| (REAL(r) , INTEGER(n)) → REAL((float_of_int n) +. r)
| (REAL(r1), REAL(r2)) → REAL(r1 +. r2)
```

Remark Has some advantages and disadvantages

Another example: Geometry

Type definition	Filtering
<pre>type pt = float * float</pre>	<pre>let perimeter (f:figure):float =</pre>
<pre>type figure = Rectangle of pt * pt Circle of pt * float Triangle of pt * pt * pt</pre>	match f with Rectangle(p1,p2)→ Circle(_,r)→ Triangle(p1,p2,p3)→

let p1 = 1.0, 2.0 and p2 = 3.9, 2.7 in Rectangle (p1,p2)
let p1 = (1.3, 2.9) in Circle (p1,3.6)

Exercise

▶ Define the function distance: $pt \rightarrow pt \rightarrow float$

The area of any triangle of edge lengths a, b, c is computed using the Héron's formula:

$$A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)}$$
 with $s = \frac{1}{2} \cdot (a + b + c)$

Define the function area: figure \rightarrow float

Remark: distinguish constructors and functions

Constructors and functions take a value of some type and return another value of some other type.

A function:

- performs a computation
- cannot be used in pattern matching: the value of all functions is <fun>

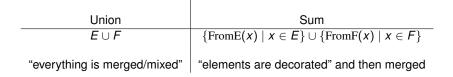
A type constructor.

- constructs a value
- can be used in a pattern-matching

Remark: Difference between union and sum

There is actually a slight difference between union and sum

Consider two sets *E* and *F*:



Second solution is less ambiguous and then preferred by computers

Card Game

Your choice

Playing cards:

Images from Wikipedia, Licence CC

Conclusion

Summary:

Richer types:

Туре	Why?
synonym types	informative type names
enumerated types	Finite set of constants
product types	Cartesian product
sum types	Set Union

 Using filtering and pattern matching to define more complex functions (for each of these types)

Exercise

Find a (personal) example of objects that can be naturally modelled as a union type. Propose/Invent a function using this type.