
INF231:
Functional Algorithmic and Programming

Lecture 2: Identifiers and functions

Academic Year 2023 - 2024



Identifiers
The notion of identifier

A fundamental concept of programming languages: associating a value to a
name (an identifier)

Remark “Close” to the notion of variable but has fundamental differences! �

Some rules when defining identifiers:
I Maximal length: 256 characters
I Must begin with a non-capital letter
I No blanks
I Case-sensitive
I Should have a meaningful name

Example (Identifiers (valid and unvalid))
I speed X
I Speed 7

I average speed 7

I average_speed X

I s X7

I 3m 7

I temporary3 X

1 / 11



Identifiers: Global definition

Syntax of a global definition

let identifier = expression

↪→ the value of expression is bound/linked to identifier

Type of the identifier is the type of the evaluated expression

Definition is global: it can be used
I in other definitions
I in the rest of the program

Simultaneous definitions:

let ident1 = expr1
and ident2 = expr2
. . .
and identn = exprn

Example
I let x = 1
I let y = 2

I let i = 1
I let i = i+1

DEMO: global definitions

2 / 11



Identifiers: Local definition

Example (Motivating example)
How to compute e=(2*3*4)*(2*3*4)+(2*3*4)+2 ?
↪→ prod= (2*3*4)
↪→ e= prod * prod + prod + 2
↪→ prod is local to e

Syntax of a local definition:

let identifier = expression1 in expression2

↪→ the value of expression1 is permanently bound/linked to identifier
(only) when evaluating expression2

Can be nested: Works with simultaneous definitions:

let id1=expr1 in
let id2=expr2 in

. . .
let idn = exprn ... in expr

let id1=expr1
and id2=expr2

. . .
and idn = exprn ... in expr

DEMO: local definitions

3 / 11



Functions
Introduction

So far, we have considered:
I expressions
I pre-defined operators

Defining our own functions: a piece of code with a specific job

Motivations:
I code readability
I its job can be more elaborated than the job of pre-defined functions
I being able to execute this code from several locations

Function

f

Inputs

args

Output

f (args)

Functions in functional languages
I No side-effect (contrarily to C)
I Close to mathematical functions
I First-class objects: they are values⇒ they have a type

4 / 11



Functions: functions with one argument
On an example

Example (Absolute value from a mathematical/abstract point of view)

Z → N
a 7→ if a < 0 then −a else a

Example (Absolute value in OCaml)

fun a→ if a < 0 then −a else a
or function a→ if a < 0 then −a else a
or fun/function (a:int)→ if a < 0 then −a else a

Analysis: fun

type:

keyword

a

int

formal param.

→

->

keyword

if a < 0 then −a else a

int

function’s body

Remark This function is anonymous, i.e., it does not have a name �

DEMO: anonymous functions

5 / 11



Functions
How to define them

Naming a function allows to reuse it

Example (Defining the function absolute value)

let abs = fun (a:int)→ if a < 0 then −a else a
or let abs a = if a < 0 then −a else a
or let abs (a:int) = if a < 0 then −a else a
or let abs (a:int):int = if a < 0 then −a else a

DEMO: defining functions

Exercise
Define the function square: int→ int

6 / 11



Functions
How to use them

As in mathematics, the result of applying f to x is f (x)

Example
I abs(2)
I abs(2 − 3)
I abs 2 (parenthesis can be omitted)

Application of a function

expr1 expr2

Typing: if expr1 has type t1->t2
and expr2 has type t1

}
then expr1 expr2 has type t2

7 / 11



Functions: Generalization to functions with several arguments

Example (Surface area of a rectangle)
I Needs 2 parameters: length and width (floats)
I definition:

let surface (x:float) (y:float):float = x *. y
let surface (length:float) (width:float):float = length *.
width

I usage: surface 2.3 1.2

Definition of a Function with n parameters
let fct_name (p1:t1) (p2:t2) ... (pn:tn) : t = expr

I p1, ..., pn are formal parameters
I Type of fct_name is t1 -> t2 -> ... -> tn -> t

Using a Function with n parameters
fct_name e1 e2 ... en
I e1,...,en are effective parameters
I Type of fct_name e1 e2 ... en is t

if ti is the type of ei and fct_name is of type t1 -> t2 -> ...
-> tn -> t

8 / 11



Functions: SPECIFICATION and IMPLEMENTATION

In this module (and in your future), it is very important to distinguish two
concepts/stages about defining functions (and programs in general)

Specification:
A description of what it is expected to do/ the job
I at an abstract level
I should be precise
I close to maths description in fun

programming
I illustrate the function with some interesting

examples

A contract:

FunctionInputs Output

Consists of:

I description
I signature
I examples

Implementation:
The description of how it is done
I the OCaml code

FunctionInputs Output

Defining a function: Specification AND THEN Implementation
Has many advantages (how big software is developed):
I re-usability
I thinking before acting

I you will save a lot of time
I you will have a better grade

9 / 11



Defining functions: some examples

Example (Defining the function absolute value)
I Specification:

I The function absolute value abs takes an integer n as a parameter and
returns n if this integer is positive or −n if this integer is negative. The
function absolute value always returns a positive integer.

I Profile: Z→ N
I Example: abs(1) = 1, abs(0) = 0, abs(−2) = 2

I Implementation: let abs (a:int) = if a < 0 then −a else a

Example (Defining the function square)
I Specification:

I The function square sq takes an integer n as a parameter and returns n ∗ n.
I Profile: Z→ N
I Example: sq(1) = 1, sq(0) = 0, sq(3) = 9, sq(−4) = 16

I Implementation: let sq (n:int) = n*n

10 / 11



Some exercises
A piece of algorithmic

Exercise
Define the function my_max returning the maximum of two integers

Exercise
Define functions:
I square: int→ int

I sum_square: int→ int→ int

s.t. sum_square computes the sum of the squares of two numbers

Problem: Olympic mean

Computing the mean of 4 grades (or values), by suppressing the highest and
lowest one

1. Propose a type for the function mean

2. Propose an algorithm, by supposing that you have two functions min4
and max4, which compute respectively the minimum and the maximum
of 4 integers

3. Define functions min4 et max4, using min and max

11 / 11


	Identifiers
	Functions

