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Motivation and basic concepts

Fairness: law and ethics

How machines learn to discriminate

Formalizing fairness in machine learning

Case study: loan granting

Conclusion. . . well, partial!
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When machines replace humans

The new era of machine learning:

I algorithms and machines take increasingly more decisions influencing society

These decisions:

I involve human (and all living) beings more or less directly

I enter the realms of law and ethics

Law, ethics, and machines:

I machines have no legal identity,no legal responsibility

I this creates many loopholes in present law terms (example of self-driving cars
involved in accidents!)
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Isaac Asimov’s three laws of robotics

I, Robot: In the 1950’s, Asimov prophesied the need for laws
to rule robots and machines

1. First Law: “A robot may not injure a human being or,
through inaction, allow a human being to come to
harm.”

2. Second Law: “A robot must obey the orders given it by
human beings except where such orders would conflict
with the First Law.”

3. Third Law: “A robot must protect its own existence as
long as such protection does not conflict with the First
or Second Law.”

⇒ Based on 3 desiderata, Asimov wrote many books on the
topics, where robots seemingly do not abide by the laws...

Not so far from present class!

I we will also meet 3 desiderata for fairness in AI “robots”

I these will fail to be satisfying as mutually incompatible (unless in trivial cases)
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From SciFi to maths: Jaynes’ probability as extended logic

Probability Theory: the Logic of Science: In 2003, Jaynes
theorizes plausible reasoning

1. Desideratum 1: “Plausibility is represented by
continuous real numbers.”

2. Desideratum 2: “Qualitative correspondence with
common sense.” (compatible with binary logic)

3. Desideratum 3: “Consistent reasoning.”
I Path independence: If an answer can be calculated many

ways, each should give the same answer.
I Non-ideological: The reasoner does not leave out

information.
I Equivalence: Equivalent states of knowledge are

represented by the same number.

⇒ Based on 3 desiderata, Jaynes mathematically proves that
probability theory and the maximum entropy principle are
the only consistent theory of plausible reasoning.

In this class, we will use probability theory to “theorize fair decision making”

I (again) we will also meet 3 desiderata for fairness in AI “robots”

I (but again) these will fail to be satisfying as mutually incompatible (unless in
trivial cases)
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What’s so complicated with fairness in AI?

Chicken and egg problem:

I a machine/algorithm is fully objective, follows a sequence of requests (Second
Law of Robots: it “obeys the orders given it by human beings”)
⇒ They serve society better than biased humans.

I yes, but. . . , sequence of requests entered by subjective human beings
⇒ Algorithms transfer the biases of human beings.

I and. . . , it gets worse: biased decisions in turn bias the future datasets used to
refine the algorithms
⇒ Algorithms reinforce the biases of human beings.

I and. . . , it gets even worse: humans interventions are limited:
I we trust the objectivity of algorithms (they obey, and cannot go wrong)
I algorithms now are black boxes: we do not know how they treat the data

Consequence: open door to unfair decisions, uncontrollable behavior, unseen biases.
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I we trust the objectivity of algorithms (they obey, and cannot go wrong)
I algorithms now are black boxes: we do not know how they treat the data

Consequence: open door to unfair decisions, uncontrollable behavior, unseen biases.
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Illustration: search engines “human-friendly” behavior

Search engines: AI-improved to help people easily find their search

I (level 0) remembers previous searches
⇒ creates focus on already known information
⇒ less priority on opposite opinions, other information

I (next level) infers preferences (tries to anticipate your search)
⇒ in a way, algorithms dictate our behavior
⇒ being often black-boxes, difficult to know what this really does
⇒ algorithm often based on “best effort” (represents majority): homogeneous
behavior enforced!

Ethical, law issues:

I polarization of information (reinforcement of majority choices)

I biases can be introduced in the machine, or by the machine

I inequity of information access in minority populations.
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Illustration: gender discrimination
Typical scenario: Automated recruitment, ad proposal, etc.,

1. Machine learnt to identify men from women (selective target of the job/ad) from
database

2. Human operator does not know how the machine proceeds
In reality, machine uses features: hair-length, lip color, presence of earrings, etc.

3. Following people ill-classified: do not receive ad, job proposal

Consequence: clear example of undesired/uncontrolled discrimination:
I unfairness to several minorities
I hard to anticipate (even with larger database, minorities won’t alter features!)
I hard to defend on basis of law
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Illustration: gender discrimination

Under SVM formulation: in best effort strategy, minority groups excluded from
optimization

hair length

lip color

discriminated minority

non-discriminated minority
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Illustration: gender discrimination
Under SVM formulation: possible counter-measure: force separating hyperplane
against discriminating directions?

discriminating direction
to "avoid"
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Main objectives and messages of the class

Main objectives:

1. connect machine learning concepts to law and ethics

2. identify desiderata of ethical, fair machine learning

3. mathematically formalize the notion of fairness

Take-home messages:

1. fairness in AI is a nascent field: still on shaky grounds!

2. recent mathematical formalization on basic proba/information theory grounds

3. we will exhibit three “laws of fairness AI” under the form of desiderata

4. Big problem: three desiderata mutually incompatible!
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Main objectives and messages of the class

. . . incomplete conclusion . . . : as future AI engineers, you will be the ambassadors of
a fair AI

13



About the material

This class: strongly inspired by works of Solon Barocas, Moritz Hardt, Arvind
Narayanan.

Recommended lectures/videos:

I NeurIPS 2017 – Tutorial (video): https://fairmlbook.org/tutorial1.html

I “Fairness and machine learning” online book: https://fairmlbook.org/

I related material (just google-scholar “fairness machine learning”)
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Outline

Fairness: law and ethics

15



The question of discriminating data and information

The problem: algorithms reinforce human prejudices

I algorithms written and maintained by people,

I data labelled and selected (even passively) by people.
(passive selection: minorities in groups not answering polls)

I snowballing effect if data appended by outputs of previous algorithms

Solution: actively account for biases
I in itself an ethical problem:

I admit existence of minorities
I treat minorities differently

I paradox of the use of discriminative information:
I exploiting private information helps avoid discrimination

⇒ Discriminative sensitive information needed!
I retrieve private information is unethical

(possibility of bad intentional usage)
I indirect sensitive information inference is also unethical. . .
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Disparate treatment and disparate impact

Two legal difficulties:

discriminating data ⇔ disparate treatment

discriminating algorithms ⇔ disparate impact

Disparate treatment:

I laws exist that protect subgroups against discrimination

I the very fact of using discriminating information is illegal

I even if it has no impact!

I exploiting proxies to target these classes intentionally is also illegal
(e.g., name, zip codes, places of residence to identify minorities)

Disparate impact:

I consists in using features not intentionally favoring a class

I this is legal provided that the process used to reach the outcome is justified

I question to be asked: is it avoidable?
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Disparate impact in law

The law in the US: typical lawsuit process

1. plaintiff of discrimination (say job recruitment automated process) needs to prove
20% disparity between minority/majority groups

2. defendant must prove the method is necessary (unavoidable) to reach sought
target (e.g., specificities of a job)

3. plaintiff must then provide less (< 20%) discriminative alternative.

Example: job application on construction site

1. plaintiff complaint: job questionnaire asked for “maximum load heaved by
applicant”, which favors men more than 20%

2. defendant claim: necessary question to assess employee ability to the job

3. plaintiff may retort: live tests with modern construction site equipment has same
effect, but is less discriminating.
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Fighting disparate treatment and impact
Fighting disparate treatment:

I impose procedural fairness (only exploit data about worthiness, directly linked to
objective)

I target equality of opportunity (all individuals, or items in groups, have equal
success rate, irrespective of discriminating subgroups)

Fighting disparate impact:

I minimize inequality of treatment across subgroups

I homogenize distribution of outcomes

Overall goal: organize society such that people of equal talents can achieve equal
outcomes

Difficulty:

I should one account for past injustice suffered by minorities? (i.e., payback for
past unequal outcomes to achieve equal “integrated outcomes”?)

I contradicts homogeneous outcomes!

I and to minimize disparate outcomes, one may need to know the subgroups, treat
individuals differently

I but this contradicts disparate treatment!. . .

Consequence: Tension between disparate treatment and disparate outcomes!
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Illustrating tension between disparate treatment and disparate outcomes

Job employment process:

1. plaintiff complaint: in job chances, procedure indirectly favors white people (e.g.,
university reputation, ease to reach job location, family constraint, etc.)
⇒ disparate outcome (no information on color is used)

2. HR change the rule to account for “typical black people difficulties”
⇒ induces disparate treatment! (voluntary usage of color people-targeting
features)

3. white people in turn complain: job chances have become unequal!
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How machines learn to discriminate
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How machines learn to discriminate

Skewed samples: a vicious cycle!

1. unfair machines bias the decision maker (the human)

2. future observations (made by the biased decision maker) will confirm the bias

3. this reduces opportunities to see instances contradicting the bias

Skewed samples: the example of crimes:

1. a machine says that black people are more likely to commit crimes, making
decision maker (the police) take action on blacks

2. the police arrest more black people and less white people, reinforcing the bias

3. the data feed the machine for further evaluation and decision-making, creating a
vicious cycle.
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How machines learn to discriminate

Tainted samples: i.e., bad labels

I can be due to prediction based on past human decisions (or machine decisions
made by humans)

I how to avoid this? ⇒ Change the decision making.

Tainted samples: the example of job recruitment

I labels affected to minority subgroups by humans: were people hired?

I change of decision making: how did they do in previous jobs?

I but still limited: exploits previous managers’ biases
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How machines learn to discriminate

Limited features: features less informative or less reliably collected on parts of the
population

I typical case: good predictions for majority, weak predictions for minority
(different additional problem to number of samples)

I consequence: uneven distribution of errors across population, even in equal
number of samples.

Limited features: data collection across wealthy vs. poor communities

I data collection medium: Internet access, access opportunity, time availability to
data collection

I quality of information: average education level to answer polls, absence of
answers when inappropriate
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How machines learn to discriminate

Sample size disparity: high samples implies lower error, higher confidence

I small groups have higher variance, higher error levels

I in best effort mechanisms, smaller groups ignored to favor majority score

Proxies: features naturally correlated with class membership (bias in features)

I unavoidable with rich data

Example: in unsupervised learning, do features isolate

I groups of good vs. bad workers?

I whites vs. blacks?

I likely a mixture of both (inducing bias)

I how to enforce orthogonality to unwanted features?
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How machines learn to discriminate

Three different problems to address:

1. discovering unobserved differences in performance due to skewed/tainted samples
−→ Difficult because the data are the “first class citizens”: no access to the
genuine data, the ground truth

2. even if data perfect, coping with observed differences in performance: sample size
disparity, limited features

3. understand causes of disparities: identify and eliminate proxies (correlated
features).
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Outline

Formalizing fairness in machine learning
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Formal Setup

Probabilistic setup: (e.g., advertisement display for Software Engineer job position)

I X: feature vector of an individual (e.g., anything useful about candidate)

I Y ∈ {0, 1}: target (e.g., bad/good candidate)

I A: sensitive attribute (e.g., gender)

I Ŷ = g(X,A) ∈ {0, 1}: (hard) predictor (e.g., show ad or not)

I R = r(X,A) ∈ [0, 1]: (soft) score function (e.g., probability of clicking on ad)

−→ e.g., Bayes’ optimal score for quadratic loss (MMSE):

RBayes = E[Y |X = x,A = a].
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The three desiderata

Law 1. Independence (also called demographic parity)

Law 2. Separation (also called predictive value parity)

Law 3. Sufficiency (decision function is enough, critical in-
formation unneeded).

Question: How would the “AI robot” apply the fairness rules?
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The three desiderata
Law 1. Independence: (also called demographic parity)

Ŷ ⊥ A

I equivalently:

P(Ŷ | A = a) = P(Ŷ | A = b)

−→ equal proportion of positive outcomes (Ŷ = 1) in
each population

I equal average output in each sensitive category

I Example: proportional share juries, strict parity in
companies (as many women as men)

I ε-variants:

P(Ŷ = 1 | A = a)

P(Ŷ = 1 | A = b)
≥ 1− ε.

or

|P(Ŷ = 1 | A = a)− P(Ŷ = 1 | A = b)| ≤ ε

e.g., the 20% discrimination rule!
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each population

I equal average output in each sensitive category

I Example: proportional share juries, strict parity in
companies (as many women as men)

I ε-variants:
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e.g., the 20% discrimination rule!

30



The three desiderata
Law 1. Independence: (also called demographic parity)

Ŷ ⊥ A

I equivalently:
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The three desiderata

How to achieve independence?:

I algorithm postprocessing

I data preprocessing (representation/feature learning)

I e.g., information theory approach

Z = φ(X,A), with max I(X;Z) and min I(A;Z)

then use Ŷ = g(Z,A) rather than Ŷ = g(X,A).

Problems:

I ignores possible correlations between Y and A

I Example: since more male SWE than female SWE, even with Z independent of
A, Y relates highly to A.

⇒ Perfect predictor Ŷ = Y unreachable.

I creates random assignments in one group to avoid discrimination
(if for all males, Y = 0 (no male candidate suitable), solution is to pick males

randomly (Ŷ = 1) to avoid discrimination!)

I promotes algorithm laziness!
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Problems:

I ignores possible correlations between Y and A

I Example: since more male SWE than female SWE, even with Z independent of
A, Y relates highly to A.

⇒ Perfect predictor Ŷ = Y unreachable.
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I creates random assignments in one group to avoid discrimination
(if for all males, Y = 0 (no male candidate suitable), solution is to pick males
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Problems:

I ignores possible correlations between Y and A

I Example: since more male SWE than female SWE, even with Z independent of
A, Y relates highly to A.

⇒ Perfect predictor Ŷ = Y unreachable.

I creates random assignments in one group to avoid discrimination
(if for all males, Y = 0 (no male candidate suitable), solution is to pick males
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The three desiderata

How to achieve independence?:

I algorithm postprocessing

I data preprocessing (representation/feature learning)

I e.g., information theory approach

Z = φ(X,A), with max I(X;Z) and min I(A;Z)
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I creates random assignments in one group to avoid discrimination
(if for all males, Y = 0 (no male candidate suitable), solution is to pick males
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The three desiderata

Law 2. Separation: (also called predictive value parity)

R ⊥ A | Y

(reminder: R = r(X,A) is the “soft score”)

I R and A are independent conditionally on Y

I equivalently:

P(R = r | Y = y, A = a) = P(R = r | Y = y, A = b)

−→ since Ŷ = {R > r0}, equal false positive/negative

rates (Ŷ 6= Y ) in each population

P(Ŷ = ŷ | Y = y, A = a) = P(Ŷ = ŷ | Y = y, A = b)

I in words: equal performance, error rates within each
group

I graphically:

A Y R

(i.e., Y “sits” between A and R.)
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The three desiderata

Key properties of separation:

I compatible with optimality: R = Y allowed.

I allows A and R to be correlated

I allows A and Y to be correlated

I this is fine because A is “confined” in the ground truth Y !

I penalizes laziness: reduces errors uniformly on all groups!

I if close to optimal unconditionally, still close to optimal under constraint, i.e.,

P(Ŷ = y | Y = y) ' 1⇒ P(Ŷ = y | Y = y,A = a) ' 1

follows from

P(Ŷ = y | Y = y) =
∑
a

P(Ŷ = y | Y = y,A = a) · P(A = a)

so, LHS' 1⇒ P(Ŷ = y | Y = y,A = a) ' 1 for each a (unless some
P(A = a)� 1).

I postprocessing (R→ Ŷ ): any thresholding allowed!
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P(Ŷ = y | Y = y) ' 1⇒ P(Ŷ = y | Y = y,A = a) ' 1

follows from
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P(Ŷ = y | Y = y,A = a) · P(A = a)
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The three desiderata

Postprocessing: ROC curve (receiver operator curve)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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The three desiderata

Postprocessing: ROC curve (receiver operator curve)

← threshold Ŷ = {R > r1}
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P (Ŷ = 1 | Y = 0, A = a) (false alarme rate)

P
(Ŷ
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The three desiderata

Postprocessing: ROC curve (receiver operator curve)

•

accessible region
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The three desiderata
Postprocessing: ROC curve (receiver operator curve)

I choose decision threshold r such that (recall R = r(X,A))

P(r(X,A = a) > r | Y = y,A = a) = P(r(X,A = b) > r | Y = y,A = b)

I ⇒ crossing point of two conditional decision rules in ROC curve.

I Careful! Requires score reparametrization or different thresholds R > ra | A = a.

Reparametrization: assume two intersecting ROC curves

fa(r) = (xa(r), ya(r)) = (FARa(r),CDRa(r)) for r = r(X,A = a)

fb(r) = (xb(r), yb(r)) = (FARb(r),CDRb(r)) for r = r(X,A = b)

(in particular, f·(0) = 0, f·(1) = 1)
I intersection defined as

fa(r1) = fb(r2) for some r1, r2.

I Unlikely that r1 = r2! Depends on parametrization.

I Reparametrization: When intersecting couple (r1, r2) found, scale parameters
r → r′ = h(r) so that fa → f ′a, fb → f ′b and

f ′a(r) = fa(h(r1)) = fa(r1) = fb(r2) = fb(hb(r)) = f ′b(r).
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The three desiderata

Alternatives to postprocessing:

I collect more data (to improve ROC curves ⇒ both curves will tend to merge)

I achieve constraint at training time: solve

min
g

E[`(r(X,A), Y )]

such that r(X,A) ⊥ A | Y

I generically intractable!

I doable in joint Gaussian case (vector (A, Y,R)) with quadratic loss: equivalent
to imposing

σRAσ
2
Y = σRY σY A.
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The three desiderata

Law 3. Sufficiency:
Y ⊥ A | R

I Y and A are independent conditionally on R

I equivalently

P(Y = y | R = r, A = a) = P(Y = y | R = r,A = b)

−→ if Ŷ = R ∈ {0, 1}, equal genuine positive/negative
rates in selected population

I in words: R is sufficient to establish Y (and A)

I or: for the purpose of predicting Y , no need to see A
when we have R
(R is sufficient to predict Y , no need to look at A)

I graphically:

A R Y

(i.e., Y “sits” between A and R.)
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The three desiderata

Properties of sufficiency:

I why is it desirable?

I example: for credit allocation decision, no need to look at gender, race when
making decision: the score is sufficient!
(⇒ Good for legal matters)

Careful!: but the score R = r(X,A) would likely depend indirectly on race,
gender!

I sufficiency implied by group-wise calibration:

P(Y = 1 | R = r, A = a) = r.

38



The three desiderata

Properties of sufficiency:

I why is it desirable?

I example: for credit allocation decision, no need to look at gender, race when
making decision: the score is sufficient!
(⇒ Good for legal matters)

Careful!: but the score R = r(X,A) would likely depend indirectly on race,
gender!

I sufficiency implied by group-wise calibration:

P(Y = 1 | R = r, A = a) = r.

38



The three desiderata

Properties of sufficiency:

I why is it desirable?

I example: for credit allocation decision, no need to look at gender, race when
making decision: the score is sufficient!

(⇒ Good for legal matters)

Careful!: but the score R = r(X,A) would likely depend indirectly on race,
gender!

I sufficiency implied by group-wise calibration:

P(Y = 1 | R = r, A = a) = r.

38



The three desiderata

Properties of sufficiency:

I why is it desirable?

I example: for credit allocation decision, no need to look at gender, race when
making decision: the score is sufficient!
(⇒ Good for legal matters)

Careful!: but the score R = r(X,A) would likely depend indirectly on race,
gender!

I sufficiency implied by group-wise calibration:

P(Y = 1 | R = r, A = a) = r.

38



The three desiderata

Properties of sufficiency:

I why is it desirable?

I example: for credit allocation decision, no need to look at gender, race when
making decision: the score is sufficient!
(⇒ Good for legal matters)

Careful!: but the score R = r(X,A) would likely depend indirectly on race,
gender!

I sufficiency implied by group-wise calibration:

P(Y = 1 | R = r, A = a) = r.

38



The three desiderata

Properties of sufficiency:

I why is it desirable?

I example: for credit allocation decision, no need to look at gender, race when
making decision: the score is sufficient!
(⇒ Good for legal matters)

Careful!: but the score R = r(X,A) would likely depend indirectly on race,
gender!

I sufficiency implied by group-wise calibration:

P(Y = 1 | R = r, A = a) = r.

38



The three desiderata
Group-wise calibration: Platt scaling to obtain

P(Y = 1 | R = r, A = a) = r.

I for uncalibrated R, fit R to a sigmoid

S =
1

1 + exp(αR+ β)

in such a way to minimize the cross-entropy loss

−E [Y logS + (1− Y ) log(1− S)]

i.e., minimize KL-divergence KL(Y ;S).
I this enforces

P(Y = 1 | S = s,A = a) ' s.

I set decision threshold

S >
1

2
⇒ Ŷ = 1

I since cross-entropy loss unknown, calibration performed on training dataset
{(yi, ri)}ni=1:

min
α,β
−

n∑
i=1

yi log si + (1− yi) log(1− si) where si =
1

1 + exp(αri + β)
.
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The three desiderata

MAJOR PROBLEM

Any two of the 3 desiderata are mutually exclusive! (except in trivial cases)

Consequences:

I in practice, trade-offs must be performed

I this explains (theoretically!) why lawsuits can be endless!

I which optimal balancing of desiderata for each given situation, ML problem?

I more philosophically: is fairness accessible to mathematics, and thus machines?
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The three desiderata

Independence vs. sufficiency:

Proposition
If Y 6⊥ A, then either independence holds or sufficiency, but not both.

Proof
If Y 6⊥ A (non trivial case) and Y ⊥ A | R (sufficiency), then R 6⊥ A (no
independence).

So, conversely, if R ⊥ A (independence), then Y 6⊥ A | R (not sufficiency) or Y ⊥ A
(trivial case).
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The three desiderata

Independence vs. separation:

Proposition
If Y 6⊥ A and Y 6⊥ R, then either independence holds or separation, but not both.

Proof
If R ⊥ A and R ⊥ A | Y , then A ⊥ Y or R ⊥ Y .

So, conversely, if A 6⊥ Y and R 6⊥ Y , then either R 6⊥ A (not independence) or
R 6⊥ A | Y (not separation).
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Separation vs. sufficiency:

Proposition
Assume all events in (A,R, Y ) have positive probability. Then, if A 6⊥ Y , either
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Proof
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Outline

Case study: loan granting
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Loan granting: the setup

Borrowed from:

https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Setup:

I 2 sensitive populations: blue and orange (variable A)

I loan decision: Ŷ = {R > r0} with
I R =“credit score” (evaluated likelihood to pay back) (based on income, situation, age,

etc: possibly correlated to color.)
I r0 =“loan threshold”
I Ŷ ∈ {0, 1} =“gets the loan or not”

I expected output Y =“will pay back”.

Output for the bank:

I successful loan: $300,

I unsuccessful loan: −$700,

I credit score in (0, 100).

45

https://research.google.com/bigpicture/attacking-discrimination-in-ml/


Loan granting: the setup

Borrowed from:

https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Setup:

I 2 sensitive populations: blue and orange (variable A)

I loan decision: Ŷ = {R > r0} with
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Loan granting: the setup

Populations and credit score:
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Loan granting: Max profit
No fairness case: max profit for bank (assuming bank knows statistics)
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Loan granting: Max profit

No fairness case: max profit for bank (assuming bank knows statistics)

Discussion:

I highly unfair according to all rules!

I disparate positive rates Ŷ | A (34% vs. 41%)
⇒ No demographic parity

I disparate true positives P(Ŷ = 1 | Y = 1, A = a) (60% vs. 78%)
⇒ No predictive value parity

“The most profitable, since there are no constraints”
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Loan granting: Group unaware
Group unaware case: max profit by considering all groups as one (unique threshold r0)
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Group unaware case: max profit by considering all groups as one (unique threshold r0)

Discussion:

I again, highly unfair according to all rules!

I disparate positive rates Ŷ | A (52% vs. 30%)
⇒ No demographic parity

I disparate true positives P(Ŷ = 1 | Y = 1, A = a) (81% vs. 60%)
⇒ No predictive value parity

“Both groups have the same threshold”
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Loan granting: Demographic parity
Demographic parity case: Independence Ŷ ⊥ A (law 1)
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Demographic parity case: Independence Ŷ ⊥ A (law 1)

Discussion:

I demographic fairness: equal outputs in each population (disregarding worth)

I equal positive rates Ŷ | A (37% vs. 37%)
⇒ Demographic parity enforced!

I disparate true positives P(Ŷ = 1 | Y = 1, A = a) (64% vs. 71%)
⇒ No predictive value parity

“The number of loans given to each group is the same”
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I disparate true positives P(Ŷ = 1 | Y = 1, A = a) (64% vs. 71%)
⇒ No predictive value parity

“The number of loans given to each group is the same”

52



Loan granting: Demographic parity

Demographic parity case: Independence Ŷ ⊥ A (law 1)
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Discussion:

I demographic fairness: equal outputs in each population (disregarding worth)

I equal positive rates Ŷ | A (37% vs. 37%)
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Loan granting: Equal opportunity
Equal opportunity case: Separation R ⊥ A | Y (law 2)

53



Loan granting: Equal opportunity

Equal opportunity case: Separation R ⊥ A | Y (law 2)

Discussion:

I equal worth: same opportunities in subpopulations

I disparate positive rates Ŷ | A (40% vs. 35%)
⇒ No demographic parity

I equal true positives P(Ŷ = 1 | Y = 1, A = a) (68% vs. 68%)
⇒ Predictive value parity enforced!

“Among people who would pay back a loan, blue and orange groups do equally well”
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⇒ No demographic parity
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I equal true positives P(Ŷ = 1 | Y = 1, A = a) (68% vs. 68%)
⇒ Predictive value parity enforced!

“Among people who would pay back a loan, blue and orange groups do equally well”

54



Loan granting: Equal opportunity

Equal opportunity case: Separation R ⊥ A | Y (law 2)

Discussion:

I equal worth: same opportunities in subpopulations

I disparate positive rates Ŷ | A (40% vs. 35%)
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Outline

Conclusion. . . well, partial!
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Conclusion: fairness in AI

Not a classical course: (you may have noticed!)

I mixing concepts of ethics, law, and mathematical formalism

I very young field, few conceptual and formal developments

I a lot of problems!: self-contradicting rules

I but also an unavoidable field in the future of AI!

For more information and developments:

I Fairness in ML book: https://fairmlbook.org/

I Video tutorial: https://fairmlbook.org/tutorial1.html

I Google “attacking discrimination in ML” highlight:
https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Final thoughts:

mathematicians used to be physicists and philosophers until each field got too complex
what about AI and ethics? should we (as AI experts) become philosophers again?
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https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Final thoughts:

mathematicians used to be physicists and philosophers until each field got too complex
what about AI and ethics? should we (as AI experts) become philosophers again?
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