Digital Communications Exercises

Romain Couillet
ST-Ericsson, Supélec, FRANCE romain.couillet@supelec.fr

Supélec

Pulse amplitude modulation

Exercise 1

Consider a real channel $Y=X+N$, with $N \sim \mathcal{N}\left(0, N_{0}\right), N_{0}=0.1$, and suppose that $\mathrm{E}\left[X^{2}\right] \leq 1$. If the input lies in an L-ary alphabet $A=\{ \pm 1 c, \pm 3 c, \ldots, \pm(L-1) c\}$, how big can be L so that the probability of error is about 10^{-6} using ML detection?

Pulse amplitude modulation

Exercise 1

Consider the probability of error $P(e)$ for PAM modulation

$$
P(e)=\frac{2(L-1)}{L} Q\left(\sqrt{\frac{6 \mathrm{E}\left[X^{2}\right]}{\left(L^{2}-1\right) N_{0}}}\right)
$$

and determine the largest possible $P(e)$ (using possibly the approximation of the Q function.

MAP detection

Exercise 2

A discrete communication channel with input x and output y has input alphabet $\{0,1\}$, output alphabet $\{a, b, c, d\}$ and transition probability $P(y \mid x)$ given by

$$
\begin{align*}
& P(a \mid 0)=0.3, \tag{1}\\
& P(a \mid 1)=0.1, \tag{2}\\
& P(b \mid 0)=0.1, \\
& P(b \mid 1)=0.5, \tag{4}\\
& P(c \mid 0)=0.5, \tag{5}\\
& P(c \mid 1)=0.1, \tag{6}\\
& P(d \mid 0)=0.1, \tag{7}\\
& P(d \mid 1)=0.3 . \tag{8}
\end{align*}
$$

The a priori probability of the input is $P(x=0)=0.6$ and $P(x=1)=0.4$. Compute the MAP detection rule and the resulting average error probability.

MAP detection

Exercise 2

The decision region for 0 is the set of outputs (subset of $\{a, b, c, d\}$), which satisfies

$$
P(0 \mid y)>P(1 \mid y)
$$

Using Bayes' rule, this is the set of y 's that satisfies

$$
P(y \mid 0) P(0)>P(y \mid 1) P(1) .
$$

Call D_{0} the detection region for 0 and D_{1} the detection region for 1 . The probability of error is then

$$
P(e)=P(e \mid 0) P(0)+P(e \mid 1) P(1)=P\left(y \in D_{1} \mid 0\right) P(0)+P\left(y \in D_{0} \mid 1\right) P(1) .
$$

Laplacian Noise

Exercise 3

Consider a real binary input Laplacian noise channel $y=x+n$, with input alphabet $\{-1,+A\}$ and noise pdf

$$
p(n)=\frac{b}{2} e^{-b|n|} .
$$

The prior input probability distribution is $P(A)=0.8$ and $P(-A)=0.2$. Find the MAP decision regions and compute the average decision error probability. Compare to the Gaussian case.

Laplacian Noise

Exercise 3

We proceed similarly as for Exercise 2. Now the error probability is continuous and therefore $P\left(y \in D_{-A} \mid+A\right)$ and $P\left(y \in D_{+A} \mid-A\right)$ are integral forms.
Solution: Two cases must be isolated, depending on whether $A<\log (2) / b$. If so, $\mathcal{D}_{A}=\mathbb{R}$, otherwise, $\mathcal{D}_{A}=(-\log (2) / b, \infty)$.

Constellations

Exercise 4

Consider the signal constellation defined by the points

$$
\begin{align*}
& s_{m}=\sqrt{E_{1}} \exp (i(m-1) / 2+\pi / 4), \text { for } m=1, \ldots, 4 \tag{9}\\
& s_{m}=\sqrt{E_{2}} \exp (i(m-5) / 2), \text { for } m=5, \ldots, 8 \tag{10}
\end{align*}
$$

(1) Find the average energy per symbol E_{s} (with equiprobabable entries) as a function of E_{1} and E_{2}.
(2) For fixed E_{s}, find the ratio $\rho=E_{2} / E_{1}$ that maximizes the minimum squared Euclidean distance of the constellation (assume $E_{2} \geq E_{1}$).
(3) For the optimal ratio ρ found, determine an upperbound to the symbol error probability as a function of E_{b} / N_{0}.

Constellations

Exercise 4

(1) E_{S} is defined by

$$
E_{s}=\frac{1}{M} \sum_{m=1}^{M}\left|s_{m}\right|^{2}
$$

(2) The distance $d_{\min }$ between two close points is given by

$$
d_{\min }=\left\|s_{1}-s_{5}\right\| .
$$

It suffices to write $d_{\text {min }}$ as a function of E_{1} alone, find E_{1} that reaches the minimum, and determine ρ.
(3) Use the fact that error regions for points further than the two points at $d_{\text {min }}$ are included in the error regions for the closer points. Hence

$$
P(e) \leq 2 Q\left(\sqrt{\frac{\log _{2}(M) d_{\min }^{2}}{2} \frac{E_{b}}{N_{0}}}\right)
$$

PSK modulation

Exercise 5

In a 4-QAM modulator, each symbol is labeled by the pair of bits $\left(b_{1} b_{2}\right)$ according to the following labeling rule:

$$
\begin{align*}
\mathbf{a}_{0}=\sqrt{E} e^{j \pi / 4} & \mapsto 00, \tag{11}\\
\mathbf{a}_{1}=\sqrt{E} e^{3 j \pi / 4} & \mapsto 01, \tag{12}\\
\mathbf{a}_{2}=\sqrt{E} e^{-3 j \pi / 4} & \mapsto 10, \tag{13}\\
\mathbf{a}_{3}=\sqrt{E} e^{-j \pi / 4} & \mapsto 11 . \tag{14}
\end{align*}
$$

The bits b_{1} and b_{2} are statistically independent with probability $P\left(b_{i}=0\right)=\varepsilon, P\left(b_{1}=1\right)=1-\varepsilon$, $\varepsilon<0.5$. The signal is modulated and transmitted over an AWGN channel with power spectral density N_{0}.
Determine the decision regions of the MAP detector (that minimizes the symbol error probability) and the decision regions of a detector that minimizes the bit error probability.

PSK modulation

Exercise 5

The MAP decision regions unfold as in previous exercises. As for the bit error probability, consider individually the first and second bit. The probability of bit error is the average.

PSK modulation

Exercise 6

Consider the input equiprobable sequence $a_{n} \in\{-1,+1\}$, that passes through a convolution channel h_{n} with $H(z)=1+\frac{1}{2} z^{-1}$. The signal is affected by white Gaussian noise, and is received as

$$
y_{0}=1.2, y_{1}=-0.3, y_{2}=-0.5, y_{3}=0.1, y_{4}=1.5
$$

Assuming all sequences of a_{0}, \ldots, a_{4} could be transmitted, what is the sequence detected by a symbol-by-symbol detector? What is the sequence detected by a Viterbi detector?

PSK modulation

Exercise 6

Symbol by symbol detection takes merely the sign function as a decision rule: $\hat{a}_{n}=\operatorname{sign}\left(y_{n}\right)$. Viterbi detection requires to design the state machine where the states are based on the four inputs $\left(a_{n}, a_{n-1}\right)$, but for the first stage where the states are the two inputs of a_{0}. The channel memory length here is $L=1$ and the correlator coefficients are $g_{0}=1, g_{1}=1 / 2$.

ML detection

Exercise 7

x_{1}, \ldots, x_{N} are independent samples of a zero mean Gaussian random variable, whose variance is known. Give the expression of the estimated variance provided by ML estimation.

ML detection

Exercise 7

It suffices to find

$$
\arg \max _{\sigma^{2}} P\left(x_{1}, \ldots, x_{N} \mid \sigma^{2}\right) .
$$

This is done by remembering that x_{1}, \ldots, x_{N} are independent, and therefore $P\left(x_{1}, \ldots, x_{N} \mid \sigma^{2}\right)=\prod_{i} P\left(x_{i} \mid \sigma^{2}\right)$. We then differentiate this expression, equate to zero and determine the maximizing estimate $\hat{\sigma^{2}}$ of σ^{2}.

Non-uniform distribution

Exercise 8

Consider a random variable $X \in\{-3 \alpha,-\alpha, \alpha, 3 \alpha\}$ with a priori probabilities $P(\pm \alpha)=0.4$, $P(\pm 3 \alpha)=0.1$. The parameter α is set so that the mean signal energy is 1 . Given an observation of $Y=X+N, N$ being zero mean real Gaussian with variance σ^{2}, independent on X, what are the MAP decision regions? If $\sigma^{2}=0.25$ and $Y=2.1$, what is the decision? What is the overall probability of error?

Non-uniform distribution

Exercise 8

Computing $\sum_{i=1}^{4} X_{i}^{2}=1$, we obtain $\alpha \simeq 0.62$. The decision regions are then given by

$$
\begin{aligned}
\mathcal{D}_{-3 \alpha} & =\left(-\infty, \frac{\sigma^{2}}{2 \alpha} \frac{\log (0.1)}{\log (0.4}-2 \alpha\right] \\
\mathcal{D}_{-\alpha} & =\left[\frac{\sigma^{2}}{2 \alpha} \frac{\log (0.1)}{\log (0.4}-2 \alpha, 0\right]
\end{aligned}
$$

the other regions being symmetric.

