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Introduction and Reminders Course introduction

Notion of information theory

C. Shannon, “A mathematical theory of communications,” Bell System Technical Journal, vol. 27,
no. 7, pp. 379-423, 1948.

information theory deals with
a mathematical description of information
lossless information compression, e.g. ZIP files
lossy information compression, e.g. JPEG, MPEG etc.
transmitting information over lossy channels, i.e.

how to decode a signal corrupted with noise
how to optimally encode a signal bound to be corrupted by noise

in one fundamental paper in 1948, Shannon provided
optimal information source encoding
optimal transmission rate over a lossy medium

This paper marked the birth of the field of Information Theory.
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Introduction and Reminders Course introduction

Information theory: from theory to practice

Shannon’s results
Shannon does tell us how much information can be reliably transmitted over a medium, but does not
tell us how to achieve such a rate!
Shannon assumed digital transmissions over the medium, which may not have any physical meaning.

in this course, we shall
derive practical ways to transmit information over classical mediums at a given rate, e.g. copper
wires, open air, fiber optics, etc.

information mapping onto sequences of bits
mapping of bits on symbol constellations
transmitting symbols on continuous waveforms

derive methods to decode a signal embedded in noise
filter the continuous waveforms (matched filtering)
infer transmitted symbols: signal decoding
map inferred symbols back onto bits

we will only briefly mention how to encode a signal source so to protect it from noise

R. Couillet (Supélec) Digital Communications 23/01/2010 6 / 82



Introduction and Reminders Course introduction

Information theory: from theory to practice

Shannon’s results
Shannon does tell us how much information can be reliably transmitted over a medium, but does not
tell us how to achieve such a rate!
Shannon assumed digital transmissions over the medium, which may not have any physical meaning.

in this course, we shall
derive practical ways to transmit information over classical mediums at a given rate, e.g. copper
wires, open air, fiber optics, etc.

information mapping onto sequences of bits
mapping of bits on symbol constellations
transmitting symbols on continuous waveforms

derive methods to decode a signal embedded in noise
filter the continuous waveforms (matched filtering)
infer transmitted symbols: signal decoding
map inferred symbols back onto bits

we will only briefly mention how to encode a signal source so to protect it from noise
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Introduction and Reminders Autocorrelation and power spectrum density

Reminders on finite-energy signals

A signal x(t) is said to be of finite energy if

Ex
∆
=

∫
|x(t)|2dt <∞

We denote φx its autocorrelation function as

φx (τ)
∆
=

∫
x(t)x(t − τ)∗dt

We denote Sx (f ) the energy spectral density at frequency f ,

Sx (f )
∆
=F [φx ](f ) =

∫
φx (t)e−2πift dt

with F the Fourier transform operator. Note that

Sx (f ) = |X(f )|2

where X is the Fourier transform of x ,

X(f )
∆
=F [x ](f ) =

∫
x(t)e−2πift dt
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Introduction and Reminders Autocorrelation and power spectrum density

Reminders on finite-power signals

A signal x(t) is said to be of finite power if

Px
∆
= lim

T→∞

1
T

∫ T/2

−T/2
|x(t)|2dt <∞

We denote φx its autocorrelation function as

φx (τ)
∆
= lim

T→∞

1
T

∫ T/2

−T/2
x(t)x(t − τ)∗dt

We denote Sx (f ) the power spectral density at frequency f ,

Sx (f )
∆
= lim

T→∞

1
T

∫ T/2

−T/2
φx (t)e−2πift dt

From Parseval’s identity, for both finite-energy/power signals, we have

φx (0) =

∫
Sx (f )df
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Introduction and Reminders Autocorrelation and power spectrum density

Correlation

We will often deal in this course with Linear Time Invariant (LTI) filters h correlating input
signals x as,

y(τ) = h(τ) ∗ x(τ)
∆
=

∫
h(t)x(t − τ)dt

From the Fourier transform, we have

Y (f ) = H(f )X(f )

hence,
|Y (f )|2 = |H(f )|2|X(f )|2

taking the inverse Fourier transform, this gives

φf (τ) = φh(τ) ∗ φx (τ)
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Introduction and Reminders Random Processes

Case of random signals

In case of random processes, for a realization x(t ;ω) of a continuous process, ω ∈ Ω the
universe attached to the random process, φx (τ) is defined by
In the mean sense, we define φx as

φx (τ)
∆
=Eω [x(t ;ω)x∗(t − τ ;ω)] =

∫
x(t ;ω)x∗(t − τ ;ω)dP(ω)

This definition only makes sense when φx is independent of t . Note that, if x is an ergodic
process, φx (τ) =

∫
x(t ;ω)x∗(t − τ ;ω)dt for any ω ∈ Ω.

We also define the Power Spectral Density as

Sx (f )
∆
=F [φx ](f ) = E

 lim
T→∞

1
T

∣∣∣∣∣
∫ T/2

−T/2
x(t ;ω)e−2πift dt

∣∣∣∣∣
2


with X(f )
∆
=F [x ](f ).

We call Wide Sense Stationary (WSS) such processes for which φx (τ) does not depend on
the time position t .
In the case of WSS signals, we define the energy/power spectral power density

Sx (f )
∆
=F [φx ](f ) =

∫
φx (τ)e−2πifτdτ
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Introduction and Reminders Baseband complex equivalent
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Introduction and Reminders Baseband complex equivalent

Finite size bandwidth

we are interested into transmitting signals in finite bandwidths
these bandwidths correspond to frequencies that the medium can carry, e.g.

microwaves for medium-range mobile phone communications
centimeter wavelengths for large range radio transmissions
acoustic frequencies (300-3000 Hz) for human voice communications

transmitted signals can then be modelled under the form

s(t) = a(t) cos(2πfc t + θ(t))

where fc is the central bandwidth frequency and where most energy of a(t) is supposed to be
concentrated around frequency 0.
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Introduction and Reminders Baseband complex equivalent

Baseband complex equivalent

instead of the real transmitted signal

s(t) = a(t) cos(2πfc t + θ(t))

it is convenient to represent it as

s(t) = xI(t) cos(2πfc t)− xQ(t) cos(2πfc t)

<
[
x(t)e2πifc t

]
with

x(t) = xI(t)− i · xQ(t)

and

xI(t) = a(t) cos(θ(t))

xQ(t) = a(t) sin(θ(t))

This is merely another representation. It is equivalent to work with the pair (a(t), θ(t)) or the pair
(xI(t), xQ(t))

it is called baseband complex representation because xI(t) and xQ(t) are signals with
frequency centered at f = 0.
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Introduction and Reminders Baseband complex equivalent

Properties of baseband complex equivalent

Denoting S(f ) = F [s](f ) and X(f ) = F [x ](f ),

S(f ) =
1
2

(X(f − fc) + X∗(−f − fc))

if s(t) is real, then
S(f ) = S∗(−f )

for LTI filters h(t) with central frequency fc , denoting

C(f − fc)
∆
=H(f )1f>0(f )

C∗(−f − fc)
∆
=H∗(−f )1f<0(f )

we have
H(f ) = C(f − fc) + C∗(−f − fc)

h(t) = 2<[c(t)e2πifc t ]

for y(t) = h(t) ∗ s(t), we finally have

Y (f ) =
1
2

(X(f − fc)C(f − fc) + X∗(−f − fc)C∗(−f − fc))

for a deterministic or WSS process s(t), we also have

Sx (f ) =
1
4

(Ss(f − fc) + Ss(−f − fc))

with Ss(f ) = F [φs](f ) and Sx (f ) = F [φx ](f ).
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Introduction and Reminders Signal sampling

Shannon’s sampling theorem

From now on, we consider complex baseband equivalent signals x(t) of some passband
signal s(t).

Shannon’s sampling theorem states that

Theorem

If X(f ) has support [−W/2,W/2], then x(t) is entirely determined by the samples

xi
∆
=x(i/W )

and can be reconstructed from

x(t) =
∞∑

i=−∞
xi sinc(Wt − i)
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Introduction and Reminders Signal sampling

Proof of sampling theorem

sampling in the time domain engenders spectrum duplicates in the frequency domain. The
spectrum is given by

F [x(t) ·
∑

i

δ(t − i/W )] = X(f ) ∗W
∑

i

δ(f − iW ) = W
∑

i

X(f − iW )

if X(f ) is wider than W , this engenders overlapping spectra.

if X(f ) has support W , then

X(f ) =
1
W

1−W/2≤f≤W/2(f ) ·W
∑

i

X(f − iW )

and we have

x(t) = F−1

[
1−W/2≤f≤W/2(f ) · F

[
x(t) ·

∑
i

δ(t − i/W )

]]
= sinc(W (t − i/W ))x(t) ·

∑
i

δ(t − i/W )
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Introduction and Reminders Signal sampling

Relation with the discrete Fourier transform

it will often be convenient to work on the discrete samples xi themselves to derive spectrum
content properties. For this, we introduce the discrete Fourier transform defined for the
normalized frequency −1/2 ≤ f0 ≤ 1/2, as

Xd (f0)
∆
=
∑

i

xi e−2πjf0 i

this can be shown to be equal to

Xd (f0) = W
∑

i

X(f0W + iW ) = W
∑

i

X(f + iW )

with f = f0W .

discrete Fourier transform folds the spectrum of X(f ) every W . It is therefore equivalent to
work with Fourier transforms or discrete Fourier transforms.
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Introduction to Information Theory Communication chain
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Introduction to Information Theory Communication chain

Signal source and channel

Information Source Coding Channel Coding Constellation
Mapping / RF

LTI channel h(t)

+

RF / Constellation
DemappingChannel Decoding

n(t)

Source Decodingdecoded information

bits bits

y(t)

x(t)

Transmitter

Receiver
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Introduction to Information Theory Communication chain

Introduction to communication theory

The classical transmission chain is composed of
An information source, which is the abstract content we wish to transmit (e.g. an idea, a video/audio
content, a definite data)
A source (en)coder, which aims at compressing information so to transmit it fast. Source encoders
are of two types,

lossless encoders, that encode the information without loss, e.g. ZIP encoders. Those are required for data
which require high fidelity at decoding, e.g. file storage on a hard drive.
lossy encoders, that accept data/quality loss to enforce compression above the lossless limit, e.g. JPEG
encoders. Those are accepted when data content can be altered, e.g. JPEG/MPEG compression do not impact
user experience much.

A channel encoder, which protects the bit stream against channel errors. This is performed by using
redundancy codes, the most elementary of which being the repetition code, e.g.

0010110 7→ 000.000.111.000.111.111.000

for a rate 1/3 code. For well designed codes, a certain number of errors can be detected and a
certain number of errors can be corrected, e.g. repetition codes can detect up to 2 consecutive
decoding errors, and correct up to 1 decoding error.
A constellation mapper, which maps encoded bits onto symbols, e.g.

BPSK modulation: 100110 7→ 1,−1,−1, 1, 1, 0
QPSK modulation: 10, 01, 00 7→ 1− i,−1 + i,−1− i

A Radio Front-end (RF) interface, that turn the symbols a1, a2, . . . into modulated waveforms
(through DAC)

x(t) =
∑

i

aiφ(t − iT )

these waveforms are sent as electromagnetic wave (or other) onto the medium.

R. Couillet (Supélec) Digital Communications 23/01/2010 24 / 82



Introduction to Information Theory Communication chain

Introduction to communication theory (2)

The transmitted waveform x(t) is
convolved by an LTI channel h(t)
corrupted by additive noise n(t)
received on the receiver side as

y(t) = h(t) ∗ x(t) + n(t)

The classical reception chain is composed of
An RF interface/Constellation demapper, that turns the analog waveforms y(t) back into a digital
form. We shall see in this course that the received y(t) can be filtered to obtain a digital sufficient
statistic for the symbol decision. We then infer the transmitted symbol from this statistics,

either by taking each symbol at a time and perform symbol-by-symbol (hard) decision
either by keeping score of the likelihood of every possible transmitted symbol. This is called soft decision.

A channel decoder, that takes as an input the (hard/soft) decision symbols and decide on the
sequence of symbols that must have been sent, e.g. if 000.111.000.010.111 is received from a
repetition code of rate 1/3, the channel decoder will decide that the transmitted symbol was
000.111.000.000.111, and therefore will decide that the sequence 01001 was transmitted.
A source decoder, that turns the bit content back into physically meaningful data, e.g. the output
JPEG image, data to be stored, etc.

R. Couillet (Supélec) Digital Communications 23/01/2010 25 / 82



Introduction to Information Theory Spectral efficiency and Shannon Theorem

Outline

1 Introduction and Reminders
Course introduction
Autocorrelation and power spectrum density
Random Processes
Baseband complex equivalent
Signal sampling

2 Introduction to Information Theory
Communication chain
Spectral efficiency and Shannon Theorem

3 Signal detection in AWGN
Bayesian hypothesis testing and ML detection
Matched-filtering and detection of binary signals
Coherent detection of M-ary signals

4 Digital modulation
M-PAM modulation
M-QAM modulation
M-PSK modulation
A word on non-coherent detection

5 Sequence detection in AWGN
Symbol-by-symbol detector
Nyquist condition
ML detection and the Viterbi algorithm
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Introduction to Information Theory Spectral efficiency and Shannon Theorem

Shannon’s theorems

The first theorem of Shannon deals with source encoding. Shannon shows that a source
a1, . . . , aN of N symbols with respective probability (for non-random source, probability is
considered as frequency) of appearance P1, . . . ,PN (

∑
i Pi = 1) can be represented in

−
∑

i

Pi log2(Pi )

bits par channel use.
this can be understood as follows: if ai has a strong probability of appearance, it must be encoded
into as little bits as possible, so inversely proportional to Pi .
since the joint probability for an independent source is the product of the probabilities, the number of
bits to transmit must be additive for probability products, hence the log function.
in the mean, we then have the desired result.
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Introduction to Information Theory Spectral efficiency and Shannon Theorem

Shannon’s theorems (2)

The second theorem of Shannon is more important to the present course. This one deals
with channel coding and states

Theorem

Consider a channel with additive complex white Gaussian noise process (AWGN) n(t), i.e. n(t) is
a Gaussian process with φn(τ) = N0δ(τ). Note that, for this process, Sn(f ) = F [φn](f ) = N0 is
constant over f . Then the maximum rate R (i.e. number of bits per second) for which there exists a
channel code which ensures as low decoding error as desired satisfies

R = W log2

(
1 +

REb

N0W

)
with

W the channel bandwidth

Eb the average energy used for a single transmitted bit

N0 is the noise spectral density

This theorem means that there exists a maximum rate for which
under this rate, there exists a code that can be decoded with almost no error
above this rate, no reliable communication is possible

this provides bounds on the achievable transmission rates for practical systems
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Introduction to Information Theory Spectral efficiency and Shannon Theorem

Shannon’s theorems (3)

Shannon’s theorem is often written in the form

C = log2(1 + SNR)

where
C = R/W is called the channel capacity, in bits/s/Hz,
SNR is called the signal-to-noise ratio, which is the total energy EbR consumed by the transmitter
every second over the noise spectral density N0 cumulated on the transmission bandwidth W .

However, Shannon

does not tell us how to achieve such rates

only considers communications of bits, and not of bits though waveforms.

The purpose of this course is to give an introduction of how we fill the gap.
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Signal detection in AWGN Bayesian hypothesis testing and ML detection
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Signal detection in AWGN Bayesian hypothesis testing and ML detection

Hypothesis testing

consider a set of events X = {1, . . . ,M}
take Y to be the set of observations of the events in X , characterized by the joint probability
distribution on X × Y
we call Hm the hypothesis that m is the actual event
the situation is as follows,

a transmitter (e.g. human voice, wireless phone) sends one of M messages, indexed by X . Say the
transmitter sends message x .
the message is received by the receiver through a communication channel as an output y ∈ Y ,
characterized by the joint probability distribution on X × Y

P(x, y)

the receiver has to decide on the best hypothesis among H1, . . . ,HM by minimizing the expectation
of a cost function r(x, y) on X × Y
this is, the receiver must uniquely assign to every y an index x̂ ∈ X such that the expected risk
function E[r(x, y)] is minimized.
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Minimizing the average error probability

it is classical to minimize the expectation of making a wrong decision, i.e. minimizing the
probability of x̂ 6= x .

we compute the error probability as

P(e) = P(X̂ 6= X)

this extends into

P(e) = 1− P(X̂ = X)

= 1−
M∑

x=1

P(X = x)P(X̂ = x |X = x)

= 1−
M∑

x=1

∫
Dx

p(y |x)p(x)dy

with Dx the subset of Y on which the decision x̂ is taken.

in order to minimize P(e), one must then find the decision regions Dx associated to every x .
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Decision regions and MAP/ML detection

reminder: we wish to minimize

P(e) = 1−
M∑

x=1

∫
Dx

p(y |x)p(x)dy

so we wish to maximize
M∑

x=1

∫
Dx

p(y |x)p(x)dy

if p(y |x)p(x) = maxx′ p(y |x ′)p(x ′), then Dx must contain this y . Then the decision regions
are then given by

Dx =

{
y ∈ Y : p(y |x)p(x) = max

i
p(y |i)p(i)

}
the optimal hypothesis decision is called Maximum a Posteriori (MAP) and reads

x̂ = arg max
x∈X

p(y |x)p(x) = arg max
x∈X

p(x |y)

it will often turn out that p(x) is constant over X (uniform probability distribution of the
transmitted symbols). In this case, the rule becomes the Maximum Likelihood (ML) estimate,
given by

x̂ = arg max
x∈X

p(y |x)
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Example: binary symmetric channel

assume the following binary symmetric channel (BSC) with
X = {0, 1}
Y = {0, 1}

and transition probabilities,

P(0|0) = 1− p

P(1|0) = p

P(0|1) = p

P(1|1) = 1− p

where p < 1/2.

under uniform probabilities, the optimal decision rule is

x̂ = y
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Example: Gaussian noise

we now consider a transmission with Gaussian noise
X = {0, 1}
Y = R

and transition probabilities,

P(y |0) =
1

√
2πσ2

e−
(y−µ0)2

2σ2

P(y |1) =
1

√
2πσ2

e−
(y−µ1)2

2σ2

with µ0 < µ1.

under uniform probabilities on X , the optimal decision rule is to check that, for x = 0,

p(y |0) ≥ p(y |1)

which leads to
y <

µ0 + µ1

2
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Upper bound on detection errors

it is often convenient to have detection bounds on the MAP/ML detectors to assess the quality
of the detectors as a function of the channel parameters, e.g. as a function of the SNR.

for this, we consider the pairwise error probability (PEP) of inferring x ′ while x was
transmitted, as

P(x → x ′)

which is the probability of the set {x → x ′}∆
={y ∈ Y|p(y |x)p(x) < p(y |x ′)p(x ′)}.

we then have the upper bound,

P(x̂ 6= x) = P(∪x′ 6=x{x → x ′}) ≤
∑
x′ 6=x

P(x → x ′)

averaging over X , this leads to

P(e) ≤
M∑

x=1

∑
x′ 6=x

p(x)P(x → x ′)

which becomes

P(e) ≤
1
M

M∑
x=1

∑
x′ 6=x

P(x → x ′)

in case of uniform prior distribution on X .
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Lower bound on detection errors

we can alternatively say that

P(x̂ 6= x) ≥ max
x′ 6=x

P(x → x ′)

averaging over X , this leads to

P(e) ≥
M∑

x=1

p(x) max
x′ 6=x

P(x → x ′)

under uniform probability again, we have the ML lower bound,

P(e) ≥
1
M

M∑
x=1

max
x′ 6=x

P(x → x ′)
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Transmission model

Transmission model
suppose that we wish to transmit one of M symbols through M different complex waveforms
x1(t), . . . , xM (t).
assume the transmitted sequence suffers from an additive white Gaussian noise (AWGN) n(t)
assume the convolution channel only induces a phase rotation, e.g. case of wired transmissions,
line-of-sight wireless transmissions.

The waveform arising at the receiver, for the choice of symbol m at the transmitter, reads

r(t) = xm(t)e2πiθ + n(t)

We shall consider coherent detection, i.e. all system parameters have been accurately
estimated by the receiver (e.g. this can be performed using training sequences). As such,
since the complex noise distribution is invariant by rotation, we can assume θ = 0 without
generality restriction.

r(t) = xm(t) + n(t)
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Sufficient statistics

consider that xm(t) is given by
xm(t) = amφ(t)

for a1, . . . , aM complex symbols of a finite alphabet and φ(t) a finite-time finite-energy signal,
with

∫
|φ(t)|2dt = E .

we want here for the detector to infer on m from the received waveform

r(t) = xm(t) + n(t)

with n(t) white Gaussian, with φn(0) = N0.
we then wish to fall back on a Bayesian hypothesis testing. However the output r(t) lies into a
function space, which is not as convenient as a scalar space.
in order to turn the problem into an hypothesis test, consider the any orthonormal basis
{ξi (t)}i=1,2,... of the space of finite-time finite-energy signals (with inner product
< x(t)|y(t) >=

∫
x∗(t)y(t)dt), such that

ξ1(t) =
1
√
E
φ(t)

from orthogonality, we have that r(t) can be represented in this basis, as a vector r, such that

r =


am
√
E + ν1
ν2
ν3
...


where νi =

∫
ξ∗i (t)n(t)dt
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Sufficient statistics (2)

we can then now work with r1 alone!

since n(t) is Gaussian, by the orthonormal character of the basis {ξi (t)}, ν1, ν2, . . . are all
Gaussian (by linearity of the inner product) each with zero mean and variance N0.

we then have
p(r1|m) = p(y(t)|m)

in which case r1 is called a sufficient statistics for m, i.e. we do not loose any information on
m by filtering r(t) into the scalar r1.

generally speaking, a sufficient statistics will be a function f (r(t)) of the input r(t) such that
the conditional probability on m can be written in the form

p(f (r(t))|m) = p(r(t)|m)g(r(t))

which does not alter the MAP/ML decisions.

it is therefore equivalent to work here with the scalar model

y = am
√
E + ν

where we denoted ν∆
=ν1 for readability.
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Hypothesis test

we now need to study the hypothesis test with hypotheses H1, . . . ,HM , defined as

Hm = “am was transmitted′′

under the transmission model
y = am

√
E + ν

with ν ∼ CN (0,N0), which we know how to deal with.

assume the simpler case M = 2, and a1 = +1, a2 = −1.

the decision rule for a1 is associated with the inequality,

p(1)
1
πN0

e
− 1

N0
|y−
√
E|2 ≥ p(2)

1
πN0

e
− 1

N0
|y+
√
E|2

which, after taking the log, is equivalent to

<(y) ≥
N0

4
√
E

log
p(2)

p(1)

in case p(1) = p(2) = 1/2, we then decide a1 in the case

<(y) ≥ 0
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Error analysis

the error analysis is easy in the binary case. We have indeed

P(e) = p(1)p(1→ 2) + p(2)p(2→ 1)

where

p(1→ 2) = P(
√
E + <(ν) < τ)

p(2→ 1) = P(−
√
E + <(ν) > τ)

with τ =
N0

4
√
E

log p(2)
p(1)

.

because of the Gaussian distribution for <(ν) (N (0,N0/2)), this is

p(1→ 2) =

∫ τ−
√
ε

−∞

1√
πN0

e
−t2
N0 dt =

∫ ∞
√
ε−τ

1√
πN0

e
−t2
N0 dt = Q

(
1√

N0/2

[√
E − τ

])
with Q(x) the Gaussian-queue function

Q(x)
∆
=

∫ ∞
x

1
√

2π
e−

t2
2 dt

identically,

p(2→ 1) =

∫ ∞
τ+
√
ε

1√
πN0

e
−t2
N0 dt = Q

(
1√

N0/2

[√
E + τ

])
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Error analysis (2)

if p(1) = p(2), this is finally

P(e) = Q

(√
2E
N0

)
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Figure: Probability of decoding error as a function of Eb/N0
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Matched filter

to obtain the filtered sample y from the source r(t), we performed the filtering operation

y =

∫
ξ1(t)∗r(t)dt

where we had chosen ξ1(t)∆
=φ(t)/

√
E . This filter is called a matched-filter, in the sense that it

is matched to the modulation waveform φ(t).
this can be written in the form of an LTI filter h(t) at time instant T , as

y =

∫ T

0

φ∗(t)
√
E

r(t)dt (1)

=

∫ T

0
h(T − t)r(t)dt (2)

hence the matched-filter h(t) = φ∗(T − t)/
√
E

for general purpose h filter, defining the signal-to-noise ratio (SNR) as

SNR =
|
∫ T

0 h(T − t)x(t)dt |2

E|
∫ T

0 h(T − t)n(t)dt |2

it can be shown that the SNR maximizing filter h(t) is the matched-filter. In which case,

SNR =
E
N0

(this is a direct application of the Cauchy-Schwartz inequality)
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System model

we now treat the general model, already introduced,

r(t) = xm(t) + n(t)

for the M functions (x1(t), . . . , xM (t)).

call N the dimension of the space Span(x1(t), . . . , xM (t)) in the space of finite-time (T )
finite-energy functions.

in the same way as previously, consider {ξi (t)}i≥1 an orthonormal basis for the inner product
< x(t), y(t) >=

∫
x∗(t)y(t)dt , such that ξ1(t), . . . , ξN (t) is the orthonormal basis of

Span(x1(t), . . . , xM (t)).

denote

y1 =

∫
ξ∗1 (t)xm(t)dt +

∫
ξ∗1 (t)n(t)dt ∆

=xm,1 + ν1

...

yN =

∫
ξ∗N (t)xm(t)dt +

∫
ξ∗N (t)n(t)dt ∆

=xm,N + νN

yN+1 =

∫
ξ∗N+1(t)xm(t)dt +

∫
ξ∗N+1(t)n(t)dt ∆

=νN+1

...
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M-ary detection

under white Gaussian assumption of the noise, r1, . . . , rN is a sufficient statistics for m.
we can then work from now on with the vectorial model

y = xm + ν

with y = (y1, . . . , yN )T and ν = (ν1, . . . , νN )T.
the vector ν is a (N)-multivariate complex white Gaussian process with power N0,

p(ν) =
1

(πN0)N
e
− 1

N0
νHν

in this case, the MAP decision m̂ is given by

m̂ = arg max
1≤m≤M

p(m)p(y|m)

= arg max
1≤m≤M

p(m)
1

(πN0)N
e
− 1

N0
‖y−xm‖2

taking the log, this is

m̂ = arg max
1≤m≤M

log p(m)−
1

N0
‖y− xm‖2

in the case where p(m) = 1/M for all m,

m̂ = arg min
1≤m≤M

‖y− xm‖2
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M-ary detection (2)

since ‖y‖2 does not intervene in the minimization, this can be rewritten

m̂ = arg max
1≤m≤M

2<(yHxm)− ‖xm‖2

where we remind
xH

my =

∫
xm(t)∗r(t)dt

and
xH

mxm =

∫
|xm(t)|2dt

therefore the detection method here sums up to
1 computing all correlations rm

∆
=

∫
xm(t)∗r(t)dt , for 1 ≤ m ≤ M

2 compute the values 2<(rm)− ‖xm‖2

3 m̂ is that m for which 2<(rm)− ‖xm‖2 is maximal
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Error analysis

as previously, we define P(e) as

P(e) =
M∑

m=1

p(m)P(m̂ 6= m)

=
M∑

m=1

∑
m′ 6=m

p(m)P(m→ m′)

in the case when p(m) = 1/M,

P(m→ m′) = P(‖y− xm‖2 ≥ ‖y− xm′‖2|m)

= P(2<([xm′ − xm]Hν) ≥ ‖xm′ − xm‖2)

now, ν is Gaussian and then, by linearity, 2<([xm′ − xm]Hν) is also Gaussian, with zero mean
and covariance matrix 2N0‖xm′ − xm‖2.
this finally gives

P(m→ m′) = Q

√‖xm′ − xm‖2

2N0


summing up and averaging over m, we finally have the upper bound

P(e) ≤
1
M

M∑
m=1

∑
m′ 6=m

Q

√‖xm′ − xm‖2

2N0
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Error analysis (2)

observe that the error depends here on the distances between the constellation points xm
which are known in advance. These distances are function of the energy every waveform
xm(t) carries.
denoting Es the mean energy per symbol, i.e.

Es =
M∑

m=1

p(m)‖xm‖2

which in the uniform case is

Es =
1
M

M∑
m=1

‖xm‖2

since there are M symbols, according to Shannon’s first theorem, these symbols can carry
(without distortion) a maximum of

−
M∑

m=1

p(m) log2(p(m)) bits.

in the uniform case, this is simply
log2(M) bits.

in which case the mean energy Eb transported by every bit is

Eb = Es/ log2(M)

R. Couillet (Supélec) Digital Communications 23/01/2010 52 / 82



Signal detection in AWGN Coherent detection of M-ary signals

Error analysis (3)

from this, we can rewrite the upper bound on P(e) as a function of Eb/N0, as

P(e) ≤
1
M

M∑
m=1

∑
m′ 6=m

Q

√ log2(M)d2(m,m′)
2

Eb

N0


with d(m,m′) the energy-normalized distance between symbols xm and xm′ in CN

d(m,m′) =
1
√

Es
‖xm′ − xm‖

we similarly have the lower bound

P(e) ≥
1
M

M∑
m=1

Q

√ log2(M) minm′ 6=m d2(m,m′)
2

Eb

N0
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Looser bounds and explicit approximation of P(e)

note that the upper-bound can be further upper-bounded by replacing all distances d(m,m′)
by the minimum distance

dmin
∆
= min

1≤m≤M
1≤m′≤M

m 6=m′

d(m,m′)

in which case, we have

P(e) ≤ (M − 1)Q

√ log2(M)d2
min

2
Eb

N0


as for the lower bound, it can be further lower bounded only considering the terms m in the
sum that have minimum distance d(m,m′) over m′ that is exactly dmin. Denote then

Mmin
∆
=#

1 ≤ m ≤ M, min
1≤m′≤M

m′ 6=m

d(m,m′) = dmin


in which case,

P(e) ≥
Mmin

M
Q

√ log2(M)d2
min

2
Eb

N0
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Looser bounds and explicit approximation of P(e)

this finally leads to an approximation of the probability of error by considering, instead of
(M−1) or Mmin/M, the mean number of points that are at distance dmin of each m, defined as

K ∆
=

1
M

M∑
m=1

#
{

1 ≤ m′ ≤ M,m′ 6= m, d(m,m′) = dmin
}

then

P(e) ' KQ

√ log2(M)d2
min

2
Eb

N0


using now the classical bounds on the Q function,

x
1 + x2

1
√

2π
e−

x2
2 < Q(x) <

1
x

1
√

2π
e−

x2
2

we finally have for large ratios Eb/N0

P(e) = O

(
e
− 1

4 log2 Md2
min

Eb
N0

)

which is compliant with both lower and upper bounds.
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Digital modulation

Introduction

for practical applications, in coherent detection scheme, the signal set x1(t), . . . , xM (t) is
simply given by

xm(t) = amφ(t)

in which case the dimension space Span(x1(t), . . . , xM (t)) is generated by ξ1(t) = φ(t)/
√

Es
and a single matched-filter can be applied.

the complex points

xm
∆
=

∫
ξ1(t)∗xm(t)dt = am

√
Es

are called the constellation symbols. They constitute the constellation

C = {x1, . . . , xM}

to ensure consistency with the SNR definition, we assume
∑M

m=1 p(am)|am|2 = 1.

in the following, we introduce classical constellations vectors (x1, . . . , xM ).

intuitively, for fixed Es , the larger M, the larger P(e), but the larger M, the larger the number of
transmitted bits per channel use. So there is a trade-off between large constellations (and
then large transmission rates) and secured communications (low decoding error rate).
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4-PAM modulation

<

=

11 10 00 01

Figure: 4-PAM modulation constellation
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M-PAM modulation

the alphabet of an M-PAM (Pulse Amplitude Modulation) is described as

C =

{
2d
(

m −
M − 1

2

)
,m ∈ {0, . . . ,M − 1}

}
with 2d the distance between neighboring constellation points, i.e.

dmin = 2d

by definition of Es , the mean energy per symbol,

Es = log2(M)Eb =
1
M

M−1∑
m=0

d2(2m −M + 1)2 = d2 M2 − 1
3

hence the upper-bound

P(e) ≤ 2Q

(√
6 log2(M)

M2 − 1
Eb

N0

)
where the coefficient in front is 2 instead of M − 1, since all points further than dmin are
completely inside the decision region of points at dmin.
an exact value of P(e) can in fact be found,

P(e) =
2(M − 1)

M
Q

(√
6 log2(M)

M2 − 1
Eb

N0

)
(this is obtained by considering errors on inner points and outer points independently)
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M-QAM modulation

when performing PAM modulation, all the complex imaginary dimension is left unused, and
decisions are made based on <(y).
this is a waste of the available space, that can be exploited further using the so-called QAM
(Quadrature Amplitude Modulation).
the constellation set is here

C =

{
2d

(
m −

M − 1
2

+ i(m′ −
√

M − 1
2

)

)
,m,m′ ∈ {0, . . . ,

√
M − 1}

}
obviously, Es is now

Es = 2d2 M − 1
3

and dmin = 2d .
the calculus of P(e) is somewhat different here. We notice that the real and imaginary parts
of the incoming signal are totally independent for white Gaussian noise (we in fact need to
add the assumption that the noise is circularly symmetric, i.e. E[<(ν)=(ν)] = 0). Therefore

P(e) = 1− (1− PPAM(e))2

where 1− PPAM(e) is the correct detection probability of a
√

M-PAM.
note importantly that this is not P(e) = PPAM(e)2! Indeed, to be erroneous, one needs to be
erroneous either in the in-phase or in the quadrature component, while to be correct one
needs to be both correct in the two components, so 1− P(e) = (1− PPAM(e))(1− PPAM(e))
by independence (for independent A,B, P(AB) = P(A)P(B)).
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Digital modulation M-QAM modulation

16-QAM modulation
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=
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Figure: 16-QAM modulation constellation
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Digital modulation M-PSK modulation
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Digital modulation M-PSK modulation

8-PSK modulation

<

=

Figure: 8-PSK modulation constellation
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Digital modulation M-PSK modulation

M-PSK modulation

M-PSK (Phase-Shift Modulation) symbols are encoded in the phase and have constant
magnitude

√
Es , (which is of interest for power amplifiers)

the constellation is here
C =

{
de2πi m

M , 0 ≤ m ≤ M − 1
}

dmin is given by trigonometric rules,

dmin = 2d sin(π/M)

for d =
√

Es .

an upper-bound on the decoding error reads

P(e) ≤ 2Q

(√
2 log2(M) sin2(π/M)

Eb

N0

)

where the term 2 arises from the fact that decision regions for points further than dmin are
included into the decision regions for points at dmin.
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Digital modulation A word on non-coherent detection
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Digital modulation A word on non-coherent detection

Non-coherent detection

remember the general AWGN communication model

y(t) = xm(t)e2πiθ + n(t)

which, after matched-filtering, leads to the vectorial model

y = xme2πiθ + ν

it is possible to perform decoding even when θ is unknown.
in this case, we have the MAP decision

m̂ = arg max
m

p(m|y) = arg max
m

p(y|m)p(m) = arg max
m

p(m)

∫ 1

0
p(y|m, θ)p(θ)dθ

in the case where p(m) and p(θ) are uniform, one obtains

p(y|m) =
1

2π(πN0)N
e
− ‖y‖2+‖xm‖2

N0 I0

(
2

N0
|yHxm|

)
with I0 the modified Bessel function.
we finally have the MAP/ML decision rule

m̂ = arg max
m
|yHxm|2

note in particular that M-PSK modulation leads to no possible decision here.
other constellations than those used here need be defined.
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Sequence detection in AWGN

Introduction

up to now, we have only dealt with the transmission of a unique symbol in time, taken among
a constellation of M points.

for practical communications, one needs to transmit a continuous waveform of symbols

a first idea is to transmit successive finite-time finite-energy waveforms

however, this comes with a very low transmission rate

we study here the transmission of a continuous waveform of multiple symbols in time and the
decoding procedure for such sequences.
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Sequence detection in AWGN

Transmission model

we consider here the transmission waveform

x(t ; a) =

N−1∑
n=0

anφ(t − nTs)

where Ts is the symbol period, a = (a0, . . . , aN−1) belongs to a particular constellation (PAM,
QAM etc.), and φ is a finite-energy waveform, i.e.∫

|φ(t)|2dt = Es <∞

through the AWGN channel, assuming coherent detection (hence the phase angle θ can be
discarded), this becomes

y(t) =

N−1∑
n=0

anφ(t − nTs) + n(t)
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Sequence detection in AWGN Symbol-by-symbol detector

Inter-Symbol Interference

using the matched-filter at time instant n, the filtered waveform becomes,

yn =
L∑

l=−L

gl an−l + vn

where
vn = 1/

√
Es

∫
φ(t − nTs)∗n(t)dt

yn = 1/
√

Es
∫
φ(t − nTs)∗y(t)dt

L is such that, for all t > 0, |φ(t + LTs)|2 ' 0, |φ(−t − LTs)|2 ' 0
gl = 1/

√
Es

∫
φ(t − nTs)∗φ(t − lTs)dt (in particular, g0 = Es)

yn is better rewritten
yn = g0an +

∑
l 6=0

gl an−l + vn

where an is the effective symbol due at instant n, and the term
∑

l 6=0 gl an−l is an interfering
term, referred to as Inter-Symbol Interference (ISI).
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Sequence detection in AWGN Symbol-by-symbol detector

Symbol-by-Symbol detector

since the ISI interferes the term an to be decoded, it might as a first idea be considered as
part of the ambient noise. For an ∈ {−1, 1}, we consider the estimate ân = sign(yn).

as a first approximation, considering that the ISI term is Gaussian (which is obviously
incorrect), we have the detection error approximation

P(e) ' Q

√√√√ |g0|2
N0
2 g0 + 1

2 (
∑

l 6=0 |gl |2)


in case of a binary antipodal transmission (i.e. am ∈ {−1, 1}).
this approximation is however only valid for low SNR (i.e. small N0). Indeed, asymptotically
large SNR incur a non-zero error-rate, which is inconsistent (as long as

∑
l 6=0 |gl |2 < |g0|2)

in case of binary antipodal constellation, we have exactly, with I =
∑

l 6=0 al gl ,

P(e|I) =
1
2

[
Q

(
|g0| − I√
|g0|N0/2

)
+ Q

(
|g0|+ I√
|g0|N0/2

)]

hence, after integration over I,

P(e) =
1

22L

∑
a∈{−1,+1}2L

Q

(
|g0|+

∑
l 6=0 al |gl |√

|g0|N0/2

)
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Sequence detection in AWGN Symbol-by-symbol detector

Symbol-by-Symbol detector (2)

considering the worst case scenario, i.e. for the configuration of a1, . . . , aN that maximizes
the error rate, we have

P(e) ≤ Q

√2|g0|(1− Dp)2

N0


with Dp the peak-distortion,

Dp =

∑
l 6=0 |gl |
|g0|

the parameter Dp characterizes the worst-case scenario of the eye opening in the
eye-diagram.
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Sequence detection in AWGN Nyquist condition
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Sequence detection in AWGN Nyquist condition

ISI-free conditions

the waveform φ(t) is said to fulfill Nyquist conditions, if Dp = 0, i.e. there is no ISI.

in that case, the eye-diagram is fully opened, and symbol-by-symbol detection can be
performed as in the single-symbol case.

to ensure ISI-free conditions, we seek a waveform that is zero in all nTs positions but 0 and
that would be finite-time finite-energy.

a first idea is to use the sinc function, but it is infinite-time and does not decay fast enough to
be truncated without impairing the signal.

another idea is to generate a finite-time waveform of length Ts . However this would increase
the required bandwidth N-fold!

a classically used waveform with such properties is the root-raised-cosine function, with
Fourier transform

F [φ](f ) =

{ √
Ts 0 ≤ |f | ≤ (1− α)/(2Ts)√
Ts
2

√
1− sin(πTs/α(f − 1/(2Ts))) (1− α)/(2Ts) ≤ |f | ≤ (1 + α)/(2Ts)

for 0 < α < 1 the roll-off (or excess-bandwidth) factor.
the root-raised-cosine has bandwidth W = (1 + α)/Ts , where the choice of α is a trade-off
between

setting α low to increase the spectral efficiency
setting α high to decrease the sensitivity to sampling period mismatch: a small error in the sampling
instants should not raise large decoding errors, and α large ensures a larger opening of the eye along
the horizontal axis.
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Sequence detection in AWGN ML detection and the Viterbi algorithm
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Sequence detection in AWGN ML detection and the Viterbi algorithm

Introduction

in the case of ISI-limited symbol sequences, the symbol-by-symbol detector (say, for an) is
clearly suboptimal since it voluntarily discards the information about
a1, . . . , an−1, an+1, . . . , aN .

optimally, the MAP/ML detector would process the whole sequence a = (a1, . . . , aN ) to obtain

â = arg max
b

p(b|y)

which leads to finding the best b that fits the particular behaviour observed, not only at time n
but at all times.

however, the problem here is largely more involved since we need to find the one solution
among MN hypothesis. For N large, an exhaustive search is out of the question.

fortunately, we have the so-called Viterbi algorithm, which allows to significantly reduce the
computational complexity.
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Sequence detection in AWGN ML detection and the Viterbi algorithm

The Viterbi Algorithm

consider again the transmission model

y(t) =

N−1∑
n=0

anφ(t − nTs) + ν(t)

the ML decision is based on the metric

m(y; b)
∆
=2<

∫ y(t)
N−1∑
n=0

b∗nφ
∗(t − nTs)

− ∫
∣∣∣∣∣∣
N−1∑
n=0

bnφ(t − nTs)

∣∣∣∣∣∣
2

dt

which can be rewritten

m(y; b) = 2<

N−1∑
n=0

b∗n

yn −
1
2

g0bn −
L∑

l=1

bn−l gl


where we assumed again that gl is zero for l > L.
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Sequence detection in AWGN ML detection and the Viterbi algorithm

The Viterbi Algorithm (2)

for a fixed 1 ≤ k ≤ N, denote

mk (y; b0, . . . , bk ) = 2<

 k∑
n=0

b∗n

yn −
1
2

g0bn −
L∑

l=1

bn−l gl


observe that this can be rewritten

mk (y; b0, . . . , bk ) = mk−1(y; b0, . . . , bk−1) + 2<

b∗k

yk −
1
2

g0bk −
L∑

l=1

bk−l gl


the second term being only a function of the L terms bk−L, . . . , bk−1 and the additional term
bk .
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Sequence detection in AWGN ML detection and the Viterbi algorithm

The Viterbi Algorithm (3)

now consider a state machine in N stages, with k -th stage a group of all possibles states of
(bk−1, . . . , bk−L) (there exist ML of those for k ≥ L, and Mk otherwise). This can be looked
as a shift register with content (bk−1, . . . , bk−L) at time k .

to end up in the particular state (bk , . . . , bk−L+1) at step k , one could have taken a maximum
of M paths from (bk−1, . . . , bk−L) at step k − 1, each path corresponding to a particular value
of bk−L.

obviously, the path with maximum value of mk (y; b0, . . . , bk ) will dominate those with shorter
values in the final m(y; b). Those can be already discarded. The remaining path is called the
survivor.

starting from stage 1, one can then compute all metrics on the paths leading to each of the
M2 states (b1, b0) for every possible b0, which is a obviously unique link for every possible
(b1, b0).

one then moves to stage 2, 3 etc. until it reaches stage L + 1.

at stage L + 1, the new states (bL+1, . . . , b2) could have arisen from M different values of b1.
Hence, M path metrics must be computed for every of the ML vectors (bL+1, . . . , b2) arising
from the M vectors (bL, . . . , b2, b1) (one for each b1), and one keeps only the surviving ones.

subsequent paths behave the same, until we reach the final stage N.

at the end of the trellis, i.e. at stage N, ML surviving paths are subsisting. A trace-back is
then applied, that consists in comparing those ML path metrics. The path with largest metrics
is the ML solution.
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