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ABSTRACT

This article proposes a first performance analysis and optimization
of a simple transfer learning method, extending the standard least
squares support vector machine. By means of a random matrix anal-
ysis, we prove that, for simultaneously large and numerous data, the
correct classification rate of the learning task is asymptotically pre-
dictable and the hyperparameters in the problem are easily tuned so
to maximize the output performance. Simulations confirm our find-
ings. This preliminary work opens the path to a systematic explo-
ration of transfer learning methods by means of large dimensional
statistics.

Index Terms— Random matrix theory; transfer learning; large
dimensional statistics.

1. INTRODUCTION

The advent of the powerful deep learning architectures has res-
urrected the interest for the field of transfer learning (or domain
adaptation) [1]. The idea of transfer learning consists in possessing
two databases: a source (usually large) and a target (usually small)
database, and in designing an algorithm that learns to classify the
target dataset by exploiting its similarity to the source dataset (the
classification of which is not the sought-for objective). In a deep
learning context, the existence of enormous source databases (such
as ImageNet) has allowed for the design of powerful neural networks
that can process numerous classes of images; these neural networks
are now reused in order to classify data arising from different and
much smaller (target) datasets, from the intuitive idea that these net-
works have essentially learned the ability to “see” and discriminate
differing items from any given dataset.

Many algorithms exist that similarly extend popular machine
learning architectures (such as support vector machines and Bayesian
methods) to transfer learning machines. Yet, as is the case for most
advanced (non-linear, optimization-based) machine learning meth-
ods, the theoretical understanding of their inner-workings, limita-
tions, and expected performances is to date quite restricted. Yet,
thanks to recent advances in random matrix theory and large di-
mensional statistics, first lights are being cast on the performance
analysis of most of these machine learning methods [2, 3, 4]. In
this article, we specifically focus on a simple generalization of
a kernel regression method (also known as least-squares support
vector machine), adapted to the transfer learning context. This is
inspired, from a theoretical standpoint by the technical findings of
[4] and from a practical aspect by the ideas of [5] simplified to
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finding a single hyperplane (or regression vector).1 By proposing
a simple and clear setting and, consequently, simple and readable
results, the article serves as a preliminary exploration of a random
matrix framework for the theoretical analysis of transfer learning
asymptotics.

By means of a large dimensional analysis, whereby the size p
and number n of data are large and of the same order of magni-
tude, we manage to successively (i) find the asymptotic probability
of success of the transfer learning task for every given regression
output vector y ∈ Rn (containing the outputs for every data point,
from both source and target classes), (ii) from this result, we find the
regression output vector y that maximizes this probability of suc-
cess, and finally (iii) we determine the optimal kernel regularization
value.

2. MODEL AND PRELIMINARIES

We consider the general setting of a k-class kernel linear regression
problem. Let X = [X1, . . . , Xk] ∈ Rp×n be the collection of in-
dependent data vectors from a k-class Gaussian mixture model de-
fined, for a ∈ {1, . . . , k}, by Xa = [xa1, . . . , xana ] ∈ Rp×na ,
n1 + . . .+ nk = n, and

xai ∼ N (µa, Ip).

We denote Ca the a-th class. Our objective is to discriminate data
arising from any target pair (Ct1 , Ct2) (t1, t2 ∈ {1, . . . , k}) of
classes by benefiting from the existence of data from other (possibly
correlated) classes.

To this end, we proceed by a standard kernel linear regression
method, also referred to as least-square support vector machine.
Specifically, from a support vector machine standpoint, we first aim
to solve, for all classes, the problem

argmin
β∈Rp,b∈R

‖β‖2 + 1

γ
‖e‖2, y =

1
√
p
PX>β + b1n + e (1)

where y = [y11, . . . , yknk ]
> ∈ Rn is the regression output vec-

tor attached to data vectors X = [x11, . . . , xknk ] ∈ Rp×n, P =

In − 1
n
1n1
>
n is a centering projector and γ > 0 is a tuning parame-

ter. In the large dimensional regime n, p→∞ studied in this article,
the normalization by 1/

√
p is necessary for the problem to be non

degenerate in the limit (here for ‖X/√p‖ to be of orderO(1)). Sim-
ilarly, the projector P ensures, by centering them around zero, that
the average of the means µ1, . . . , µk does not have an arbitrary high
amplitude (note of course that classification cannot be impaired by a
common translation of all data).

1That is, we set λ1 = 0 in Problem 2.1 of [5] and replace the soft con-
straints by a quadratic cost.



In essence, the objective of the optimization is to design a hyper-
plane in Rp (defined by the normal vector β and shifted by b from the
origin) that best separates the n vectors in two groups: those associ-
ated with negative versus positive regression outputs yai. Choosing
a small γ in particular forces all xai to fall on the correct side of
the hyperplane (thus inducing a hard constraint) while a large γ en-
sures the correct classification of the largest proportion of the data
but allows for more errors.

In the present transfer learning context, we thus expect the k
data classes to naturally split in two groups: those data “resembling”
data from the first target class Ct1 and those resembling date from
class Ct2 . Since data from the same class are statistically equal, the
second part of the method consists in attributing scalars ỹa = yai to
each data class, so as to minimize the probability of misclassification
of data from class Ct1 and Ct2 . We will conventionally demand that
ỹt1 > ỹt2 .

The solution to (1) is explicit and given by β = Xα and

α = S(y − b1n), b =
1>nSy

1>nS1n
,

S =

(
1

p
PX>XP + γIn

)−1

.

More importantly, given some decision threshold ξ, for a new datum
x ∈ Rp from one of the two target classes, the ultimate classification
of x is given by the output of the test

g(x) ≡ 1

p
α>X>

(
x− 1

n
X1n

) Ct1
≷
Ct2

ξ. (2)

As such, the important parameter to study here is α rather than β.

As previously mentioned, our objective is to determine the vec-
tor y for which the aforementioned test has minimal probability of
error to allocate x to Cta whenever x ∼ N (µta , Ip), a ∈ {1, 2}.
This boils down to studying the statistics of g(x) for such x. How-
ever, the intricate expression ofα prevents this study for all fixed n, p
in general. Our approach is to instead investigate g(x) in the large
dimensional asymptotics where n, p→∞ with n/p→ c0 > 0.

3. MAIN RESULTS

3.1. Technical Results

In order to avoid trivial results in the large n, p limit, we need to
impose a controlled growth rate for the distances ‖µa − µb‖ for all
a, b ∈ {1, . . . , k}. Precisely, we make the following assumption.

Assumption 1 (Growth Rate) As n → ∞, n/p → c0 > 0
and for all a ∈ {1, . . . , k}, na/n → ca > 0. We shall de-
note c = [c1, . . . , ck]

> and Pc = diag(c) − cc>. Besides, for
M = [µ1, . . . , µk] ∈ Rp×k, as p→∞,

M>M →M ∈ Rk×k.

The last assumption implies in particular that ‖µa − µb‖ = O(1)
with respect to p.

In order to introduce our main results, a few reminders from the
random matrix asymptotics of the resolvent matrix

S =

(
1

p
PX>XP + γIn

)−1

of the kernel 1
p
PX>XP are necessary. Denoting J = [j1, . . . , jk] ∈

Rn×k where ja = [0n1+...+na−1 , 1na , 0na+1+...+nk ]
> is the in-

dicator vector of class Ca, we may write X = MJ> +W where
W has independent standard Gaussian entries. As such, the kernel
1
p
PX>XP may be seen as a low rank perturbation of the random

matrix 1
p
PW>WP , the asymptotic behavior of which has been

extensively studied in the random matrix literature. In particular, we
have the following identities: as n, p→∞ with n/p→ c0,

Q ≡
(
1

p
PX>XP + γIn

)−1

↔
(

P

1 + c0m(−γ) + γIp

)−1

Q̃ ≡
(
1

p
XPX> + γIp

)−1

↔ m̃(−γ)Ip

whereA↔ B stands for the fact that (i) for all deterministic vectors
u, v of unit norm, u>(A − B)v

a.s.−→ 0, and (ii) for all determin-
istic matrix D of bounded operator norm, 1

n
trD(A − B)

a.s.−→ 0.
There m(z) and m̃(z) are the so-called Stieltjes transforms of the
popular Marc̆enko–Pastur distribution, characterized by their being
the unique positive solution, for z < 0, to the equations

m(z) = (1− c0 − z − c0zm(z))−1

m̃(z) = c0m(z) + (c0 − 1)z−1.

Alternatively, m(z) can be expressed under the (numerically more
convenient but theoretically less useful) explicit form

m(z) =
1− c0 − z

2c0z
− 1

2c0z

√
(1− c0 − z)2 − 4c0z.

For further use, we also mention their respective derivatives

m′(z) = m(z)2
1 + c0m(z)

1− c0zm(z)2

m̃′(z) = c0m
′(z) + (1− c0)z−2.

These results are fundamental here as our proof technique (deferred
to an extended version) consists in “splitting” the matrix S (defining
the solutions α, b of the present problem) into the well-known “pure
noise” matrices Q, Q̃ and the low-dimensional statistical properties
of the data: M>M and c.

Equipped with these notations and preliminary results, we
present our main technical theorem.

Theorem 1 (Asymptotics of g(x)) Let Assumption 1 hold and set
the class regression outputs to be y = Jỹ for some ỹ ∈ Rk. Then,
for x ∼ N (µa, Ip) independent of X , and g(x) defined as per (2),

g(x)→ N (ma, σ
2)

in distribution where

ma = (1− γm(−γ))ỹ>Rc0PcMea

σ2 = (m(−γ)− γm′(−γ))ỹ>R(c0Pc + c20PcMPc)R
>ỹ.

with R = (Ik + (1− γm(−γ))c0PcM)−1 and ea ∈ Rk the vector
with [ea]i = δai.

A few important remarks are in order. The theorem claims that,
irrespective of the class of x, the output g(x) is asymptotically Gaus-
sian with constant variance σ2; only Ex[g(x)] differs across classes.



Also note, as expected, that the means ma and variance σ2 exclu-
sively depend (in a possibly intricate manner at first sight) on M
throughM, on c0 and γ through m(−γ), and on c through Pc.

Theorem 1 now implies that, in the large n, p limit, the opti-
mal decision rule for the task of deciding between class Ct1 and Ct2
should be to set

g(x) ≡ 1

p
α>X>

(
x− 1

n
X1n

) Ct1
≷
Ct2

1

2
(mt1 +mt2)

resulting in the probability of correct classification to be

Px∼N (µt1
,Ip)

(
g(x) >

1

2
(mt1 +mt2)

)
→ Q

(mt2 −mt1

2σ

)
Px∼N (µt2

,Ip)

(
g(x) <

1

2
(mt1 +mt2)

)
→ Q

(mt2 −mt1

2σ

)
(3)

forQ(t) = 1√
2π

∫∞
t
e−u

2/2du.

3.2. Optimization of ỹ

A further consequence of the classification rate asymptotics, and of
the independence of σ2 on the classes, is that the vector ỹ that opti-
mizes the probability of correct classification must (asymptotically)
be the maximizer of (mt2 −mt1)

2/σ2. Thus we look for

argmax
ỹ∈Rk

‖ỹ>Rc0PcM(et1 − et2)‖2

ỹ>R(c0Pc + c20PcMPc)R>ỹ

which is easily solved as

ỹ =
[
M− γm(−γ)c0MPc(Ik + c0MPc)

−1M
]
(et1 − et2)

up to a positive multiplicative factor.
For this choice of ỹ, the associated asymptotic correct classifi-

cation rate (Equation 3) is then given by

Q
(

(1− γm(−γ))2

m(−γ)− γm′(−γ)ζ
)

with

ζ = c0(et1 − et2)
>MPc (Ik + c0MPc)

−1M(et1 − et2).

This result clearly isolates the impact of γ from the rest of the
parameters. It is thus possible to optimize on γ. Recalling that the
Stieltjes transform m(z) of a probability measure ν is defined as∫
(t− z)−1ν(dt), we easily find that

1− γm(−γ) =
∫
tν(dt)

t+ γ

m(−γ)− γm′(−γ) =
∫

tν(dt)

(t+ γ)2

where ν is here the Marc̆enko–Pastur distribution. It is not difficult
to show that (1−γm(−γ))2

m(−γ)−γm′(−γ) is then a growing function of γ with
limiting value 1 as γ → ∞. As such, quite surprisingly, the regu-
larizer γ must be chosen as large as possible. As a consequence, we
have the limiting optimal correct classification rate given by

Q
(
c0(et1 − et2)

>MPc (Ik + c0MPc)
−1M(et1 − et2)

)
.

In passing, remarking that

S =

(
1

p
PX>XP + γIn

)−1

' 1

γ
In −

1

γ2

1

p
PX>XP +O(γ−3)

in the large γ limit, suggests that in the large dimensional limit the
linear regression operates merely as a matched-filter.

Consider for a moment the setting where k = 4 with two source
classes Cs1 = C1, Cs2 = C2 and two target classes Ct1 = C3, Ct2 =
C4. Then, the expression of the optimal ỹ induces the following
consequences:

• if µs1 = µt1 and µs2 = µt2 , then ỹ = [1,−1, 1,−1]> is
optimal. This is expected as this boils down to a two-class
regression problem.

• if µ1, . . . , µ4 are pairwise orthogonal and ct1 = ct2 , then
ỹ = [0, 0, 1,−1]> is optimal. This is also expected as
µs1 , µs2 bring no additional information. Yet, this result
no longer holds true if ct1 6= ct2 ; this is an interesting,
not immediate, consequence that suggests the need to cre-
ate an artificial bias in order to compensate for the uneven
cardinality of the training data.

• the most interesting (and practical) setup is of course when
µ>saµta/(‖µsa‖‖µta‖) ' 1 for both a ∈ {1, 2}. There,
(i) the strength of the alignment between source and target
statistics, characterized by M>M , and (ii) the relative sizes
of the training datasets, evaluated by c, impact the entries of
the optimal ỹ. In general, if csa � cta while source and
target means are quite aligned, much larger absolute values
are attributed to the “source” entries of ỹ. On the opposite,
if csa ∼ cta while source and target means are rather mis-
aligned, then much of the weigh is affected to the “target”
entries of ỹ.

3.3. Practical application

From a practical standpoint, note that the optimal value for ỹ only
depends on the unknownM = limpM

>M , the rest of the variables
being known to the experimenter. To estimate ỹ, it is thus sufficient
to evaluate M>M . Under the growth rate conditions of Assump-
tion 1, it is easy to show that the following estimators are consistent:

1

nanb
1naX

>
a Xb1nb

a.s.−→Mab, a 6= b

4

n2
a

1na
2
X>a,1Xa,21na

2

a.s.−→Maa

where we denoted Xa = [Xa,1, Xa,2] with Xa,1, Xa,2 ∈ Rp×na/2.
It is thus sufficient to plug these estimators into the formula for

ỹ to reach, with probability one, optimal asymptotic empirical clas-
sification performance.

4. SIMULATION RESULTS

We consider here a transfer learning context with two source classes
Cs1 and Cs2 and two target classes Ct1 and Ct2 , as previously in-
troduced. The considered settings are simple and quite symmetric in
order to avoid confusing interpretations. Details are accessible in the
various figure captions. In the whole section, we take γ = 106.



Figure 1 displays the histogram of g(x) for 10 000 random
draws of x ∈ Ct1 and x ∈ Ct2 , in a setting where, for a ∈ {1, 2},
µsa is either strongly aligned or orthogonal to µta . In the figure are
also compared the settings where ns1 = ns2 is either small or large.
The output regression vector ỹ is taken as the estimated optimal in
either case (see Section 3.3). Significant classification performance
gains are achieved in the setting of strongly correlated source and
targets, while no gain is obtained otherwise.

Figure 2 carries on this analysis by now comparing various
strategies for setting the regression output ỹ. We compare here the
standard SVM approach that treats Csa and Cta (for both a ∈ {1, 2})
as a unique class, i.e., ỹ = [1,−1, 1,−1]>, to the optimum achieved
by ỹ as presented in Section 3.2. A further comparison to the esti-
mated optimal value of ỹ, as per Section 3.3, is also depicted. It is
interesting here to see, in this slightly extreme setting, that misjudg-
ing the proximity between source and target data can be severely
detrimental to the transfer learning method, as observed with the
SVM approach in the orthogonal source-target setting.
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Fig. 1. Histogram of the outputs g(x) for x ∈ Ct1 (blue) and
x ∈ Ct2 (red); p = 512, nt1 = 10, nt2 = 20, µs1 =√
2[1, 1, 0, . . .]>, µs2 =

√
2[−1,−1, 0, . . .]>. (Top) µt1 =

[2, 0, 0, . . .], µt2 = [−2, 0, 0, . . .]>; (Bottom) µt1 = [0, 0, 2, . . .],
µt2 = [0, 0,−2, . . .]>. (Left) ns1 = ns2 = 0; (Right) ns1 =
ns2 = 2000.

We conclude this section with a comparative study in Table 1 of
the MNIST handwritten digit dataset classification under the present
transfer learning setting. We consider here the task of learning to dis-
criminate digits 8 and 9 with a source training on digits 3 and 4 (since
3 and 8, and 4 and 9 are respectively close in shape). Interestingly
the naiv pure-SVM approach is counterproductive in the presence of
numerous source data while an optimal weight distribution improves
the classification by up to 2%.

5. CONCLUDING REMARKS

This article introduced first steps into a large dimensional analysis
of transfer learning algorithms. The chosen illustrative example of
a simple kernel regression approach is instrumental to already un-
veil multiple unexpected outcomes: (i) the possibility to largely op-

101 102 103

0.8

0.85

0.9

ns1 , ns2 (aligned source/target)

SVM
Proposed
Optimal

101 102 103
0.5

0.6

0.7

0.8

ns1 , ns2 (orthogonal source/target)

SVM
Proposed
Optimal

Fig. 2. Correct classification rate for ỹ = [1,−1, 1,−1]> (SVM), ỹ
obtained from the estimate of Section 3.3 (Proposed), and optimal ỹ
(Optimal); setting of Figure 1 for varying values of ns1 = ns2 .

SVM Proposed Optimal
ns1 = ns2 = 0 0.8941 0.8926 0.8966
ns1 = ns2 = 200 0.8656 0.9036 0.9171

Table 1. MNIST data correct classification rate; source: digits 3 & 4,
target: digits 8 & 9; nt1 = nt2 = 4. Comparison between standard
SVM, proposed approach and optimal (as if Gaussian).

timize the problem in the large dimensional setting (by determining
the optimal regression output coefficients y), and (ii) the observation
that the kernel ridge regression parameter γ is optimal when taken
arbitrarily large, thereby turning the regression into a mere matched-
filtering operation. The present work is however extremely restricted
in both its modelling and transfer learning design assumptions. Fu-
ture works shall attempt to study state-of-the-art transfer learning
algorithms under the same random matrix umbrella.
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