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ABSTRACT
It is shown that a certain family of robust scatter estimators of
elliptical samples behaves similar to a well-known random matrix
model in the limiting regime where both the population N and
sample n sizes grow to infinity at the same speed. This result allows
us to understand the structure of such estimators and in particular to
derive their limiting eigenvalue distributions. This analysis is a first
step towards an improved usage of robust estimation methods when
the number of independent observations is not too large compared
to the size of the population.

Index Terms— random matrix theory, robust estimation.

I. INTRODUCTION AND PROBLEM STATEMENT

The recent advances in the spectral analysis of large dimensional
random matrices, and particularly of matrices of the sample co-
variance type, have triggered a new wave of interest for (some-
times old) problems in statistical inference and signal processing,
under the assumption of similar population and sample sizes.
For instance, new source detection schemes have been proposed
based on the works on the extreme eigenvalues of large Wishart
matrices. New subspace methods in large array processing have
also been derived that outperform the original MUSIC algorithm
by exploiting statistical inference methods on large random matri-
ces. Most of these signal processing methods fundamentally rely
on the structure of the sample covariance matrix 1
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formed from independent or linearly dependent zero mean samples
x1, . . . , xn ∈ CN , which are well understood objects, see e.g.
[1]. Signal processing covariance estimation methods however go
beyond sample covariance matrices. In particular robust scatter M-
estimation techniques are used to better approximate population
covariance (or scatter) matrices whenever (i) the distribution of the
xi’s is heavier-tailed than Gaussian or (ii) the xi’s contain outliers
[2], [3].

Robust scatter matrix estimators are often more complex than
sample covariance matrices which makes them inappropriate to
standard random matrix analysis. In this work, we specifically
consider robust scatter estimator of the Maronna type, proposed
in [3]. In the regime where n → ∞ and N fixed, [3] shows that
under some conditions the estimator is well-defined as the unique
solution of a fixed-point equation and that it almost surely (a.s.)
converges to a deterministic matrix. We instead treat here the case
where N,n→∞ and N/n remains away from zero, following the
same approach as in [4] but for the more involved case of elliptical
vectors xi.

Couillet’s work is supported by ANR-12-MONU-OOO3 DIONISOS
project.

The study of robust scatter estimators in the large N,n regime
has important consequences in understanding many signal pro-
cessing algorithms exploiting these estimators. It also allows one
to derive improved methods for source detection and parameter
estimation for sample covariance matrix-based estimators. Adapta-
tions (and improvements) of these results to robust estimation are
currently under investigation. The results presented in this paper are
an excerpt of the complete version [5] where more general results
and all proofs can be found.

We now introduce our main notations and assumptions. Let
x1, . . . , xn ∈ CN be n random vectors with xi =

√
τiANyi,

where τ1, . . . , τn ∈ R+ and y1, . . . , yn ∈ CN̄ are random and
AN ∈ CN×N̄ is deterministic. We denote cN , N/n and
c̄N , N̄/N and shall consider the following growth regime.

Assumption 1: For each N , cN < 1, c̄N ≥ 1 and

0 < c− < lim inf
n

cN ≤ lim sup
n

cN < c+ < 1.

We define Maronna’s M-estimator ĈN , when it exists, as a
(possibly unique) solution to the equation in Z ∈ CN×N

Z =
1
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where u satisfies the following properties:

(i) u : [0,∞) → (0,∞) is nonnegative continuous and non-
increasing

(ii) φ : x 7→ xu(x) is increasing and bounded with
limx→∞ φ(x) , φ∞ > 1

(iii) φ∞ < c−1
+ .

These assumptions are minor variations of Maronna’s original
assumptions [3, p. 53]. Next we detail the conditions on the xi’s.

Assumption 2: The vectors xi =
√
τiANyi satisfy:

1) νn = 1
n

∑n
i=1 δτi is such that

∫
xνn(dx)

a.s.−→ 1
2) there exist ε < 1− φ−1

∞ < 1− c+ and m > 0 such that, for
all large n a.s. νn([0,m)) < ε

3) defining CN , ANA
∗
N , CN � 0 and lim supN ‖CN‖ <∞

4) y1, . . . , yn ∈ CN̄ are independent unitarily invariant complex
zero-mean vectors with, for each i, ‖yi‖2 = N̄ , and are
independent of τ1, . . . , τn.

These conditions are met in particular if the τi are independent
and identically distributed (i.i.d.) with unit mean distribution ν (then∫
xνn(dx)

a.s.−→ 1 by the strong law of large numbers) such that
ν({0}) = 0. If in addition N = N̄ , then x1, . . . , xn are i.i.d.
zero-mean complex (or real) elliptically distributed with full rank
[6, Theorem 3]. In particular, if τ1 is Rayleigh distributed, x1 is
complex zero mean Gaussian. If 1/τ1 is chi-squared distributed, x1



is instead zero mean complex Student distributed, etc. (see [6] for
further discussions and recent results on elliptical distributions).

Assumption 3: For each a > b > 0, a.s.

lim sup
t→∞

lim supn νn((t,∞))

φ(at)− φ(bt)
= 0.

Assumption 3 controls the relative speed of the tail of νn versus
the flattening speed of φ(x) as x → ∞. Practical examples
satisfying Assumption 3 are:
• There exists M > 0 such that, for all n, max1≤i≤n τi <
M a.s. In this case, νn((t,∞)) = 0 a.s. for t > M while
φ(at)− φ(bt) 6= 0 since φ is increasing.

• For u(t) = (1 + α)/(α + t) for some α > 0 and τi i.i.d.
with distribution ν, by Markov inequality, it suffices that∫
x1+εν(dx) <∞ for some ε > 0.

This article provides two results: (i) existence and uniqueness
of ĈN as a solution to (1) is shown (Theorem 1) and (ii) the
limiting spectral behavior of ĈN as N,n → ∞ is derived
(Theorem 2). Theorem 1 somehow extends [3, Theorem 1] which is
insufficient for our current needs as it imposes the strong constraint
φ∞ > 1/(1− c−). As for Theorem 2, it is very different from [3,
Theorem 5] which proves the convergence of ĈN as n → ∞;
here instead we show that there exists a matrix ŜN such that
‖Ĉn − ŜN‖

a.s.−→ 0 in spectral norm, where ŜN follows a standard
random matrix model studied e.g. in [7].

II. MAIN RESULTS
The first result ensures the existence and uniqueness of a solution

ĈN to (1) for n large enough.
Theorem 1 (Uniqueness): Let Assumptions 1 and 2 hold, with

lim supN ‖CN‖ non necessarily bounded. Then, for all large n a.s.,
(1) has a unique solution ĈN given by

ĈN = lim
t→∞
t∈N

Z(t)

where Z(0) � 0 is arbitrary and, for t ∈ N,

Z(t+1) =
1
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Having defined ĈN , the main result of the article provides a
random matrix equivalent to ĈN , much easier to study than ĈN
itself.

Theorem 2 (Asymptotic Behavior): Let Assumptions 1–3 hold,
and let ĈN be given by Theorem 1 when uniquely defined as the
solution of (1) or chosen arbitrarily if not. Then∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN ,
1
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and γN is the unique positive solution of the equation in γ

1 =
1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)

with the functions v : x 7→ (u ◦ g−1)(x), ψ : x 7→ xv(x), and
g : R+ → R+, x 7→ x/(1− cNφ(x)).

The fact that ĈN is well approximated by ŜN , which follows a
random matrix model studied extensively in [8], [9], has impor-
tant consequences. From a purely mathematical standpoint, this
provides a full characterization of the spectral behavior of ĈN
for large N,n. For application purposes, this first enables the
performance analysis in the large N,n horizon of standard signal
processing methods already relying on ĈN (these methods were
so far analyzed solely in the fixed N large n regime). A second,
more important, consequence for signal processing applications is
the possibility to fully exploit the structure of ĈN for large N,n to
improve existing robust schemes. Deriving such improved methods
is not the subject of the current article but should be directly
accessible from Theorem 2, while performance analysis of these
methods may demand supplementary treatment, such as central
limit theorems for functionals of ĈN .

An immediate corollary of Theorem 2 along with classical
arguments from [9], [10] is when the τi’s are i.i.d., leading to
elliptical distributions for xi, for which ĈN has an (almost sure)
limiting eigenvalue spectrum.

Corollary 1 (Elliptical case): Let Assumptions 1–3 hold and in
addition, let τi be i.i.d. with law ν and let cN → c. Then∥∥∥∥∥ĈN − 1

n
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∥∥∥∥∥ a.s.−→ 0

where γ∞ is the unique positive solution to the equation in γ

1 =

∫
ψc(tγ)

1 + cψc(tγ)
ν(dt)

with ψc = limcN→c ψ. Moreover, if 1
n

∑n
i=1 δλi(CN ) → νC

weakly, then

1

n

n∑
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δλi(ĈN )

a.s.−→ µ

weakly with µ a probability measure with continuous density of
bounded support S, the Stieltjes transform m(z) of which is given
for z ∈ C+ by

m(z) = −1

z

∫
1

1 + δ̃(z)t
νC(dt)

where δ̃(z) is the unique solution in C+ of the equations in δ̃

δ̃ = −1

z

∫
ψc(tγ

∞)

γ∞ + ψc(tγ∞)δ
ν(dt)

δ = − c
z

∫
t

1 + tδ̃
νC(dt).

Finally, for every closed set A ⊂ R with A ∩ S = ∅,∣∣∣∣{λi(ĈN )
}N
i=1
∩ A

∣∣∣∣ a.s.−→ 0.

Figure 1 depicts the empirical histogram of the eigenvalues of
ĈN , for N = 500 and n = 2500 with u(t) = (1 + α)/(t + α),1

α = 0.1, CN = diag(I125, 3I125, 10I250), and τ1, . . . , τn i.i.d.
with Γ(.5, 2) distribution. In thick line is also depicted the density
of µ in Corollary 1 which shows an accurate match to the empirical
spectrum. As a comparison, Figure 2 shows the empirical histogram

1This function u(t) is often met in robust statistics as it is such that ĈN
corresponds to the maximum-likelihood estimate of the scale parameter of
independent and identically distributed multivariate Student-t vectors.
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Fig. 1. Histogram of the eigenvalues of ĈN for n = 2500,
N = 500, CN = diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-
distribution.
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Fig. 2. Histogram of the eigenvalues of 1
n

∑n
i=1 xix

∗
i for n =

2500, N = 500, CN = diag(I125, 3I125, 10I250), τ1 with
Γ(.5, 2)-distribution.

of the eigenvalues of the sample covariance matrix 1
n

∑n
i=1 xix

∗
i

under the same parametrization against the deterministic equivalent
density for this model in thick line [7]. This graph presents an
unbounded limiting eigenvalue spectrum support which is expected
since τ1 has unbounded support. Also note the gain of separability
in the spectrum of ĈN which exhibits clearly three compacts
subsets of eigenvalues, reminiscent of the three masses in the
eigenvalue distribution of CN , while 1

n

∑n
i=1 xix

∗
i exhibits a single

compact set of eigenvalues. This has important consequences from
detection and estimation purposes in signal processing application
of robust estimation.

The proof of Theorem 1 follows from a similar approach as in
[4] and will therefore not be detailed here. We instead concentrate
on the more fundamental Theorem 2.

III. INTUITIVE DERIVATION OF THE MAIN RESULT

The proof of our main result, Theorem 2, is thoroughly detailed
in [5]. Here we only provide an intuitive approach to this result (the
rigorous proof follows a quite different approach). First note that we
can assume CN = IN by studying C

− 1
2

N ĈNC
− 1

2
N in place of ĈN

(see (1)). Therefore, from now on, we assume CN = ANA
∗
N =

IN .
From there, the main difficulty to tackle lies in the dependence

structure between the rank-one matrices u( 1
N
x∗i Ĉ

−1
N xi)xix

∗
i that

compose ĈN ; this structure disrupts from the standard random
matrix assumptions, which rely on an explicit dependence of these
rank-one matrices. At least intuitively, we can however weaken the
dependence structure by rewriting the fundamental equation (1).
This rewriting is performed in Section III-A below. Approximating
weak dependence by independence, we then provide the final result.
This is performed in Section III-B.

III-A. Rewriting (1)

We first introduce some new notations. Write xi =
√
τiANyi ,√

τizi and recall that CN = IN (in particular, ‖zi‖ is of order√
N for most zi). Assuming ĈN is well-defined, we denote

Ĉ(i) , ĈN − 1
n
u( 1

N
x∗i Ĉ
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N xi)xix

∗
i . Note that Ĉ(i) depends on xi

only through the terms u( 1
N
x∗j Ĉ

−1
N xj), j 6= i, since ĈN is built

on xi. But since xi is only one among a growing number n of xj
vectors, this dependence structure looks intuitively “weak”. This
informal weak dependence between xi and Ĉ(i), along with classi-
cal random matrix theory considerations, suggests that 1

N
z∗i Ĉ

−1
(i) zi,

i = 1, . . . , n, are all well approximated by 1
N

tr Ĉ−1
N (see e.g. [7,

Lemma 3.1]).
With this in mind, we rewrite ĈN as a function of 1

N
z∗i Ĉ

−1
(i) zi

instead of 1
N
x∗i Ĉ

−1
N xi, i = 1, . . . , n. For this, let Z ∈

CN×N be positive definite such that for each i, Z(i) , Z −
1
n
u(τi

1
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−1zi)τiziz
∗
i is positive definite. Using the identity

(A+ τzz∗)−1z = A−1z/(1 + τz∗A−1z) for invertible A, vector
z, and positive scalar τ , we have

1
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which, by the definition of φ, is
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Using Assumption 1 and φ∞ < c−1
+ , taking n large enough to have

φ(x) ≤ φ∞ < 1/cN , this can be rewritten

1
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1− cNφ
(
τi

1
N
z∗i Z
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) . (2)



Now, since φ is increasing, g : [0,∞) → [0,∞), x 7→ x/(1 −
cNφ(x)) is increasing, nonnegative, and maps [0,∞) onto [0,∞).
Thus, g is invertible with inverse denoted g−1. Thus, from (2),

τi
1

N
z∗i Z

−1zi = g−1

(
τi

1

N
z∗i Z

−1
(i) zi

)
.

Call now v : [0,∞)→ [0,∞), x 7→ u ◦ g−1. Since g is increasing
and nonnegative and u is non-increasing, v is non-increasing and
positive. Moreover, ψ : x 7→ xv(x) satisfies:

ψ(x) = xu(g−1(x)) = g(g−1(x))u(g−1(x)) =
φ(g−1(x))

1− cNφ(g−1(x))

which is increasing, nonnegative, with limit ψN∞ , φ∞/(1 −
cNφ∞) as x → ∞. Hence, v and ψ keep the same properties
as u and φ, respectively.

With these notations, any positive definite solution Z to (1) is
equivalently a solution to

Z =
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n∑
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which is easily proved to be also characterized as the matrix Z =
1
n

∑n
i=1 τiv(τidi)ziz

∗
i where d1, . . . , dn ≥ 0 are the only solutions

to the n equations:
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zj , 1 ≤ j ≤ n. (3)

III-B. Hint on the main result

Since we have assumed that ĈN is well defined as the unique
solution to (1), the di above are also unique and well defined (let
us say, at least for all large n a.s.).

From the discussion in Section III-A, we may expect the terms
di to be all close to 1

N
tr Ĉ−1

N for N,n large enough. From
random matrix intuition, we may also expect 1

N
tr Ĉ−1

N to have a
deterministic equivalent γN , i.e. there should exist a deterministic
sequence {γN}∞N=1 such that | 1

N
tr Ĉ−1

N − γN |
a.s.−→ 0. Let us

say that all this is true. Since 1
N

tr Ĉ−1
N is the Stieltjes transform

1
N

tr(ĈN − zIN )−1 of the empirical spectral distribution of ĈN
at point z = 0, and since ĈN is expected to be close to
1
n

∑
i τiv(τiγN )ziz

∗
i with now v(τiγN ) independent of z1, . . . , zn,

from classical random matrix works, e.g. [7], we would expect that
one such γN be given by (recall that CN = IN )

γN =

(
1

n

n∑
i=1

τiv(τiγN )

1 + cNτiv(τiγN )γN

)−1

if this fixed-point equation makes sense at all. This can be equiv-
alently written as

1 =
1

n

n∑
i=1

ψ(τiγN )

1 + cNψ(τiγN )
. (4)

We in fact prove in [5] that such a positive γN is well defined,
unique, and satisfies max1≤i≤n |di − γN |

a.s.−→ 0 (under correct
assumptions). Showing this result is the main difficulty of the
proof and is in particular this part of the proof that fully exploits
Assumption 3. This convergence along with classical random

matrix arguments shall then ensure that for all large n a.s.∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN =
1

n

n∑
i=1

v (τiγN ) τiziz
∗
i

with γN the unique positive solution to (4). It is then immediate
under Assumption 2–3 to see that the result holds true also for
CN 6= IN . This therefore gives the expected result.

IV. CONCLUSION

We have provided a large dimensional analysis for robust es-
timators of scatter matrices of the Maronna-type for elliptical
samples. We specifically showed that, under mild assumptions, the
Maronna estimator behaves similar to a classical sample covariance
matrix model. This opens new roads in the analysis of signal
processing methods based on robust scatter matrix estimation. In
a similar manner as in [3, Theorem 6], it is believed that second
order statistics for well behaved functionals of ĈN can be further
analyzed, which would provide more information on the asymptotic
fluctuations of ĈN − ŜN .
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