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ABSTRACT

This article proposes a random matrix analysis of the spectral prop-
erties of a new robust kernel matrix model adapted to elliptically
distributed large dimensional data mixtures. It is shown that these
kernel matrices, based on robust estimators of scatter, when finely
tuned, can perform asymptotic non-trivial (unsupervised) classifica-
tion while sample covariance matrices are ineffective. Unlike in con-
ventional robust statistics wisdom though, the “maximally robust”
estimators (such as Tyler’s estimator of scatter) also break asymp-
totic classification feasibility. This entails the existence of an optimal
robustness-classification trade-off which we discuss.

Index Terms— Random matrix theory; robust statistics; classi-
fication.

1. INTRODUCTION

Machine learning algorithms for (supervised or unsupervised) clas-
sification draw their strengths from the information redundancy con-
tained in the numerous data from each class. Spectral clustering
methods [1] precisely rely on this idea: the induced redundancy of
the data “pulls” the dominant eigenvectors of the affinity (or kernel)
matrix K = {κ(xi, xj)}ni,j=1 (pairwise comparing through κ(·, ·)
the n data vectors x1, . . . , xn ∈ Rp) to be strongly aligned to the
canonical vectors (j1, . . . , jk ∈ Rn with [ja]i = δxi∈Ca ) of the
classes C1, . . . , Ck [2].

Until recently though, the non-linearity of κ and the non-trivial
dependence in the entries of K have prevented statisticians to fully
comprehend the statistical behavior of the eigenvectors of such a ma-
trix K, even in simple model settings. New techniques in random
matrix theory [3] have lately emerged that now allow for a deep un-
derstanding of spectral clustering methods (and related kernel clas-
sification and learning [4, 5, 6]) under the regime where both data
size p and number n are simultaneously large.

These recent findings, mostly envisioned under a Gaussian mix-
ture model for the data so far, now open the door to more elaborate
data modelling considerations. The question raised in this article
concerns classification of a mixture model under an elliptical noise
setting. That is, we assume that data vectors belonging to class Ca
are of the type xi = µa +

√
τiC

1
2wi for µa ∈ Rp the class mean,

C ∈ Rp×p a common “covariance” (or scatter) matrix, wi ∈ Rn
random of fixed norm and τi > 0 modelling noise impulses of ar-
bitrary amplitude. These models are standard in array processing,
and notably in SAR and hyperspectral imaging [7]. However, most
conventional detection and estimation algorithms suffer to cope with
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heavy-tailed distributions, which have instead been treated in the lit-
erature by means of robust statistical methods [8]. It is in particular
known that the family of M-estimators of scatter, originally devised
by Huber, Maronna and Tyler [9, 10, 11], are appropriate “robust” es-
timators for the covariance matrix C, with Tyler’s estimator claimed
as the “most robust” of the family.

The objective of this article is to demonstrate that these M-
estimators of scatter can be effectively used to perform unsupervised
classification for the aforementioned data model, where conven-
tional kernel methods provably fail. The fundamental intuition
behind this claim lies in a finding from [12]: when the covari-
ance matrix C of a data model xi =

√
τiC

1
2wi assumes the form

C = Ip+λvv
T with v ∈ Rp of unit norm, then the asymptotic spec-

trum of the robust estimator of scatter exhibits an isolated largest
eigenvalue when λ exceeds a threshold and the associated eigen-
vector is aligned to u; this does not hold for the sample covariance
matrix from which it is impossible to estimate v by principle com-
ponent analysis. Our main contribution is to rigorously demonstrate
that a similar phenomenon arises in the present classification setting.
The results are however not completely straightforward: while our
proposed kernel approach based on M-estimators of scatter is shown
to allow for non-trivial class recovery, a robustness-classification
trade-off must be found. Indeed, unlike in the C = Ip + λvvT

model, maximally robust estimators, such as Tyler’s estimator, tend
to “break” class structures, while non-robust estimators fail to bring
the aforementioned data redundancy into the dominant kernel matrix
eigenvectors. The three theorems presented in the article provide
an accurate evaluation of the large n, p spectral behavior of the “ro-
bust kernel” model under study, making it possible to determine the
robust estimator achieving optimal asymptotic classification rate.

The proofs of all results are deferred to an extended version of
the article.

2. MODEL AND PRELIMINARY RESULTS

Let X = [x1, . . . , xn] ∈ Rp×n arising from a k-class mix-
ture model, with X1 = [x1, . . . , xn1 ] in class C1, . . . , Xk =
[xn−nk+1, . . . , xn] in class Ck, where

xi ∈ Ca ⇔ xi = µa +
√
τiC

1
2wi

for wi ∈ Rp distributed uniformly at random on the
√
p-radius

sphere
√
pSp−1 of Rp, µa ∈ Rp and C ∈ Rp×p deterministic, and

τi > 0 deterministic (or random independent ofwi) and independent
of p.

The additional parameters τi provide a natural extension of
Gaussian mixture models with possibly heavy noise tails. The ob-
jective is to classify the data in an unsupervised manner, in the



regime where both p and n are large. To this end, as in [3], we
request that p, n → ∞ in such a way that p/n → c ∈ (0, 1),
‖C‖ = O(1) and, for each a, na/n = O(1) and ‖µa‖ = O(1).
The requirement ‖µa‖ = O(1) ensures that classification does not
become asymptotically impossible nor too easy, as p→∞.

Our proposed object of interest is the inner-product kernel

K =
1

n
D

1
2XTXD

1
2

where D is diagonal and defined through the fixed-point system

D = diag({di}ni=1), di = u

(
1

p
xTi Ĉ

−1xi

)
, Ĉ =

1

n
XDXT

with u : R+ → R+ nonincreasing and such that ϕ(t) = tu(t) is
increasing and bounded as |ϕ|∞ < 1

c
. Under these conditions, it

is proved that the di’s are well defined and unique; the matrix Ĉ
is known as Maronna’s estimator of scatter, extensively studied in
[10, 13].

Our first result shows that, as n, p→∞, the scalars di concen-
trate independently of the µa’s.

Theorem 1 (Limit of di) As n, p→∞, we have

max
1≤i≤n

|di − v(τiγ)| = op(1)

with γ defined as the unique positive solution to

1 =
1

n

n∑
i=1

ψ(τiγ)

1 + cψ(τiγ)

with ψ(t) = tv(t) and v = u◦g−1 for g : R+ → R+, t 7→ t
1−cϕ(t)

and g−1 its functional inverse.

Despite the presence of the µa’s, this is the same result as in [13]
where µ1 = . . . = µk = 0.

In plain words, Theorem 1 states that the di’s, and thus Ĉ andK,
have a controllable asymptotic behavior as n, p→∞. In particular,
assume now for simplicity that the τi’s are i.i.d. with law T . Then
Theorem 1 may be restated as

max
1≤i≤n

|di − v(τiγ)| = op(1)

where γ is the unique positive solution to

1 =

∫
ψ(tγ)

1 + cψ(tγ)
T (dt).

Under these conditions, the spectral measure 1
p

∑p
i=1 δλi(K) of the

eigenvalues ofK is known to have an almost sure weak limitK [14].
The latter is quantified through its Stieltjes transformm(z) =

∫
(t−

z)−1K(dt) for z ∈ C \ supp(K), defined as the unique solution of
the equation

m(z) =

(
−z + 1

γ

∫
ψ(tγ)T (dt)

1 + cm(z)
γ
ψ(tγ)

)−1

. (1)

The value x+ ≡ sup(suppK) can be determined as x+ = x(m+)
for x(·) : R \ {m|0 ∈ 1 + cm

γ
ψ(γT )} → R the explicit function

x(m) = − 1

m
+

1

γ

∫
ψ(tγ)T (dt)
1 + cm

γ
ψ(tγ)

Unbounded support

x+ λ1(K)

Fig. 1. Empirical eigenvalue distribution of K (histrogram) versus
limiting spectral measure K (red) for u(t) = 1 (non robust, top)
versus u(t) = 2/(1 + t) (robust, bottom). Here for τi Student
distributed with unit degree of freedom, k = 3, n = 2000, p = 500,
n1 = n2 = n3/2, [µa]i = 4δai.

and m+ = sup{m | x′(m) ≤ 0}.

Figure 1 depicts the histogram of the eigenvalue distribution of
K (or equivalently of Ĉ), respectively for u(t) = 1 (i.e., for the
non-robust K = 1

n
XTX) and for u(t) = 2/(1 + t), versus the

limiting spectral distributionK obtained from Equation (1) and from
the inverse Stieltjes transform formula

K([a, b]) = lim
ε→0

1

π

∫ b

a

=[m(x+ ıε)]dx

for all continuity points a < b of K. It is observed, as claimed,
that the support of K is unbounded for u(t) = 1 while it remains
compact for robust choices of u(·).

Interestingly, the setting of Figure 1 assumes the presence of
three classes and the spectrum ofK is seen to exhibit at least one iso-
lated eigenvalue, clearly beyond x+, when u(·) is chosen in the fam-
ily of robust estimators. From our previous discussion, this eigen-
value, invisible in the spectrum of 1

n
XTX , is necessarily induced by

the existence of classes. This is the main motivation of the present
article. We will detail next when this phenomenon is observed and
we will show that the eigenvector associated with this (hypotheti-
cal) isolated eigenvalue has a non-trivial correlation to the canonical
vectors of classes j1, . . . , jk ∈ Rn, where [ja]i = δxi∈Ca .

3. MAIN RESULTS

Our main objective is to determine the conditions under which iso-
lated eigenvalues in the spectrum ofK are found and to demonstrate
that their associated eigenvectors have an asymptotic non-trivial
alignment to the canonical class vectors ja ∈ Rn, a = 1, . . . , k,



defined by [ja]i = δxi∈Ca ; that is, these eigenvectors can be used to
achieve non-trivial spectral clustering of the data.

Our first result concerns the eigenvalues of K. Under the nota-
tions above, we have the following result that determines the pres-
ence and locate isolated dominant eigenvalues in the spectrum ofK.

Theorem 2 (Isolated Eigenvalues and Clustering Phase Transition)
The number of eigenvalues of K found beyond x ≥ x+ (i.e., at
macroscopic distance) asymptotically equals the number of eigen-
values ` of Dn·

n
MTM such that, for all large n, p,∫

m(x)v(tγ)T (dt)
1 + cm(x)tv(tγ)

< −1

`

where M = [µ1, . . . , µk] and we denoted DZ· = diag{Za}ka=1.
In particular, spectral clustering asymptotically leads to non-
trivial classification so long that the inequality is met for ` =
‖Dn·

n
MTM‖ and x = x+. These largest eigenvalues λi(K)

asymptotically satisfy∫
m(λi(K))v(tγ)T (dt)
1 + cm(λi(K))tv(tγ)

= − 1

λi(Dn·
n
MTM)

+ o(1).

It is not easy to intuitively assess from Theorem 2 the dependence
in the function u(·) of the existence and expected positions of
isolated eigenvalues in the spectrum of K. Numerically, it is ob-
served that u(t) ∼ 1/t bring the earliest phase transition in the
sense that isolated eigenvalues of K are found for small values
of λi(Dn·

n
MTM). On the opposite, for u(t) ∼ 1, the effect

is opposite: only large values of λi(Dn·
n
MTM) induce isolated

eigenvalues in the spectrum of K. At this point, it thus seems of
utmost interest to chose u(·) to be “maximally” robust, i.e., close to
Tyler’s estimator.

We will now show that this reasoning does not propagate to the
eigenvectors: maximally robust u(·) functions have the undesirable
property to “break” the class information contained in the dominant
eigenvectors of K. To see this, we now evaluate the alignment be-
tween these dominant eigenvectors and the canonical class vectors
j1, . . . , jk.

Theorem 3 (Informative Eigenvectors) Let (λ,u) ≡ (λ(K), u(K))
be an eigenpair ofK linked to the eigenpair ofD√n·

n
MTMD√n·

n

(`,v) ≡ (λ(Dn·
n
MTM), u(D√n·

n
MTMD√n·

n
)) as defined in

the previous theorem. Then, for unit-norm deterministic vectors
a, b ∈ Rn,

aTuuTb =
1

n

∑
i,j

aibj

√
v(γτi)

1 + cm(λ)τiv(γτi)

√
v(γτj)

1 + cm(λ)τjv(γτj)

×
eTi JD√ n

n·
vvTD√ n

n·
Jej∫ v(γt)T (dt)

(1+cm(λ)tv(γt))2

−m(λ)

λm′(λ)
+ op(1).

In particular, letting J = [j1, . . . , jk] ∈ Rn×k,

D 1√
n·
JTuuTJD 1√

n·

=
−m(λ)

λm′(λ)

(∫ √v(γt)T (dt)

1+cm(λ)tv(γt)

)2

∫ v(γt)T (dt)

(1+cm(λ)tv(γt))2

vvT + op(1).

A few remarks are in order to best understand and interpret the
statement of Theorem 3.

Remark 1 (Comments on the eigenvector behavior) By Cauchy–
Schwarz’s inequality and basic algebraic manipulations, it is easily
shown from the second result that

D 1√
n·
JTuuTJD 1√

n·
� vvT + op(1)

in the order of nonnegative definite matrices and, taking the trace on
left and right hand sides, we naturally have

uTJD 1
n·
JTu ≤ 1 + op(1).

The left-hand quantity above measures the effective alignment of u to
the subspace spanned by the canonical class vectors ja: the closer to
1 the less “noisy” the eigenvector. Note here that the case of (asymp-
totic) equality is only met as λ→∞ (that is for easy clustering) and
for v(·) = 1 (i.e., u(·) = 1). Indeed, for arbitrary u(·), as λ→∞,
m(λ) ∼ 1

λ
, m′(λ) ∼ − 1

λ2 , and thus

uTJD 1
n·
JTu

λ→∞−→

(∫ √
v(γt)T (dt)

)2∫
v(γt)T (dt)

(2)

which in general is strictly less than 1, unless T = δ1 or v(t) = 1
for all t. As such, from a “global” standpoint, no robust u(·) al-
lows for asymptotically perfect eigenvector alignment to the canon-
ical class-vectors j1, . . . , jk. In fact, the more different u(·) from
1 (so in particular for u(t) = 1/t), the smaller the right-hand side
limit: maximally robust estimators thus induce minimal alignment of
the dominant eigenvectors to j1, . . . , jk when λ→∞.

But let us fall back on a more standard non-trivial scenario
where λ is not extremely large, for which we know that u(·) = 1,
i.e., K = 1

n
XTX , is not appropriate (since no eigenvector can be

trusted). For the sake of argumentation, consider the setting where
k = 2, n1 = n2 = n/2 and µ1 = −µ2, so that v = [1,−1]T/

√
2

is the only informative eigenvector of D√n·
n
MTMD√n·

n
. In this

setting, correctly clustering vector xi depends on the sign and am-
plitude of [u]i for u the dominant eigenvector of K. Note that
u(0) = v(0) and that both u(t) and v(t) behave as 1/t for large
t. From the first equation in the theorem statement with a = ei and
b = ej , it appears that,

• if v(0) is large (in the extreme case of Tyler’s function u(t) =
1/t, v(0) = ∞), the small τi’s will induce spurious large
values in u which, as a result, reduces the amplitudes of the
majority of the [u]j’s associated to non-small τj’s. This has
the effect of having the two classes collapse onto one another.

• yet, for tv(t) almost constant (which is the case for Tyler), the
denominators 1+cm(λ)v(γτi) do not change sign. And thus,
in this particular “two class of even sizes” scenario, almost
not a single [u]i can cross zero and change sign. This may
be seen as very advantageous. However, from the previous
item, the consequence is that most of the entries of u, except a
few ones (those associated to the smallest τi’s), collapse, thus
preventing the last classification step of the spectral cluster-
ing method (via k-means for instance) to perform any useful
clustering. Also, this reasoning only holds for k = 2 classes
and cannot extend beyond: for k > 2, only the cluster col-
lapsing effect remains which is quite detrimental to cluster-
ing.



The convenient trade-off then consists in (i) avoiding a large spread
of the values of τiv(γτi) to prevent changes in sign in [u]i (espe-
cially for small λ’s) and (ii) avoiding too large values for v(0) to
prevent the collapse effect.

Figure 2 extends this basic interpretation of Theorem 3 to the
case of three classes. Remark that, without any robust processing
(top display), the dominant eigenvectors are meaningless and do not
carry any information about the classes, as predicted. At the other
extreme, for u(t) = 1/t (i.e., for the “maximally robust” Tyler esti-
mator, central display), the main distribution of the data points col-
lapses at the (0, 0) coordinate but are still “visually” somewhat dis-
tinguishable. For an optimal choice of α in the class of functions
u(t) = (1+α)/(t+α) (bottom display), u1 alone is quite discrim-
inative and (u1,u2) has a 2D-Gaussian mixture like shape.

Figure 3 complements Figure 2 by providing the limiting the-
oretical alignment of u1 to the subspace span(j1, . . . , jk), as per
Theorem 3, for u(t) = (1 + α)/(α + t) with different values of α.
Note that, as the dominant eigenvalue λ1(Dn·

n
MTM) increases, the

alignment improves but saturates, thereby confirming Equation (2).
For decreasing values ofα (thus for more robust u), non-trivial align-
ment emerges for smaller values of λ1(Dn·

n
MTM) but with a lower

saturation. As specified by the green marker, the choice α = 1 is
optimal for the value λ1(Dn·

n
MTM) = 5.56 corresponding to the

setting of Figure 2. In this setting, note for instance that the eigen-
vector u1 carries no class information when α ≥ 2.5 (i.e., towards
less robust estimators) and has very weak correlation for α ≤ 0.1
(i.e., towards more robust estimators), which imposes a very careful
choice for α.

4. CONCLUDING REMARKS

The main message of the article is that, while standard kernels are
inapt to retrieve class information under an impulsive data noise
setting, the proposed new class of robust kernels can retrieve the
class information by an appropriate robustness-classification trade-
off in the function u(·). The next natural question is whether u(·)
can be a priori found, given x1, . . . , xn. It can in fact be shown
that, under the setting of Theorem 1, 1

p
xTi Ĉ

−1
−i xi with Ĉi = Ĉ −

1
n
u( 1

p
xTi Ĉxi)xix

T
i is a consistent estimator for τi; from this, γ in

Theorem 1 and m(z), T in (1) can be estimated. This further im-
plies that all quantities of Theorem 3 are known, except for the spec-
trum of Dn·

n
MTM . One may then produce an empirical version

of the graph of Figure 3, however without being capable of a priori
estimating λ1(Dn·

n
MTM). To cope with this problem, a two-step

approach can be imagined whereby a first matrix K is produced for
some u(·) function, the dominant eigenvalue of which is used to es-
timate λ1(Dn·

n
MTM) (by Theorem 2), thus allowing to decide on

an improved choice for u(·).
It remains to know whether the proposed approach, which after

all is quite heuristic, is the best heavy-tailed noise processing pro-
cedure. It would also be desirable to consider the possibly simpler
setting where the τi’s follow a mixture “Gaussian versus outlier” dis-
tribution with a vanishing proportion of outliers. In this case, most
of the results above translate with T = δ1 except that a few entries
of u1,u2, . . . have a spurious behavior, which needs be properly
analyzed. This setting would allow for a “robustification” of classi-
fication algorithms against rare outliers.

Fig. 2. Histogram of the dominant eigenvector u1 (left-hand side)
and a 2D-scatter plot of the two dominant eigenvectors u1 vs. u2

(right-hand side) for K = 1
n
XTX (top) and K = 1

n
D

1
2XTXD

1
2

for u(t) = 1/t (center) or u(t) = α+1
α+t

for optimized oracle α = 1

(bottom). Three classes with [µa]i = 4δia, n1 = n2 = n3/2,
n = 2000, p = 500, τi i.i.d. Student with one degree of freedom.
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Fig. 3. Alignment uT
1JD 1

n·
DTu1 between u1 and

span(j1, . . . , jk) for u(t) = (1 + α)/(t + α) in the setting
of Figure 2, as a function of λ1(Dn·

n
MTM), for different values of

α. Marker indicates setting of Figure 2 (bottom display).
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