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Abstract—A Bayesian inference learning process for cognitive
receivers is provided in this paper. We focus on the particular
case of signal detection as an explanatory example to the
learning framework. Under any prior state of knowledge on
the communication channel, an information theoretic criterion
is presented to decide on the presence of informative data in a
noisy wireless MIMO communication. We detail the particular
cases of knowledge, or absence of knowledge at the receiver,
of the number of transmit antennas and noise power. The
provided method is instrumental to provide intelligence to the
receiver and gives birth to a novel Bayesian signal detector. The
detector is compared to the classical power detector and provides
detection performance upper bounds. Simulations corroborate
the theoretical results and quantify the gain achieved using the
proposed Bayesian framework.

I. INTRODUCTION

Since a few years, the idea of smart receiving devices has
made its way through the general framework of cognitive
radio [2]. The general idea of an ideal cognitive receiver is
a device that is capable of inferring on any information it
is given to discover by itself the surrounding environment.
Such a device should be first able to turn prior information on
the transmission channel into a mathematically tractable form.
This allows then the terminal to take optimal instantaneous
decisions in terms of information to feed back, bandwidth
to occupy, transmission power to use etc. It should also be
capable of updating its knowledge to continuously adapt to
the dynamics of the environment.

In particular, one of the key features of cognitive receivers is
their ability to sense free spectrum. Indeed, when the cognitive
device is switched on, its prior knowledge is very limited but
still it is requited to decide whether it receives informative data
or pure noise due to interfering background electromagnetic
fields, on different frequency bands: this is called the signal
detection procedure.

In the SISO (single input antenna, single output antenna)
scenario, the study of the optimal signal detector from the
Bayesian viewpoint dates back to the work of Urkowitz [1]
on AWGN (additive white Gaussian noise) channels. It was
later extended to more realistic channel models [3]-[4]. By
optimal signal detector, Urkowitz means the process that
enjoys the maximum correct detection rate (i.e. the odds for an
informative signal to be detected as such) for a given low false

alarm rate (i.e. the odds for a pure noise input to be wrongly
declared an informative signal). To the authors’ knowledge, the
MIMO extension has not been studied, because of the almost
prohibitive mathematical complexity of the problem. In tacit
accordance among the scientific community, the usual power
detection technique from Urkowitz was then simply adapted
to the MIMO scenario, e.g. [5].

This raises the interest for new techniques such as coop-
erative spectrum sensing using multiple antennas [5]. Those
techniques propose to improve the signal detection method of
Urkowitz by using extra system dimensions (space dimension
through cooperation among terminals for example). Unfor-
tunately, the approaches used are highly dependent on the
initial assumptions made and have led to many different con-
tributions. For instance, some insightful work emerged which
uses eigenspectrum analysis of the received sampled signals
[10]-[11]. Those might provide interesting results in their
simplicity and their limited need for prior system knowledge;
however, the space over which those techniques are valuable
is usually difficult to determine (this space can be seen as a
multidimensional field spanning from 0 to infinite SNR, from
pure void to heavily loaded environment etc.).

In this work, we introduce a general Bayesian framework
providing a sound basis for signal detection using information
theoretic tools. The methodology is based a consistent1 ap-
proach to deal with prior information. This approach follows
the work of E. T. Jaynes [9] on probability theory seen as
an extension of logic. In this theory, the set of information on
the environment is encoded into probability assignments using
jointly the maximum entropy principle[13] and the Bayes’ rule.

This paper is structured as follows: In section II we for-
mulate the signal detection model. Then in section III, the
optimal Bayesian signal detectors are computed for different
levels of knowledge on the system model. Simulations are
then presented in section IV. Finally, after a short discussion
in Section V on the general framework and its limitations, we
provide our conclusions.

Notations: In the following, boldface lowercase and upper-
case characters are used for vectors and matrices, respectively.

1by consistent we mean that two problems defined with the same amount
of prior information should lead to the same final solution.



We note (·)H the Hermitian transpose, tr(·) denotes the matrix
trace. M(A, N, M) is the set of matrices of size N ×M over
the algebra A. U(N) is the set of unitary square matrices of
size N . The notation PX(Y ) denotes the probability density
function of the variable X evaluated in the vicinity of Y . The
notation (x)+ equals x if x > 0 and 0 otherwise.

II. SIGNAL MODEL

A. Prior information

We consider a MIMO communication system for which
the receiver may have different levels of knowledge. We first
define hereafter the minimum channel state of knowledge
available to the receiving device:
S-i) the receiver has N antennas.

S-ii) the receiver samples as many as L times the input from
the RF interface.

S-iii) naming Ts the sampling period, LTs is supposed less
than the channel coherence time.

S-iv) the signal sent by the transmitter has a constant unit
mean power.

S-v) the MIMO channel has a constant mean power.
We similarly define additional information the receiver may

have:
V-i) the transmitter possesses (and uses) M antennas.

V-ii) the noise power σ2 is known.
This list could of course be extended (e.g. knowledge of the

transmit signal constellation, number of interferers, channel
length...) but our present work shall only treat the enumerated
cases.

B. Model

Given a certain amount of sampled signals, the objective of
the signal detection methods is to be able to optimally infer
on the following hypothesis:
• H0. Only background noise is received.
• H1. Informative data added to background noise is re-

ceived.
Given hypothesis S-iv), the only information on the trans-

mitted signal (under H1) is their unit variance. The maximum
entropy principle claims that, under this limited state of
knowledge, the transmitted data must be modeled as i.i.d.
Gaussian [9]. The data vector, at time l ∈ {1, . . . , L}, is
denoted s(l) = (s(l)

1 , . . . , s
(l)
M )T ∈ CM . The data vectors are

stacked into the receive matrix S = [s(1), . . . , s(L)].
If the noise level σ2 is known, then either under H0 or H1,

the background noise must be represented, thanks to the same
maximum entropy argument as before, by a complex standard
Gaussian matrix Θ ∈ M(C, N, L) (i.e. a matrix with i.i.d.
standard complex Gaussian entries θij) [6]. Under H1, the
channel matrix (constant over the LTs duration) is denoted
H ∈ M(C, N, M) with entries hij being the link between the
jth transmitting antenna and the ith receiving antenna. The
model for H is only described in the following sections since
modeling H is one of the key points in our derivation. The
received data at sampling time l are given by the N×1 vector

y(l) that we stack, over the L sampling periods, into the matrix
Y = [y(1), . . . ,y(L)] ∈ M(C, N, L).

This leads for H0 to the model,

Y = σΘ (1)

with Y and Θ of size N × L.
And for H1 to

Y = [H, σIN ] ·
[
S
Θ

]
(2)

with Y of size N×L. We also denote by Σ the autocovariance
matrix:

Σ = E[YYH] (3)

= L
(
HHH + σ2IN

)
(4)

= U (LΛ)UH (5)

where Λ = diag
(
ν1 + σ2, . . . , νN + σ2

)
, with

{νi, i ∈ {1, . . . , N}} the eigenvalues of HHH and U is
a certain unitary matrix.

Our intention is to make a decision on whether, given
received data Y, the probability for H1 is greater than the
probability for H0. This problem is usually referred to as
hypothesis testing [9]. The decision criterion is based on the
ratio

C(Y) =
PH1|Y(Y)
PH0|Y(Y)

(6)

Thanks to Bayes’ rule [8], this derives into

C(Y) =
PH1 · PY|H1(Y)
PH0 · PY|H0(Y)

(7)

Checking our list of prior information, nothing tells us
whether H1 is more or less probable than H0. Using the
maximum entropy principle on this rather obvious example,
we must set PH1 = PH0 = 1

2 , and then

C(Y) =
PY|H1(Y)
PY|H0(Y)

(8)

reduces to a maximum likelihood criterion.

III. OPTIMAL SIGNAL DETECTION

A. Complete set of knowledge

1) Derivation of PY|Hi
in SIMO case: Let us analyze the

situation when the noise level σ2 (hypothesis V-ii)) and the
number M of transmit antennas are known to the receiver
(hypothesis V-i)) and let us assume in this first scenario that
M = 1. Consider also the case when L > N (this is a
commonly an obvious assumption that the quantity of sampled
periods is large compared to any problem dimension).



a) Pure noise likelihood PY|H0: In this first scenario, Θ
is a Gaussian matrix with independent entries. The distribution
for Y, that can be seen as a random vector with NL entries,
is then NL multivariate uncorrelated complex Gaussian with
covariance σ2INL,

PY|H0(Y) =
1

(πσ2)NL
e−

1
σ2 trYYH

(9)

(10)

by denoting x = (x1, . . . , xN )T the eigenvalue distribution of
YYH, (11) only depends on

∑N
i=1 xi,

PY|H0(x) =
1

(πσ2)NL
e−

1
σ2

PN
i=1 xi (11)

b) Informative data likelihood PY|H1: In scenario H1,
the problem is more involved. The maximum entropy principle
shows that our best guess is for H to be jointly uncorrelated
Gaussian distributed [7]. Up to a scaling factor at the signal
reception, the noise level knowledge allows us to constrain the
rows of H to be of unit mean power 1 (i.e. ∀i, j E[|hij |2] =
1/M ). Therefore, since M = 1, H ∈ CN×1 and Σ = HHH+
σ2IN has N − 1 eigenvalues equal to σ2 and another distinct
eigenvalue λ1 = ν1 + σ2 = (

∑N
i=1 |hi1|2) + σ2. The density

of λ1 − σ2 is a complex χ2
N distribution (which is, up to a

scaling factor 2, equivalent to a real χ2
2N distribution). Hence

the unordered eigenvalue distribution of Σ [18]

PΛ(Λ)dΛ =

1
N

(λ1 − σ2)N−1
+

e−(λ1−σ2)

(N − 1)!

N∏
i=2

δ(λi − σ2)dλ1 . . . dλN (14)

Given model (2), for a fixed H channel, Y is distributed as
a correlated Gaussian matrix,

PY|ΣI1(Y,U, LΛ) =
1

πLN det(Λ)L
e−tr(YYHUΛ−1UH)

(15)

where Ik denotes the prior information “H1 and M = k”.
Since the channel H is unknown, we need to integrate out all

possible channels of the model (2) over the probability space
of N × M matrices with Gaussian i.i.d. distribution. This is
equivalent to integrating out all possible covariance matrices
Σ over the space of such covariance matrices

PY|H1(Y) =
∫
Σ

PY|ΣH1(Y,Σ)PΣ(Σ)dΣ (16)

Using the eigenvalue factorization (5), one can move from
the space of covariance matrices Σ to the space of diagonal
matrices Λ, which is isomorphic to the real positive half-
lign that carries λ1. Also, for any unitary matrix U and any
standard i.i.d. Gaussian vector h, the product U

[
h, σ2IN

]
re-

sults in another matrix
[
h′, σ2IN

]
with h′ standard Gaussian

thanks to the unitary linear product. More generally, for any
zero mean i.i.d. Gaussian vector h, the set {Uh, U ∈ U(N)}
is uniformly distributed on the ensemble of zero mean i.i.d.
Gaussian vectors and of variance hHh. This property leads to

the independence of the respective distributions of U and Λ
in (3), which implies

PY|H1(Y)

=
∫
Σ

PY|ΣH1(Y,Σ)PΣ(Σ)dΣ

=
∫

U(N)×R+N
PY|ΣH1(Y,U, LΛ)PLΛ(LΛ)dUd(LΛ)

=
∫

U(N)×R+N
PY|ΣH1(Y,U, LΛ)PΛ(Λ)dUdΛ (17)

For a precise demonstration of how this is obtained, refer to
[7].

The integrands of (17) are given by both equations (14)
and (15). The complete derivation requires recent tools from
random matrix theory [6], among which the Harish-Chandra
identity [14] which allows to integrate (17) over the space
U(N) of unitary N ×N matrices. The complete derivation is
provided by the authors in an extended version of the current
article [19]. Denoting Jk the integral

Jk(x, y) =
∫ +∞

x

tke−t− y
t dt (18)

the final result expresses as equation (12).
2) Derivation of PY|Hi

in MIMO case: In the MIMO
configuration, PY|H0 remains unchanged and equation (11)
is still correct. For the subsequent derivations, we only treat
the situation when M ≤ N but the case M > N is a trivial
extension.

In this scenario, H ∈ M(C, N, M) is, as already mentioned,
distributed as a Gaussian i.i.d. matrix according to the max-
imum entropy principle. The mean variance of every row is
E[

∑M
j=1 |hij |2] = 1. Therefore MHHH is distributed as a

standard Wishart matrix [6]. Hence, observing that Σ−σ2IN

is the diagonal matrix of eigenvalues of HHH,

Σ = U · diag(ν1 + σ2, . . . , νM + σ2, σ2, . . . , σ2) ·UH (19)

the unordered eigenvalue distribution of Λ can be derived [6]

PΛ(λ1, . . . , λM )dΛ = dλ1 . . . dλM
(N −M)!MMN

N !
×

M∏
i=1

e−M
PM

i=1(λi−σ2) (λi − σ2)N−M

(M − i)!(N − i)!

M∏
i<j

(λi − λj)2 (20)

which is defined on the set
{
λi|λi > σ2, i ∈ {1, . . . ,M}

}
.

Similarly to the previous SIMO derivation, the integration
(17) is carried out and ends up to the generalized MIMO result
of equation (13) in which P(k) is the set of permutations of
{1, . . . , k}, sgn(b) the sign of the permutation b and

α =
(N −M)!M (2L−M+1)M/2

N !πNLσ2(N−M)(L−M)
∏M−1

j=1 j!
(21)

The complete derivation of this solution is proposed in [19].
Decisions regarding the signal detection are then carried

out by computing the ratio C(Y) between equation (13) and
equation (11).



PY|I1(Y) =
eσ2− 1

σ2
PN

i=1 xi

NπLNσ2(N−1)(L−1)

N∑
l=1

e
xl
σ2∏N

i=1
i 6=l

(xl − xi)
JN−L−1(σ2, xl) (12)

PY|IM
(Y) = α · eM2σ2−

PN
i=1 xi

σ2
∑

a⊂[1,N ]

e

PM
i=1 xai

σ2∏
ai

∏
j 6=a1

...
j 6=ai

(xai
− xj)

∑
b∈P(M)

(−1)sgn(b)+1
M∏
l=1

JN−L−2+bl
(Mσ2,Mxai) (13)

B. Incomplete set of knowledge
1) Unknown SNR: Efficient signal detection when the noise

level is unknown is highly desirable. Indeed, if the noise level
were exactly known, some prior noise detection mechanism
would be required. The difficulty here, is handily avoided
thanks to ad-hoc methods that are independent of the noise
level [10]-[11]. Instead, we shall consider some prior infor-
mation about the noise level. Establishing prior information of
variables defined in a continuum is still a controverted debate
of the maximum entropy theory. However, a few solutions are
classically considered that are based on desirable properties.
Those are successively detailed in the following.

Two classical cases are usually encountered,
• the noise level is known to belong to a continuum

[σ2
−, σ2

+]. If no more information is known, then it is
desirable to take a uniform prior for σ2 and then

Pσ2|IM
(σ2)dσ2 =

1
σ2

+ − σ2
−

dσ2 (22)

However, a questionable issue of invariance to variable
change arises. Indeed, if Pσ2|IM

is uniform, σ =
√

σ2 is
not uniform. This old problem is partially answered by
Jeffreys [12] who suggests that an uninformative prior
should be any distribution that does not add informa-
tion to the posterior distribution Pσ2|Y,IM

(for recent
developments, see also [16]). However, in our problem,
the uninformative prior is rather involved so we only
consider uniform prior distribution (22) for σ2 (we denote
I ′M = “H1, σ

2 ∈ [σ2
−, σ2

+]”) and therefore

PY|I′M =
1

σ2
+ − σ2

−

∫ σ2
+

σ2
−

PY|σ2,I′M
(Y, σ2)dσ2 (23)

• one has no information concerning the noise power. The
only information about σ2 is σ2 > 0. Again, we might
want to subjugate σ2 to Jeffreys’ uninformative prior.
However, computing this prior is again rather involved.
The other alternative is to take the limit of (23) when
σ− tends to zero and σ+ tends to infinity. This limiting
process produces an improper integral form. This would
be, with I ′′M the updated background information,

PY|I′′1 = lim
x→∞

1
x− 1

x

∫ x

1
x

PY|σ2(Y, σ2)dσ2 (24)

The computational difficulty raised by the integrals Jk(x, y)
does not allow for any satisfying closed-form formulas for
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Fig. 1. Power detection performance in SIMO - M = 1, N = 8, L = 20,
SNR = −10 dB

(23) and (24). In the following, we only consider the bounded
continuum scenario.

C. Unknown M

In practical cases, the number of transmitting antennas is
known to be finite. If only an upper bound value Mmax for M
is known, a uniform prior for M is brought by the maximum
entropy principle and the probability distribution of Y under
hypothesis I0 which gathers all the system prior information
(under H0 or H1), excluding the knowledge of M , reads

P (Y|I0) =
Mmax∑
i=1

P (Y|“M = i”, I0) · P (“M = i”|I0) (25)

=
1

Mmax

Mmax∑
i=1

P (Y|“M = i”, I0) (26)

which does not meet any computational difficulty.
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Fig. 2. Detection amplitude comparison in SIMO - M = 1, N = 8, L = 20,
SNR = −10 dB

IV. SIMULATION AND RESULTS

In the following, we present results obtained for the afore-
mentioned SIMO and MIMO scenarios, using formulas (12)
and (13) respectively. In the simulations, the hypothesis con-
cerning incoming data, channel aspect and noise figure are
those presented in the model of section II.

As a first example, we consider a SIMO channel with N = 8
antennas at the receiver, L = 20 sampling periods and a
signal to noise ratio SNR = −10 dB. For fair comparison
with classical signal detection algorithms, we stick to the
false alarm rate (FAR) against correct detection rate (CDR)
performance evaluation. Figure 1 presents the respective FAR
and CDR for the classical power detector and for the novel
Bayesian estimator, obtained on 50, 000 channel realizations.
The decision threshold for the power detector is somewhere
around the total mean cumulated power over the antenna array
while the threshold for the Bayesian approach is somewhere
around C(Y) = 0 dB. Since both algorithms scale very
differently, fair comparison is obtained by plotting the CDR
minus FAR gap (which is an objective performance criterion
and that we call detection amplitude) against the FAR. This
is depicted in figure 2. A significant performance gain is
observed in this single transmit antenna scenario. This seems
to imply that second order statistics of the incoming signal are
far from bringing sufficient statistics to represent the complete
information status I1. This also demonstrates that the power
detector is not in fact “optimal” in our Bayesian information-
theoretic framework since the power detector is provided with
no less information than the Bayesian detector.

In figure 3, we took M = 2, N = 8, L = 10 and
SNR = −10 dB, using then formula (13). In this scenario the
classical power detector closes in the gap with the Bayesian
detector, compared to the SIMO situation. This is explained by
the channel hardening effect [17] of multiple antenna systems
that leaves little probability to deep fading channels. Those
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Fig. 3. Detection amplitude comparison in MIMO - M = 2, N = 8,
L = 10, SNR = −10dB

deep fades, which are seen as absence of informative signal
from the classical power detector can be correctly interpreted
by the Bayesian detector. Therefore, for a given SNR, the
more antennas are added to the system, the closer to optimal
the power detector.

Consider now the scenario when the noise variance σ2

is only known to belong to the interval [σ2
−, σ2

+]. The two-
dimensional integration of equation (22) is prohibitive for
producing numerical results. Nonetheless, the continuum of
[σ2
−, σ2

+] can be broken down in a finite number of K subsets
[σ2
− + k∆(σ2), σ2

− + (k + 1)∆(σ2)], for k ∈ {0, . . . ,K − 1}
and ∆(σ2) = (σ2

+ − σ2
−)/K. If ∆(σ2) is chosen small

enough, this should produce a rather good approximation of
(22). This is experimented in figure ?? which demonstrates
the effect of an inaccurate knowledge of the noise power
in terms of CDR and FAR. In this simulation, M = 1,
N = 8, L = 10 and SNR = 2.5 dB. Comparison is made
between the cases of exact SNR knowledge, short SNR range
[σ2
−, σ2

+] = [−1.25, 6.75] dB discretized as a set {0, 2.5, 5} dB
and large SNR range [σ2

−, σ2
+] = [−6.75, 6.75] dB discretized

as a set {−5,−2.5, 0, 2.5, 5} dB. While the short SNR range
provides slightly poorer detection abilities than the perfect
scenario, the large SNR range shows performance impairment.
This suggests that, if the SNR range is totally unknown from
the start, the first signal detection process (before information
update [15]) does not lead to any valuable inference.
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V. DISCUSSION

In the previous framework, we extensively used the max-
imum entropy principle and Bayes’ rule in order to perform
adequate signal detection. The provided Bayesian solutions,
derived from the channel state of knowledge available at the
receiver, are optimal in the proposed probability framework.
However, some limitations can be raised.

First, as stated in III-B1, uninformative priors modeling is
still an incomplete and controversial theory. When one faces
parameters about which no information is known, one might
come up with ad-hoc priors. However, if the quantity of data
provided to the receiver is sufficient enough, then the effect of
an approximate prior usually fades out. Also, the maximum
entropy principle only deals with statistical knowledge and
never deterministic knowledge. One must wait for future tools
to be able to model, for instance, the deterministic knowledge
of the presence of scatterers in the environment.

Also, it was noticed, already in this simple situation, that
the marginalisation computation can easily turn out mathemat-
ically prohibitive. Especially, since random matrix theory [6]
is not a mature theory yet, multi-dimensional problems still
lead to a high computational complexity.

However, Jaynes’ probability theory allows for an easily
extensible and optimal framework in an information theoretic
viewpoint. For instance, if interferers had to be taken into
account in a more general model, then our previous derivations
consist in the particular case of interferers of null power
(Pint = 0). Integrating out the new variable Pint allows for
the introduction of interfering sources in the model. This again
increases the modeling complexity but provides at least some
upper bound on the achievable performance.

Also, the present probability framework only allows to
gather a fixed amount of information from which inference
is performed to assign static probabilities. Dynamics in the
system model are not easy to capture. Nonetheless, updating

Bayesian probabilities given dynamic knowledge at the re-
ceiver is a recent and active research topic [15]; this would
be appropriate for the cognitive receiver to assign time-varying
probabilities. This is envisioned as one of the next fundamental
steps in the characterization of cognitive receivers.

VI. CONCLUSION

In this work, we introduced a general Bayesian framework
for learning in cognitive receivers. This framework is based
on a consistent treatment of the available system information.
Signal detection is treated as an explanatory case of this frame-
work. The performance of the novel Bayesian signal detector
in SIMO and MIMO systems are derived and are shown to
outperform the classical detection techniques. We observed in
particular that in a MIMO system with many antennas the
classical energy detector performs close-to-optimally, while in
SIMO setups, significant gain is provided by the Bayesian
detector. Extensions to other frameworks than the signal
detection one are being conducted.
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[6] A. M. Tulino, S. Verdú, “Random Matrix Theory and Wireless Commu-
nications”, Now Publishers, vol. 1, Issue 1, 2004.

[7] M. Guillaud, M. Debbah, A. L. Moustakas, “Maximum Entropy MIMO
Wireless Channel Models”, Submitted to IEEE Trans. Information Theory
Dec. 2006, http://arxiv.org/abs/cs.IT/0612101

[8] R. T. Cox, “Probability, frequency and reasonable expectation”, American
journal of physics, vol. 14 (1946), pp. 1-13.

[9] E. T. Jaynes, “Probability Theory: The Logic of Science”, Cambridge
University Press, June 2003.

[10] L. S. Cardoso, M. Debbah, P. Bianchi, J. Najim, “Cooperative Spectrum
Sensing Using Random Matrix Theory”, International Symposium on
Wireless Pervasive Computing 2008, Santorini, Greece.

[11] Y. Zeng, Y.-Ch. Liang, “Eigenvalue based Spectrum Sensing Algorithms
for Cognitive Radio”, arXiv:0804.2960

[12] H. Jeffreys, “An Invariant Form for the Prior Probability in Estimation
Problems”, Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences 186 (1007): 453-461, 1946.

[13] E. T. Jaynes, “On the rationale of maximum-entropy methods”, Proc.
IEEE, vol. 70, no. 9, pp. 939-952, 1982.

[14] A. B. Balantekin, “Character expansions, Itzykson-Zuber integrals, and
the QCD partition function”, Phys. Rav. D, vol. 62, no. 8, Oct. 2000.

[15] A. Caticha, “Lectures on Probability, Entropy and Statistical Physics”,
arXiv:0808.0012v1 [physics.data-an], 2008.

[16] A. Caticha, “Maximum Entropy, fluctuations and priors”, A.C., in Max-
imum Entropy and Bayesian Methods in Science and Engineering, ed. by
A. Mohammad-Djafari, A.I.P. Vol. 568, 94 (2001); arXiv.org/abs/math-
ph/0008017.

[17] B. Hochwald, T. Marzetta, V. Tarokh, “Multiple-Antenna Channel Hard-
ening and Its Implications for Rate Feedback and Scheduling”, IEEE
Trans. on Information Theory, vol. 50, no. 9, pp. 1893-1909, 2004.

[18] M. Mehta, “Random Matrices”, Academic Press, 2004.
[19] R. Couillet, M. Debbah, “Multi-Antenna Cognitive Receivers and Signal

Detection”, to be submitted to IEEE Trans. on Information Theory.


