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ABSTRACT
In this paper, we study the capacity limits of dense multi-
antenna systems. We derive asymptotic capacity expressions
for point-to-point and broadcast channels by applying recent
tools from random matrix theory. In the case of broadcast
channels, we focus on linear precoding techniques. Inter-
estingly, the asymptotic capacity depends only on the ratio
between the size of the antenna array and the wavelength.
This provides useful guidelines on the achievable limits of
information transfer. In particular, it is shown that the to-
tal capacity grows unbounded if the transmitter has perfect
knowledge on the channel, while the capacity saturates in
case of no channel knowledge at the transmitter. We provide
numerical results supporting the theoretical derivations.

1. INTRODUCTION
Sixty years ago, Shannon [1] provided a mathematical frame-
work to analyze fundamental limits of information transfer
in the case of single-input single-output channels. He intro-
duced the channel capacity as the maximum rate at which
information can be reliably transmitted. From a purely the-
oretical point of view, there is no bound on the capacity
as both bandwidth and power can be arbitrarily high. How-
ever, in practice, we can only transmit with finite power and
over a restricted frequency band for physical reasons. Re-
cently multiple-input multiple-output (MIMO) systems have
been extensively studied since significant growth in terms of
capacity has been predicted in [2], [3]. More specifically,
in a system with nT transmit and nR receive antennas the
capacity scales linearly with min(nT, nR) for i.i.d (indepen-
dent and identically distributed) Gaussian channels, at high
signal-to-noise ratio (SNR). Again, MIMO systems suggest
that the capacity can increase to infinity if the number of
antennas grows large at both transmitter and receiver.

However, recent works [18] have shown that the capacity,
even for an increasing number of antennas, is limited by the
amount of scatterers in the environment. In other words,

the number of antennas should be less than the number of
degrees of freedom (modes) provided by the medium. Our
goal is to show that, even when the medium offers an infi-
nite number of modes, the capacity is mainly limited by the
ratio between the size of the antenna array and the wave-
length, which we call the space frontier. Indeed, in general,
for a given space, increasing nT or nR decreases the rela-
tive distances between the antennas. Once the distance is
less than half the transmit signal wavelength λ the anten-
nas become correlated [16] and the capacity does not grow
linearly anymore. In case of a circular antenna array it has
been demonstrated by Pollock [4] that the capacity satu-
rates if the number of antennas increases. In this work,
we aim to extend Pollock’s contribution to one- and two-
dimensional antenna arrays. We study the capacity lim-
its for point-to-point MIMO channels as well as for MIMO
Gaussian broadcast channels (MIMO-GBC) with linear pre-
coding. In the latter we assume a single transmitter mod-
eled as a dense line of antennas which transmits to many
independent single-antenna receivers. The general capacity
solutions for those schemes are mathematically involved [9]
and require the application of recent results from random
matrix theory (RMT) and free probability [14].

This paper is organized as follows: Section 2 briefly intro-
duces important tools from random matrix theory. Section
3 presents the capacity limits for the different MIMO chan-
nels. Section 4 gives simulation results validating our theo-
retical claims. Section 5 discusses the theoretical and prac-
tical implications of our results. Finally, section 6 states our
conclusions.

Notation: In the following, boldface lower-case symbols rep-
resent vectors, capital boldface characters denote matrices
(IN is the N × N identity matrix). The Hermitian trans-
pose is denoted (·)H. The set of N × M matrices over the
algebra A is denoted M(A, N, M). The operators det(X)
and tr(X) represent the determinant and the trace of matrix
X, respectively. The symbol E[·] denotes expectation. The
derivative of a function f of a single variable x is denoted
d
dx

f .

2. RANDOM MATRIX THEORY TOOLS
Since the pioneering work of Wigner [19] on the asymptotic
empirical eigenvalue distribution of random hermitian ma-
trices, random matrix theory has grown into a new field
of research in theoretical physics and applied probability.
The main application to communications lies in the deriva-



tion of asymptotic results for large matrices. Specifically,
the eigenvalue distribution of large Hermitian matrices con-
verges, in many practical cases, to a definite probability
distribution, called empirical distribution. For instance, if
X ∈ M(C, N, L) is a Gaussian matrix (i.e. a matrix with
Gaussian i.i.d. entries), the eigenvalue distribution of the
matrix 1

L
XXH is known to converge, when N, L → ∞ and

N/L → c, towards the Marc̆henko-Pastur law µc [14].

RMT provides many tools to handle the empirical distri-
bution of large random matrices. Among those tools, the
Stieltjes transform SX of a large Hermitian matrix X, de-
fined on the half complex space {z ∈ C, Im(z) > 0}, is

SX(z) =

Z +∞

−∞

1

λ− z
f(λ)dλ (1)

where f is the empirical distribution of X.

Silverstein [13] derived a fixed-point expression of the Stielt-
jes transform for a particular random matrix structure in the
following theorem,

Theorem 1. Let the entries of the N × K matrix W
be i.i.d. (independent and identically distributed) with zero
mean and variance 1/N . Let X be an N×N Hermitian ran-
dom matrix with an empirical eigenvalue distribution func-
tion converging weakly to PX(x) almost surely.

Moreover, let Y be a K×K real diagonal random matrix with
an empirical distribution function converging almost surely
in distribution to a probability distribution function PY(x)
as K → ∞. Then almost surely, the empirical eigenvalue
distribution of the random matrix:

H = X + WYWH (2)

converges weakly, as K, N → ∞ but K/N → α fixed, to
the unique distribution function whose Stieltjes transform
satisfies:

SH(z) = SX

„
z − α

Z
y

1 + ySH(z)
dPY(y)

«
(3)

This theorem is generalized by Girko [10] who derived a
fixed-point equation for the Stieltjes transform of large Her-
mitian matrices H = WWH when W has independent en-
tries wij with variance σ2

ij/N such that the set
˘
σ2

ij

¯
i,j

is

uniformly upper-bounded. In the following, we will exten-
sively use this result to derive the asymptotic MIMO capac-
ity.

3. FUNDAMENTAL CAPACITY LIMITS
3.1 Dense MIMO capacity
We first consider a MIMO system consisting of nT transmit-
ters and nR receivers. We use the linear model in which the
received vector y ∈ CnR depends on the transmitted vector
x ∈ CnT via

y =

r
ρ

nT
Hx + n (4)

where H ∈ M(C, nR, nT), n is a zero mean circularly sym-
metric complex Gaussian noise with unit variance and ρ is
the average SNR.
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Figure 1: Spatial correlation vs. d/λ

Let the elements of the transmitted vector x be Gaussian
with covariance matrix E[xxH] = Φ. The ergodic channel
capacity is given by [1]

C(nR, nT) = E

»
log det

„
InR +

ρ

nT
HΦHH

«–
(5)

Following Jakes’ model [12], the spatial autocorrelation func-
tions of fading processes h1(kd) and h2((k+1)d) experienced
by two antennas on a line at position respectively kd and
(k + 1)d is

E[h1(kd)h2((k + 1)d)∗] = J0(2πd/λ) (6)

where λ = c/fc denotes the carrier wavelength, and J0(x)
is the zero-order Bessel function of the first kind. Thus the
most immediate effect that results from locating various an-
tennas in close proximity is that their signals tend to be, to
some extent, correlated. The correlation function of Jake’s
model is depicted in figure 1.

In [4], Pollock et al. considered an increasing number of
antennas in a uniform circular array of fixed radius. Using
bounds on the Bessel function, Pollock derived an approxi-
mation of the channel capacity and shows that the capacity
bound is independent of (nR, nT). In the following, we will
extend these results using RMT. For a given β ∈ R+, we
will consider that nT/nR → β when nT and nR grow large.

The entries of H represent the fading coefficients between
each transmit and each receive antenna normalized such that

E
h
tr

“
HHH

”i
= nRnT (7)

while

E[‖x‖2] = nT (8)

It is useful to decompose the input covariance matrix Φ =
E[xxH] in its eigenvectors and eigenvalues,

Φ = VPVH (9)



According to the maximum entropy principle [5], the most
uninformative density function for H, given nR, nT, l and λ,
is the classical separable (also termed Kronecker or product)
correlation model [6].

H = Θ
1/2
R HwΘ

1/2
T (10)

where the deterministic matrices ΘT and ΘR represent the
correlation between the transmit antennas and the receive
antennas, respectively. The entries of Hw are i.i.d. standard
Gaussian (i.e. with zero-mean and unit variance).

With statistical channel-state information at the transmitter
(CSIT), capacity is achieved if the eigenvectors of the input
covariance Φ coincide with those of ΘT. Consequently, de-
noting by ΛT and ΛR the diagonal eigenvalue matrices of
ΘT and ΘR respectively we have

C(β, ρ) = lim
nT→∞

log det

„
I +

ρ

nT
Λ

1/2
R HwΛ

1/2
T PΛ

1/2
T HH

wΛ
1/2
R

«
(11)

As a direct consequence of theorem 1:

Theorem 2. [11] The capacity of a Rayleigh-faded chan-
nel with separable transmit and receive correlation matrices
ΘT and ΘR and statistical CSIT almost surely converges to

C(β, ρ)

nR
→βE[log(1 + ρ · λTΓ(ρ))]

+ E[log(1 + ρ · λRΥ(ρ))]

− β · ρ · Γ(ρ)Υ(ρ) log e (12)

where

Γ(ρ) =
1

β
E

»
λR

1 + ρ · λRΥ(ρ)

–
(13)

Υ(ρ) = E

»
λT

1 + ρ · λTΓ(ρ)

–
(14)

and the dumb random variables λR, λT are asymptotically
distributed as the diagonal elements of ΛR and PΛT respec-
tively.

3.2 Antenna array geometry and correlation
3.2.1 1D scenario
We will consider a line of length l that is sending information
to a parallel line of length l at a distance L. We consider that
the number of antennas is nT and nR in the transmitting
and receiving line respectively, separated uniformly. In the
transmitting line, the antennas are put in the y-axis with
the following positions Tk, k ∈ [0, nT − 1]:

T0 = (0, 0), . . . , Ti = (0, i
l

nT − 1
), . . . , Tn = (0, l) (15)

The line of receivers is at a distance L from this line, par-
allel and with distribution of the antenna positions Rk, k ∈
[0, nR − 1]:

R0 = (L, 0), . . . , Ri = (L, i
l

nR − 1
), . . . , Rn = (L, l) (16)
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Figure 2: One-dimensional antenna array geometry

The antenna setup is depicted in figure 2.

The autocorrelation matrices ΘT and ΘR have the same
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with N equal to nT or nR respectively for ΘT or ΘR. The
normalized matrices 1

nR
ΘR and 1

nT
ΘT are Wiener class

Toeplitz matrices [20], i.e.

lim
nR→∞

1

nR

nRX
k=1

| [ΘR]1,k | < ∞ (18)

There is no exact expression for the eigenvalues like in the
case of a circulant matrix. However the eigenvalue distri-
bution of a Wiener class Toeplitz matrix for large (nR, nT)
converges to that of the circulant matrix, both with the same
first row [20]. The set of the eigenvalues of 1

nR
ΘR and 1

nT
ΘT

for large (nR, nT) is the image of the function

F1 : N → R

n 7→ lim
N→∞

1

N

N−1X
p=−(N−1)

J0

„
2πl

λ

p

N − 1

«
cos(2πn

p

N
)

(19)

= 2

Z 1

−1

J0

„
2πl

λ
x

«
cos(2πnx)dx (20)

Since F (N) is a discrete countable set (and not a continuum),
the limit eigenvalue distribution for ΘT and ΘR is a sum of
Dirac functions

pν(ν) = lim
N→∞

1

N

NX
k=0

δ (ν −N · F1(k)) (21)



At this point it is important to note that the cumulated
surface of both antenna arrays must be constant regardless
of nR and nT. Hence increasing the number of antennas
must lead to a reduction of the individual antenna surface.
As a result, the power per receive antenna must scale with
1/nR, hence

ρ =
ρ′

nR
(22)

for a constant total SNR ρ′.

We first consider the case where no CSIT is available, hence
a uniform power allocation over the transmit antennas is
optimal (i.e. P = InT).

Applying theorem 2 and expanding the expectations for
large (nR, nT), we have

C(β, ρ′) =βnR
1

nT

nTX
k=0

log(1 +
ρ′

nR
nTF1(k)Γ)

+ nR
1

nR

nRX
k=0

log(1 +
ρ′

nR
nRF1(k)Υ)

− nRβ · ρ′

nR
· Γ(ρ′)Υ(ρ′) log(e) (23)

with

Γ(ρ′) =
1

βnR

nRX
k=0

nRF1(k)

1 + ρ′F1(k)Υ
(24)

Υ(ρ′) =
1

nT

nTX
k=0

nTF1(k)

1 + ρ′βF1(k)Γ
(25)

In the limits, this is

C(β, ρ′) →
+∞X
k=0

log(1 + ρ′βF1(k)Γ)

+

+∞X
k=0

log(1 + ρ′F1(k)Υ)

− βρ′Γ(ρ′)Υ(ρ′) log(e) (26)

with

Γ(ρ′) =
1

β

+∞X
k=0

F1(k)

1 + ρ′F1(k)Υ
(27)

Υ(ρ′) =

+∞X
k=0

F1(k)

1 + ρ′βF1(k)Γ
(28)

where ∀k ∈ N, F1(k) ≥ 0 as eigenvalues of a covariance
matrix. Also

P+∞
k=0 F1(k) = 1 as the trace of ΘR/nR. This

implies straightforwardly that Γ and Υ are finite and there-
fore the total capacity C is also finite.

Further note that (21) only depends on the system parame-
ters through the ratio l/λ. This leads to the conclusion that
the MIMO capacity limit with no CSIT only depends on the
ratio l/λ and β.

Consider now the case of perfect CSIT. Here, it is optimal to
distribute the power according to the water-filling solution

[21]. That is, only sufficiently strong eigenmodes of the chan-
nel (10) are used for transmission. If we allocate the power
constrained by (8) on the dominating channel eigenmodes

(i.e. the relevant eigenvalues of 1
nT

Θ
1/2
R HwΘTHH

wΘ
1/2
R ),

then for large nT, the capacity grows unbounded. As a re-
sult, increasing the number of antennas at either side of the
transmission allows to achieve arbitrarily high capacity un-
der the assumption of perfect CSIT. However, CSIT has a
cost in terms of rate which can be extremely high in mobile
environments.

3.2.2 2D scenario
The previous scheme can be extended to two dimensions.
Here we increase the density of antennas uniformly along
each dimension of the surface. Consider a rectangular sur-
face of respective height and width lx and ly.

Then, equation (21) has an equivalent version in two dimen-
sions,

pν(ν) = lim
N→∞

1

N

NX
k=0

δ(ν −N · F2(k)) (29)

with

F2(k) =2

Z lx

−lx

Z ly

−ly

J0

0@2πlx
λ

s
u2

x +

„
ly
lx

«2

u2
y

1A
× cos(2πν(ux + uy))duxduy (30)

From (29), one verifies that the final capacity formulation
depends on the two constant values lx/λ and lx/ly, or simi-
larly on the two ratios lx/λ and ly/λ. Note that the capacity
for a given surface might then differ depending on the shape
of the surface.

3.3 MIMO-GBC capacity
We assume a GBC generated by a multi-antenna transmit-
ter and many non-cooperative single-antenna receivers. It
has been shown in [8] that the capacity region is achieved
by Dirty-Paper Coding (DPC). However, to derive closed-
form expressions, we restrict our analysis in the following
to suboptimal linear precoding techniques. As the receivers
are uncorrelated, the GBC channel model is

H = HwΘ
1/2
T (31)

and the transmitted signal x is obtained by

x = Gu (32)

where the entries of the data vector u ∈ CnR are of unit
power, and G ∈M(C, nT, nR).

3.3.1 ZF-beamforming
Zero-Forcing (ZF) beamforming is a mere channel inversion
precoding. If the data vector u of unit power is intended to
be transmitted then, with the same notation as in previous
sections, the channel model reads

y =

r
ρ

nT
Hx + n (33)



with (
x = αH′−1

u , if β = 1

x = α
“
H′HH′

”−1

H′H , if β > 1
(34)

for H′ =
q

1
nT

H.

The parameter α is set here to fulfill the transmission power
constraint

E[‖x‖2] = nT (35)

which leads to

α2 =
1

1
nT

tr (H′H′H)−1 (36)

where

1

nT
tr

“
H′H′H

”−1

→
Z

1

ν
f(ν)dν (37)

with f the empirical distribution of H′H′H.

Contrary to [22] in which no power limitation is imposed to
x, no asymptotic expression for α is known when (nR, nT)
grow large to the authors’ knowledge.

We recognize in (37) the Stieltjes transform of f(x) in x = 0.

Recall that HHH = HwΘTHH
w. Thus by diagonalizing

ΘT = UΛTUH with U a unitary matrix, we have

H′H′H =

„
1√
nT

HwU

«
ΛT

„
1√
nT

UHHH
w

«
(38)

in which the entries of 1√
nT

HwU are i.i.d. with zero mean

and variance 1
nT

, and ΛT is distributed as in (21).

Applying theorem 1, we then prove the existence of SH′H′H ,
when nT/nR → β, that satisfies

SH′H′H(z) =

„
−z + β

Z
νpν(ν)

1 + ν · SH′H′H(z)
dν

«−1

(39)

When expanding x in the system model (4), one obtains
parallel AWGN channels with the per user capacity:

Cu(β, ρ) = log(1 + ρα2) (40)

= log(1 + ρSH′H′H(0)−1) (41)

In our specific correlation scenario, this capacity limit is in
fact null. Indeed, if nT = nR,

1

nT
tr

“
H′H′H

”−1

=
1

nT
tr

“
(UHHH

wHwU)−1Λ−1
T

”
(42)

where H̃w = HwU is a Gaussian random matrix with entries
of variance 1/nT.

Lemma 3. For any two Hermitian n×n matrices A and
B with eigenvalues λi(A) and λi(B) respectively arranged
in decreasing order,

tr(AB) ≥
nX

i=1

λi(A)λn−i+1(B) (43)

From lemma 3, we have that

tr
“
(H̃H

wH̃w)−1Λ−1
T

”
≥

nRX
i=1

λi((H̃
H
wH̃w)−1)λn−i+1(Λ

−1
T )

(44)

The eigenvalues of H̃H
wH̃w are known [14] to be asymptoti-

cally distributed as the Marc̆henko-Pastur law on a bounded
(positive) support excluding zero. Therefore the eigenvalues

of (H̃H
wH̃w)−1 are also bounded on a finite positive support.

Call λmin the minimum of those eigenvalues, we have,

tr
“
(H̃H

wH̃w)−1Λ−1
T

”
≥ λmin

nRX
i=1

λi(Λ
−1
T ) (45)

Observing then that

λnR(ΛT) =

nR−1X
p=−(nR−1)

J0

„
2πl

λ

p

nR − 1

«
cos(2π

p

N
) → 0

(46)
we conclude

tr
“
(H̃H

wH̃w)−1Λ−1
T

”
→ +∞ (47)

Therefore, α2 → 0 and the ZF capacity goes down to zero for
increasing nR = nT. The case nT > nR solves by dividing
H̃w in a block of size nR×nR and a block (nT−nR)×nR, and
observing that the capacity limited for the former already
grows to infinity.

3.3.2 MMSE-beamforming
Let us consider in this section the case of regularized beam-
forming. We still have the system model in (33) with:

x =
“
H′HH′ + αInT

”−1

H′Hu (48)

When α = 0, we fall back the zero-forcing solution. The
parameter α is set so to fulfill the transmission power con-
straint (8) which leads to

1 =
1

nT
tr

„“
H′HH′ + αI

”−1

H′HH′
“
H′HH′ + αI

”−1
«
(49)

=
1

nT
tr

„“
H′HH′ + αI

”−2

H′HH′
«

(50)

→
Z

ν

(ν + α)2
f(ν)dν (51)

=

Z „
1

(ν + α)
− α

(ν + α)2

«
f(ν)dν (52)

= SH′H′H(−α) + α
d

dx
SH′H′H(−α) (53)

The received vector signal can be written as:

y =
√

ρ ·H′
“
H′HH + αI

”−1

H′Hu + n (54)



Let us denote H′H = [h1, . . . ,hnR ]. We will focus on user i
without loss of generality. At the output of receiver i,

yi =
√

ρ · hH
i

“
H′HH′ + αI

”−1

hiui

+

nRX
k=1,k 6=i

hH
i

“
H′HH′ + αI

”−1

hkuk

+ n (55)

Lemma 4. [15] Let A be a deterministic N ×N complex
matrix with uniformly bounded spectral radius for all N . Let
x = 1√

N
[x1, . . . , xN ]T where the {xi} are i.i.d complex ran-

dom variables with zero mean, unit variance and finite eighth
moment. Then

E
»
| xHAx− 1

N
trA |4

–
≤ c

N2
(56)

where c is a constant that does not depend on N or A.

Corollary 5. This result ensures that

xHAx− 1

N
trA → 0 (57)

almost surely.

Henceforth we write UH
i = [h1, . . . ,hi−1,hi+1, . . . ,hnR ] (in

other words, we remove column i). Applying the matrix
inversion lemma yields

hH
i

“
H′HH′ + αI

”−1

=
hH

i

`
UH

i Ui + αI
´−1

1 + hH
i

`
UH

i Ui + αI
´−1

hi

We can therefore use lemma 4 as the elements of hi are
i.i.d. due to the one sided correlation assumption (otherwise,
it would not work when correlation is considered on both
sides).

Since the removal of a single column in the large matrix H′

does not affect tr(H′HH′), we asymptotically have

hH
i

“
UH

i Ui + αI
”−1

hi → hH
i

“
H′HH′ + αI

”−1

hi (58)

hence

hH
i

“
H′HH′ + αI

”−1

→
hH

i

`
UH

i Ui + αI
´−1

1 + SH′H′H(−α)

Denote γ = (1 + SHHH(−α))−2. The SINR expression is
therefore given by:

SINRi =
ργhH

i W2
i hi

ργhH
i WiUH

i UiWihi + 1
(59)

with Wi =
`
UH

i Ui + αI
´−1

. This leads in the limit to a
user-independent SINR:

SINR →
ργS2

H′H′H(−α)

ργ
`
SH′H′H(−α) + α d

dx
SH′H′H(−α)

´
+ 1

(60)
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Figure 3: Ergodic MIMO capacity without CSIT
CnR(β, ρ) for different l/λ, nR = nT, ρ′ = 20 dB
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Figure 4: Ergodic MIMO capacity with CSIT
CnR(β, ρ) for different l/λ, nR = nT, ρ′ = 20 dB

The corresponding achievable rate per user is:

Cu(β, ρ) = log(1 + SINR) (61)

Diagonalizing UHU, we observe that the numerator in (59)
converge to finite strictly positive values (for the regulariza-
tion term α ensures that no term diverges). However, as
already noted, the strongest eigenvalue for ΘT grows lin-
early with nT, hence, thanks to lemma 3, the denominator
grows to infinite for large nT. This proves that the per-user
capacity falls down to zero. Therefore, similarly to the case
of ZF-beamforming, MMSE-beamforming does not ensure
non-null per-user capacity for large (nR, nT).

As a consequence, it turns out that additional antennas
might impair the achievable transmission rate. This is ex-
plained by the fact that loading power on more and more
correlated antennas, instead of available channel modes, is
an inefficient power allocation strategy.
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4. SIMULATION AND RESULTS
Let us first consider the MIMO scenario with dense arrays
of antennas both at transmitter and receiver sides. Fig-
ures 3 and 4 present the results of ergodic capacities found
by numerical simulation. The latter are compared against
the theoretical limits derived from (11) (which is obtained
by solving numerically (27),(28)). Note that the capacity
increases first to a maximum for small (nR, nT) and then
decreases to the limit capacity.

In figure 3, equal power allocation is applied (i.e. P = InT)
to the transmitting line model. We observe, as previously
concluded, that the capacity saturates for large (nT, nR).
The saturation only depends on the ratios β and l/λ. In
figure 4, we apply waterfilling (i.e. loading the transmit
power on the dominant eigenmodes of the channel), which
leads to a non-saturating capacity.

In the case of MIMO-GBC with correlated transmitters, un-
correlated receivers and linear ZF-precoding, the per-user
capacity saturates for large (nR, nT) when nT > nR. If
transmit antenna correlation is considered the per-user ca-
pacity is going to zero. Note that the capacity increases
for low (nR, nT) until a turning point where the transmit
antenna correlation leads to an ill-conditioning of the over-
all channel matrix. The maximum capacity is reached for
d < λ/2. This is observed in figure 5. We also provide, in fig-
ure 6, the total capacity of ZF-beamforming for nT = 3

2
nR.

It is observed that even the total capacity cannot sustain
the poor conditionning of large channel matrices and the
capacity decreases down to zero. In the simulation results
of figure 7, MMSE-beamforming is applied. Since no closed-
form solution for α under the constraint (53) is available, the
algorithm carries out an exhaustive search for this param-
eter. We observe again that the per-user capacity is going
asymptotically zero, which is in accordance with equations
(60) and (61). The same observation can be made for the
overall system capacity in figure 8. In both cases the curves
are decreasing less rapidly with increasing (nR, nT) than in
the ZF precoding scheme.

5. DISCUSSION
A few limitations are worth mentioning about our previous
conclusions. In the MIMO case we stated that, under per-
fect CSIT, the channel capacity grows unbounded even with
a strong antenna correlation at the transmitter side. This
might indicate that densifying the array of transmit anten-
nas is the preferred option to increase the capacity (rather
than increasing the transmitted power or the channel band-
width). However, perfect CSIT implies that the receiver has
to feed back channel information to the transmitter. For a
dense MIMO system, this introduces an immense feedback
overhead, thus reducing the achievable throughput.

The same conclusion stands for channel state information at
the receiver (CSIR). As Tse demonstrated [17], the capacity
with perfect CSIR is limited by the coherence time of the
channel. If the number of antennas grows, one needs to esti-
mate more and more degrees of freedom with less power. An
optimal trade-off must then be found between increasing the
number of antennas (and thus the capacity) and decreasing
the amount of channel state information required for reliable
transmission.

However, if the channel coherence time is infinite and a long
synchronization stage prior to data transmission is allowed,
then the channel capacity can effectively go unbounded. The
only limitation that would then appear lies in the physical
ability to design a dense array of antennas on a limited sur-
face. Also, for the model to be realistic, an increasingly large
number of scatterers in the medium is mandatory.

6. CONCLUSION
In this work we analyzed the asymptotic capacity of differ-
ent dense antenna MIMO configurations. We have shown
in particular that in the absence of CSIT, the capacity is
bounded and related to the ratio between the size of the
antenna array and the wavelength. However, we found that
the capacity is unbounded if perfect CSIT is available. This
rate can only be achieved with a great amount of feedback
which might be impossible for time varying channels.
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