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A random matrix analysis of online learning:
coping with limited memory resources

Anonymous Authors1

Abstract

This article introduces a random matrix frame-
work for the analysis of online learning, a particu-
larly relevant setting for a more sober processing
of large amounts of data with limited memory and
energy resources. Assuming data x1,x2, . . . ar-
rives as a continuous flow and a small number L
of them can be kept in the learning pipeline, one
has only access to the diagonal elements of the
Gram kernel matrix: [KL]i,j =

1
px

⊤
i xj1|i−j|<L.

Under a large dimensional data regime, we derive
the limiting spectral distribution of the punctured
kernel matrix KL and study its isolated eigenval-
ues and eigenvectors, which behave in an unfamil-
iar way. We detail how these results can be used to
perform efficient online kernel spectral clustering
and provide theoretical performance guarantees.
Our findings are empirically confirmed on image
classification tasks. Leveraging on optimality re-
sults of spectral methods for clustering, this work
offers insights on efficient online clustering tech-
niques for high-dimensional data.

1. Introduction
The ever-increasing amount of data coupled with the need
for a more sober use of computational power puts online
learning in the spotlight, as a way to deal with numerous and
very large data with low memory resources. Be it because
the volume of data is too high to be stored or because one is
restricted to the sole use of a regular laptop, online learning
appears as a handy and frugal way to process information.
As data arrives in the learning pipeline, it is processed at a
low computational cost before being discarded altogether,
thus inducing a limited memory footprint.

Numerous works have proposed various algorithms to clus-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ter data streams in an unsupervised manner (see, e.g., (Ghes-
moune et al., 2016) and references therein). Among standard
methods are the construction of a graph (Fritzke, 1995) or a
tree of clusters (Zhang et al., 1996) which is updated as new
data arrives, or else, the formation of clusters using a dis-
tance function, as in k-means, (Aggarwal et al., 2003) or a
density-based method (Ester et al., 1996). Such algorithms
are often adaptations of existing offline algorithms, like
OpticsStream (Tasoulis et al., 2007), StreamKM++ (Acker-
mann et al., 2012), online k-means (Liberty et al., 2015), etc.
These techniques operate on the entire feature space and
their performance deteriorate as the dimension of the data in-
creases. Therefore, (Aggarwal et al., 2004) proposed to clus-
ter data streams after a projection on a lower-dimensional
space. Sketching methods (Keriven et al., 2017; Gribon-
val et al., 2021) are also convenient to perform large-scale
learning on data streams with a limited memory budget;
the idea being to summarize the dataset into a single vector
computed in one pass over the data.

Adapted from the standard spectral clustering algorithm
(von Luxburg, 2007), techniques like incremental spectral
clustering (Ning et al., 2010; Dhanjal et al., 2014) have
been proposed to handle evolving data. Yet, they become
quite memory-demanding when the number of samples grow
large. Better suited to streaming applications, the spectral
clustering algorithm of (Yoo et al., 2016) constructs a spec-
tral embedding of the stream in one pass by adapting ideas
from matrix sketching (Liberty, 2012).

Spectral clustering has indeed remarkably good perfor-
mances on high-dimensional data as it manages to greatly
reduce the dimensionality by keeping just a few leading
spectral components. It is therefore computationally less
demanding than many other classical clustering algorithms.
Moreover, it reaches the optimal phase transition threshold
(i.e., it performs better than random guess as soon as the-
oretically possible) (Onatski et al., 2013) and achieves the
optimal clustering error rate in the Gaussian mixture model
(Löffler et al., 2020).

It is also of particular interest from a random matrix the-
ory perspective. Following the works of (El Karoui, 2010;
Cheng & Singer, 2012) on the spectrum of kernel random
matrices, (Couillet & Benaych-Georges, 2016) propose an
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A random matrix analysis of online learning

analysis of kernel spectral clustering with numerous high-
dimensional data. Then, (Mai & Couillet, 2017) demon-
strate that many standard machine learning algorithms in
fact suffer from being ill-used when dealing with such data.
Besides, given some data matrix X =

[
x1 . . . xn

]
∈

Rp×n, (Couillet et al., 2021) show that it is possible to get
huge reductions in computational and storage costs with
almost no performance loss by puncturing the data, i.e.,
keeping only a few elements of X and computing only a
few elements of the Gram kernel matrix K = 1

pX
⊤X. In

addition, (Liao et al., 2020) demonstrate that, when care-
fully employed, sparsification and quantization of K incur
negligible performance loss, while providing a great com-
putational gain.

In the light of these numerous benefits of spectral clustering
when dealing with high-dimensional data, of the practicality
of online learning to handle large data streams with limited
memory, and of the promising path shown by random matrix
theory towards resource-efficient learning with performance
guarantees, the present work introduces an “online spectral
learning” algorithm to which we attach a rigorous perfor-
mance analysis using random matrix theory.

The algorithm goes as follows: supposing that, due to mem-
ory limitations, only a small number L of data points can
be kept in the pipeline, the computation of the n× n Gram
kernel matrix is limited to the elements which are in a radius
L around the diagonal of K. This results in the following
punctured kernel matrix model

KL =
X⊤X
p
⊙T

where⊙ denotes the Hadamard product and T ∈ {0, 1}n×n
is a Toeplitz mask: Ti,j = 1|i−j|<L. A careful adaption of
spectral clustering is then performed on KL to retrieve the
class information.

In technical terms, the present analysis derives the spectral
distribution of KL and analyzes the behavior of a few iso-
lated eigenvalues (called spikes) which carry information
(that is, indicators for the data classes) in their associated
eigenvectors. Two new interesting behaviors are observed:
unlike classical spectral clustering, due to the Toeplitz filter,
the number of informative spikes can potentially grow very
large even in the case of binary classification. In addition,
the eigenvectors are strongly tainted (in a way “convolved”)
by the eigenvectors of the Toeplitz mask, which then re-
quires some careful post-processing for classification. Our
results particularly shed light on how the learning perfor-
mance is altered by the dimension of the data and the size of
the pipeline, thus providing an analysis of the performance
versus cost trade-off of online learning.

In a nutshell, our main contributions may be listed as follows

• we derive the limiting eigenvalue distribution of KL

as n, p, L → +∞ for data arising from a Gaussian
mixture model: xi ∼

∑K
k=1 πkN (µk, Ip);

• for centered data drawn from a two-class mixture
xi ∼ N (±µ, Ip), we show that a phase transition phe-
nomenon occurs: depending on the signal power ∥µ∥,
some eigenvalues of KL isolate and their eigenvectors
carry information about the classes;

• we propose an algorithm to retrieve information
from isolated eigenvectors, thus performing high-
dimensional “online spectral clustering”;

• simulations of online spectral clustering on Fashion-
MNIST and BigGAN-generated images confirm the
predicted good behavior of the algorithm and support
our theoretical findings.

Proofs and simulations All proofs are deferred to the ap-
pendix. Python codes to reproduce simulations are available
as supplementary material.

2. Online learning model and problem setting
2.1. General framework

Let X =
[
x1 . . . xn

]
∈ Rp×n be a collection of n data

samples of dimension p. They are noisy observations of K
unknown classes whose centroids are

[
µ1 . . . µK

]
≡

M ∈ Rp×K . Also define the n×K binary matrix J such
that Ji,j = 1 if xi belongs to class j and 0 otherwise.

We make the following assumptions.

Assumption 2.1. The rows of J are independent realiza-
tions of a multinomial distribution with one trial and K
outcomes, i.e., the class of xi does not depend on the class
of {xj}j ̸=i.
Assumption 2.2 (Non-triviality condition). M is uniformly
bounded in spectral norm as n, p→ +∞.

Assumption 2.3. The random matrix X can be decomposed
into a deterministic signal matrix P = MJ⊤ and a random
standard Gaussian noise matrix Z with independent entries1:
X = P+ Z.

Remark 2.4. The non-triviality condition (assumption 2.2)
places the work under scenarios of practical relevance, in the
sense that the problem is asymptotically (as n, p, L→ +∞)
neither too easy nor too hard. The clustering error rate is
therefore not expected to vanish asymptotically.

In the considered online setting, only the L previously
seen data points are kept in memory. Thus, the element

1The “interpolation trick” from (Lytova & Pastur, 2009) en-
ables to interpolate the results to non-Gaussian noise, but we keep
the Gaussian assumption for simplicity of exposition here.
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A random matrix analysis of online learning

Ki,j =
1
px

⊤
i xj of the Gram kernel matrix can be computed

only for |i− j| < L. This is represented by the pointwise
application of a Toeplitz mask T =

(
1|i−j|<L

)
1⩽i,j⩽n

re-
sulting in

KL =
X⊤X
p
⊙T with T =




1 ... 1 0
...

. . . . . .

1
. . . 1

. . . . . .
...

0 1 ... 1



.

As standard (offline) spectral clustering is “optimal”2, we
argue that spectral clustering on KL ought to achieve good
performance at least for not too small (2L− 1) /n ratios.
Our technical goal is thus to first provide a description of the
spectral behavior of KL as n, p and L are large. To this end,
we place ourselves under the regime n, p, L → +∞ with
p/n→ c ∈ ]0,+∞[ and (2L− 1) /n→ ε ∈ ]0,+∞[.

2.2. The circulant approximation

An important trick to derive our main result lies in the fact
that the Toeplitz matrix T can be approximated (Gray,
2006) to some extent by its circulant “version” C =(
1|i−j|<L + 1|i−j|>n−L

)
1⩽i,j⩽n

. Denoting {τk}0⩽k<n
and {ψk}0⩽k<n their respective eigenvalues (which depend
on n and L), then for fixed L and any continuous function
f : R→ R,

lim
n→+∞

1

n

n−1∑

k=0

|f(ψk)− f(τk)| = 0.

Remark 2.5. Keep in mind that, in our case, n and L grow
together at the same rate. Therefore, approximating T by
C is only reasonable if ε is sufficiently small.

The core advantage of C is that, unlike T, its eigendecom-
position is well-known:

C = FΨF∗

where F is the n×n Fourier matrix (Fi,j = 1√
n
e−2iπ ij

n ) and
Ψ = diag (ψk)0⩽k<n is the diagonal matrix of eigenvalues.
The latter are a sampling of the Dirichlet kernel:

ψk = νL

(
2kπ

n

)
with νL(x) =

sin((2L− 1) x2 )

sin(x2 )
.

In Figure 1 are superimposed to the graph of νL the eigen-
values of C and3 T. The τk’s roughly follow the graph of
νL, as if they were noisy versions of the ψk’s.

2In that it performs better than random guess as soon as theo-
retically possible (Onatski et al., 2013).

3Although there is a natural order for the eigenvalues of C
given by ψk = νL(

2kπ
n

), we use a small trick to get the corre-

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

0

10

20

νL(x)
ψk
τk

Figure 1. Graph of νL on [0, 2π[ (one period) with a plot of ψk =
νL(

2kπ
n

) and τk for 0 ⩽ k < n (the eigenvalues of C and T
respectively). Experimental setting: n = 50, L = 10.

3. Main results
Following standard methods in random matrix theory (Couil-
let & Liao, 2021), the large dimensional spectral behavior of
KL is accessible through an analysis of the resolvent matrix

Q(z) = (KL − zIn)−1

defined for all z ∈ C \Sp(KL), where Sp(KL) denotes the
set of eigenvalues of KL. Notably, the Stieltjes transform
of the empirical spectral measure µn = 1

n

∑
λ∈Sp(KL) δλ

of KL (from which the spectral measure itself can be recov-
ered) is the normalized trace of its resolvent:

mn(z) ≡
∫

R

µn(dt)

t− z =
1

n
trQ(z).

The resolvent also encapsulates information about the eigen-
vectors of KL: given a closed positively-oriented complex
contour Γ circling around an eigenvalue λ of KL and leav-
ing all the other eigenvalues outside, − 1

2iπ

∮
Γ
Q(z) dz =

uu∗, where u is a unit eigenvector associated to λ.4

3.1. Large dimensional spectral behavior

Our main theorem provides a deterministic equivalent of
the resolvent when the Toeplitz mask T is approximated

by its circulant version C, i.e., Q̃(z) =
(
K̃L − zIn

)−1

with K̃L = X⊤X
p ⊙ C. Namely, we find a determinis-

tic matrix Q̄(z) such that, for any sequence of determin-
istic matrices An ∈ Rn×n and vectors an,bn ∈ Rn of
unit norm (spectral norm and Euclidean norm respectively),
1
n trAn(Q̃(z)−Q̄(z))→ 0 and a⊤n (Q̃(z)−Q̄(z))bn → 0
almost surely as n, p, L → +∞. This will be simply de-
noted Q̃(z)↔ Q̄(z).

sponding order for the eigenvalues of T: after numerically comput-
ing them in descending order, we apply the same permutation that
maps the eigenvalues of C in descending order to (ψ0, . . . , ψn−1).
This yields the corresponding (τ0, . . . , τn−1).

4This is only true if λ has multiplicity 1. In the general case, the
integral equals the projection matrix on the eigenspace associated
to λ.
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A random matrix analysis of online learning

Theorem 3.1 (Deterministic equivalent of Q̃). Let z ∈ C \
lim supn,p,L→+∞ Sp(K̃L) and define m(·) as the unique
Stieltjes transform solution to

1 + zm(z) =
1

n

n−1∑

k=0

m(z)ψk

1 + m(z)
p ψk

. (1)

Under assumptions 2.1 – 2.3, if
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1, then

Q̃(z)↔ Q̄(z) ≡ m(z)

(
In +

P⊤P
p
⊙ FΛF∗

)−1

where Λ = m(z)Ψ
(
In + m(z)

p Ψ
)−1

is a diagonal matrix,
thus FΛF∗ is circulant.

Proof. See appendix B.

A first observation from theorem 3.1 is that Q̄(z) is the
inverse of a perturbation of the identity which is not low
rank. This strikingly differs from standard spiked random
matrix models (Baik & Silverstein, 2006; Benaych-Georges
& Nadakuditi, 2011) where a low-rank perturbation of the
identity in the “population” matrix (here P) usually results
in the presence of only a few isolated eigenvalues in the
“sample” matrix (here K̃L). This being said, here, in stan-
dard settings, most eigenvalues of P⊤P

p ⊙ FΛF∗ are small
enough for only a few number of corresponding isolated
eigenvalues in the spectrum of K̃L to appear.

Yet, as a result of this full-rank perturbation of the identity
property, it may be unclear whether m(·) is the Stieltjes
transform of the limiting spectral distribution of K̃L or not
(this is important to ensure that isolated eigenvalues are
truly informative). This issue is handled along the proof
of theorem 3.1 (see proposition B.4) where it is shown
that 1

n tr Q̃(z) → m(z) almost surely as n, p, L → +∞,
thereby proving the (almost sure) convergence of the em-
pirical spectral measure of K̃L to a measure µ which is the
inverse Stieltjes transform5 of m.
Remark 3.2 (Link with (Marčenko & Pastur, 1967)). In the
particular case n = 2L− 1, the mask becomes C = 1n1

⊤
n

and K̃L = K. And, since ψ0 = n and ψk = 0 for 1 ⩽ k <
n, equation 1 becomes

zm2(z) + (cz − c+ 1)m(z) + c = 0

which is the canonical equation defining the Stieltjes trans-
form of the Marčenko-Pastur distribution. The closer ε is
to 1, the closer to the Marčenko-Pastur distribution is the
limiting spectral distribution of K̃L.

5If µ has a density d(x) at x ∈ R, then d(x) =
limy↓0

1
π
ℑm(x+ iy).
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Figure 2. Empirical spectral distribution (ESD) and limiting spec-
tral distribution (LSD) of K̃L. The y-axis is in log scale.
Top: noise only, xi ∼ N (0, Ip). Bottom: two-class mixture,
xi ∼ N (±µ, Ip) with ∥µ∥ = 2. Green dashed lines are the
asymptotic positions of the spikes ξ̄k. Experimental setting:
n = 2500, L = 750 and p = 1250 (left) or p = 75 (right).

In practice, rather than computing m(z) directly from equa-
tion 1, it is easier to solve numerically the following fixed-
point equation in η0

η0 =
1

n

n−1∑

k=0

ψ2
k

p (1− z − η0) + ψk

and deduce m(z) = 1
1−z−η0 .

Figure 2 displays, in log scale, the empirical spectral dis-
tribution of K̃L under two different settings with its limit-
ing spectral distribution computed by inverting the Stieltjes
transform given by theorem 3.1. Two kinds of data are
presented: noise-only, xi ∼ N (0, Ip), (top row) and a two-
class mixture xi ∼ N (±µ, Ip) (bottom row). Notice how
the shape of the distribution on the left column resembles the
Marčenko-Pastur one (yet, some eigenvalues are negative
here) while the second distribution has a completely differ-
ent shape (there even are several bulks) for the same value of
ε. This reveals that the parameter c also affects the closeness
of the limiting spectral distribution to the Marčenko-Pastur
one. Also note that, under the two-class mixture setting,
more than one isolated eigenvalue pop out of the limiting
support. It now remains to give a close look to their associ-
ated eigenvectors to understand how to exploit the latter in
a spectral clustering perspective.
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A random matrix analysis of online learning

3.2. Phase transition and spike behavior

In this section, we thus focus back on our original clas-
sification objective. We consider two classes C± whose
centroids are ±µ, i.e.6, P = µj⊤ with ji = +1 if xi ∈ C+
and ji = −1 if xi ∈ C−. This corresponds to a two-class
mixture with globally centered data.

Because of the rank-one structure, using the relation M⊙
ab∗ = [diag a]M [diagb]

∗, the deterministic equivalent
of the resolvent has a much simpler expression:

Q̄(z) = m(z) [DjF]

(
In +

∥µ∥2
p

Λ

)−1

[DjF]
∗

where Dj = diag j is the diagonal matrix induced by vector
j. Now, Q̄(z) no longer involves a Hadamard product and
we already have its eigendecomposition since In + ∥µ∥2

p Λ
is diagonal and DjF is unitary. Note that the columns of
DjF are simply the vectors of the Fourier basis with their
sign switched at coordinates i such that xi ∈ C−.

With a deeper analysis of the resolvent Q̄(z), the following
theorem provides the position of the isolated eigenvalues
and the shape of their associated eigenvectors.
Theorem 3.3 (Phase transition, isolated eigenvalues and
eigenvector alignments.). Given an integer 0 ⩽ k < n, let

ξ̄k =
∥µ∥2 + 1

p
ψk


1 +

p

n

n−1∑

l=0

ψl(
∥µ∥2 + 1

)
ψk − ψl




and

ζ̄k =
∥µ∥2

∥µ∥2 + 1


1− p

n

n−1∑

l=0


 ψl(
∥µ∥2 + 1

)
ψk − ψl



2

 .

The following propositions are equivalent.

1. ψk ̸= 0 and7 ξ̄k ̸∈ suppµ.

2. ζ̄k > 0.

3. ξ̄k is a singular point of Q̄(z), i.e., the almost sure
asymptotic position of an isolated eigenvalue of K̃L.

Then, in this case, Uk =
[
ul
]
ψk=ψl
0⩽l<n

is an isometric ma-

trix gathering all the eigenvectors of K̃L whose associated
eigenvalues converge to ξ̄k and

UkU
∗
k ↔ ζ̄k [DjF]Dk [DjF]

∗

where Dj = diag j and Dk = diag (1ψk=ψl
)0⩽l<n.

6Consistently with the previous setting, M =
[
+µ −µ

]
and

Ji,· =
[
1xi∈C+ 1xi∈C−

]
.

7Since µ is the limiting spectral distribution of K̃L, suppµ =

lim supn,p,L→+∞ Sp(K̃L).

Proof. See appendix C.

To better understand this theorem, recall that, in theorem
3.1, we predicted the presence of a few isolated eigenvalues
in the spectrum of K̃L. Theorem 3.3 details this assertion
by specifying the number of spikes (#

{
ζ̄k > 0

}
) and their

position ξ̄k. The quantity ζ̄k can really be seen as an “indica-
tor of spike” as it tells whether an isolated eigenvalue exists
and, if it does, the closer ζ̄k is to 1, the better is the “quality”
of the information carried in the corresponding eigenvector,
i.e., the greater is the signal-to-noise ratio (see Figure 3).

Another difference with classical spiked random matrix
models is that each asymptotic spike ξ̄k, which has the same
multiplicity as the population spike ψk, is rarely simple8.
However, for finite values of n, p, L, the corresponding
eigenvalues of K̃L are not necessarily degenerate (with
probability one, they are not), but they have the same limit9.

One also notices from theorem 3.3 that the number of iso-
lated eigenvalues could potentially grow very large as ∥µ∥
increases. Indeed, the value of ∥µ∥ at which ζ̄k changes
sign (i.e, when one or more eigenvalues isolate from the
bulk around ξ̄k during the phase transition) is given by

1− p

n

n−1∑

l=0


 ψl(
∥µ∥2 + 1

)
ψk − ψl



2

= 0.

Therefore, potentially any eigenvalue could leave the bulk,
but this is prevented by the non-triviality condition (assump-
tion 2.2): ∥µ∥ = On,p,L→+∞(1). Moreover, since most
ψk’s are small (see Figure 1), the corresponding ξ̄k’s fall
into the bulk and there are only a few spikes visible in prac-
tice. Yet, it is common to see negative isolated eigenvalues
(see Figure 2). Indeed, since ψk can be negative, there can
be spikes on both sides of the spectrum.

When positive, the quantity ζ̄k is the asymptotic alignment
between the empirical eigenvector uk and the corresponding
information vector vk = [DjF]·,k = F·,k ⊙ j, i.e.,

|u∗
kvk|2

a.s.−−−−−−−→
n,p,L→+∞

ζ̄k.

Thus, ζ̄k measures the quality of the empirical eigenvector
uk. Said differently, uk is a noisy version of a vector vk =
F·,k ⊙ j and the noise level is indicated by 0 ⩽ 1− ζ̄k < 1.

Figure 3 displays the value of ζ̄+k = max(ζk, 0) as a func-
tion of ∥µ∥ for the setting corresponding to the bottom right
part of Figure 2. The empirical alignment of the dominant
eigenvector u0 with v0 = 1√

n
j fits perfectly with the curve

8ψ0, and ψn/2 when n is even, are the only simple eigenvalues
of C.

9In this case, ξ̄k = ξ̄l for all l such that ψk = ψl.
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Figure 3. Asymptotic alignment ζ̄+k versus ∥µ∥ for three values of
k. The empirical alignment is computed as the mean of |u∗

0v0|2
on 10 realizations (error bars indicate the standard deviation). Ex-
perimental setting: n = 2500, p = 75, L = 750.

of ζ̄+0 predicted by theorem 3.3. Moreover, notice the in-
teresting fact that ξ̄1 has several phase transitions: as ∥µ∥
grows, it appears once, then disappears and appears once
again! This is due to the limiting spectral distribution hav-
ing several bulks under this setting (see Figure 2). The first
time this spike appears, it is located between two bulks. It
then goes through the rightmost bulk (so it is no longer an
isolated eigenvalue thus ζ̄1 ⩽ 0), and finally goes out on the
right edge of the distribution.

This last result may sound awkward and possibly testify of
the suboptimality of our approach (when the signal-to-noise
ratio increases, the information attached to some eigenvec-
tors vanishes). This conclusion is not so immediate though,
as the classification information is still contained within
other eigenvectors which, as ∥µ∥ increases, do carry in-
creasingly clearer information.

3.3. Discussion on the circulant approximation

The approximation of the Toeplitz mask T by the circulant
mask C used in the previous theorems 3.1 and 3.3 can be
seen as a way to remove undesired edge effects, whose size
is governed by L.10 If L is chosen small compared to n,
edge effects are expected to be negligible and the previous
results can plausibly be extended to the original setting.

To adapt the previous results from C to T, one only
needs to change the eigenvalues and eigenvectors, i.e., re-
place ψk by τk, the eigenvalues of T, and replace F by[
g0 . . . gn−1

]
≡ G, an eigenbasis of T.

Very precise predictions on the original model can be made
with these simple changes. Comparisons between these and
reality are provided in appendix D.

10Remove the first and last L− 1 rows and columns of C and
T and we are left with the same two Toeplitz matrices.
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Figure 4. Phase transition position (∥µ∥2) of the dominant eigen-
vector of the kernel matrix against the sparsity parameter (ε) with
n/p = 100. Classification with a given method is only possible
above the corresponding curve. The black dashed line is the opti-
mal phase transition (with all the data available). Green: online
kernel spectral clustering (circulant mask). Red: regular kernel
spectral clustering with L = nε+1

2
points. Blue: punctured (of-

fline) kernel spectral clustering (Bernoulli mask).

4. Online spectral clustering of large data
The previous results find direct applications to the online
clustering of high-dimensional data.

4.1. Performance vs. cost trade-off in online learning

The phase transition position provided by theorem 3.3 lets
us determine under which setting classification is possible
or not. Consider the dominant eigenvector u0. If ζ̄0 ⩽ 0
then no eigenvalue isolates from the bulk and classification
cannot be performed. After the phase transition, ζ̄0 > 0
and the closer it is to 1, the closer u0 is to v0 = 1√

n
j. The

fluctuations of the entries of u0 happen to be asymptoti-
cally Gaussian and pairwise independent (Kadavankandy &
Couillet, 2019) with, for equal-size classes, mean ±

√
ζ̄0/n

and variance
(
1− ζ̄0

)
/n. Thus, the asymptotic cluster-

ing error is given by Q
(√

ζ̄+0 /
(
1− ζ̄+0

))
, where Q is the

Gaussian tail function: Q(x) = 1√
2π

∫ +∞
x

e−
t2

2 dt.

Figure 4 shows the phase transition position ∥µ∥2 as a func-
tion of ε = 2L−1

n , with the asymptotic clustering error of
online kernel spectral clustering, when n/p = 100. For
comparison, the phase transition curves of the following
two methods are also represented:

• Batch clustering, i.e., standard L× L kernel spectral
clustering with the L data points available in memory.
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• Punctured kernel spectral clustering (Zarrouk et al.,
2020; Couillet et al., 2021), i.e., offline clustering per-
formed with a sparsified kernel matrix Kε =

X⊤X
p ⊙B,

where Bi,j = Bj,i ∼ Bern(ε) and Bi,i = 1.11

As ε grows, the phase transition position of online spectral
clustering rapidly reaches the optimal threshold ∥µ∥2 =

√
c

under which no information can be recovered (regardless
of the method used and the data available). Moreover, the
clustering error decreases to 0 as ∥µ∥ increases (the signal
is more powerful). A good compromise between memory
usage and performance appears to be 0.1 ⪅ ε ⪅ 0.2, i.e.,
n
20 ⪅ L ⪅ n

10 as it keeps L (i.e., the memory usage) small
while not impairing much the performance.

Our method performs better (i.e., the phase transition occurs
earlier) than the naive setting performing standard clustering
on batches of L points available in memory. It is also able to
classify the n previous points (and not only the L previous
ones) at any time, although the corresponding data points
have left memory. It is instructive to see that, under the same
sparsity level of the kernel matrix, the puncturing method
performs better. Yet, this requires the access to n data points
to compute Kε, which is not possible in online learning.

4.2. Online clustering algorithm

Before diving into the simulations, we detail a clustering
algorithm based on our previous results. We here use the
banded version of the kernel matrix: KL = X⊤X

p ⊙ T
(the circulant mask was only useful for theoretical consid-
erations) and recall the notation of the eigenbasis of T:[
g0 . . . gn−1

]
≡ G.

We consider a data stream of length T (possibly infinite).
At each time step, a new vector xt arrives and the kernel
matrix is updated:

[
K

(t)
L

]
i,j

= 1
px

⊤
t−n+ixt−n+j1|i−j|<L.

Remark 4.1 (Choice of n and eigenvector localization). It is
important to emphasize that n is not the length of the data
stream (given by the newly-introduced parameter T ⩾ n).
As KL has size n × n, one can “only” classify the last n
points of the stream, even when discarded from the length-L
memory (older points are no longer classified though).

The parameter n is left for the user to choose, accounting
for L and our previous considerations on the performance
(Figure 4) and memory limitations: O(Lp+ Ln) space is
needed to store the data and the kernel matrix. Moreover, as
the graph associated to KL becomes sparser (n ≫ L), its
eigenvectors tend to localize (Hata & Nakao, 2017), making
classification more challenging.

11This of course is not doable with a memory bank of size L but
the comparison is interesting as the number of entries in Kε and
KL is the same.

As per standard kernel spectral clustering, we use the domi-
nant eigenvectors of K(t)

L to estimate the classes. The last n
points of the stream are classified at each time step so each
point is classified n times. Then, the final class estimate
can be chosen by a majority vote. However, because of the
particular shape of the eigenvectors caused by the Toeplitz
mask12 (see Figure 6), standard clustering algorithms such
as k-means perform poorly on such spectral embeddings.
Therefore, we propose a new way to cluster the data.

Remark 4.2. The eigenvectors of K(t)
L can be quickly com-

puted at a low cost with a warm start of the power iteration
algorithm from the previously computed eigenvectors of
K

(t−1)
L .

In a binary setting with globally centered data, classification
can be performed using only the dominant eigenvector u(t)

0

of K
(t)
L . Relying on the alignment of u

(t)
0 with v

(t)
0 =

g0 ⊙ j(t) (theorem 3.3) and the fact that the coordinates of
g0 have constant sign, the class of xt−n+i can be estimated
from the sign of

[
u
(t)
0

]
i
. This online clustering procedure

is summarized in Algorithm 1.

Algorithm 1 Online kernel spectral clustering (binary)

Output: class estimators
{
Ĉ+t , Ĉ−t

}
n⩽t⩽T

.

for t = 1 to T do
Get a new point xt into the pipeline.
Compute x∗

txt−l for l = 0 to L− 1.
Update K

(t−1)
L into K

(t)
L .

if t ⩾ n then
u
(t)
0 ← PowerIteration(K(t)

L ,u
(t−1)
0 ).

Ĉ±t ←
{
xt−n+i |

[
u
(t)
0

]
i
≷ 0
}

.
end if

end for

In appendix E, we also propose a (more complex) online
spectral clustering algorithm capable of handling K-class
mixtures and test it on Fashion-MNIST images.

Note that this algorithm can easily be adapted to a setting
where more than one vector xt arrives at each time step (and
this quantity does not need to be constant in time).

4.3. Simulations on real-world images

We illustrate our findings with two applications on image
classification tasks. We first apply Algorithm 1 on globally
centered and scaled VGG-features (Simonyan & Zisser-
man, 2015) of randomly BigGAN-generated images (Brock
et al., 2019) of tabby cats and collie dogs (see Figure
5). The vectors thus generated have dimension p = 4096

12The dominant eigenvector of T, for example, is not constant,
contrary to the first Fourier mode with the circulant mask.
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Figure 5. Examples of BigGAN-generated images: collie (top)
and tabby (bottom).
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Figure 6. Dominant eigenvector of K(t)
L with BigGAN-generated

images (top) and Fashion-MNIST images (bottom). Experimen-
tal setting: T = 20 000, n = 1000, p = 4096, L = 100 (Big-
GAN images) and T = 14 000, n = 1000, p = 784, L = 100
(Fashion-MNIST).

and simulate a stream of length T = 20 000 with evenly
likely cats and dogs. In addition, our algorithm is applied
to a stream made of T = 14 000 centered raw-images from
the Fashion-MNIST dataset (Xiao et al., 2017). Their di-
mension is p = 784 and we want to discriminate coat
versus ankle boot in an online fashion. In both cases,
we choose n = 1000 and L = 100.

Figure 6 shows the shape of the dominant eigenvector u(t)
0

at a given time during the execution of the algorithm. We
clearly see a separation between the classes. For both set-
tings, Figure 7 depicts the mean clustering error at t0 +∆t
of a data point seen at t0, as well as the overall classification
error obtained after a majority vote (green dashed line), to
be compared with the classification error obtained with a
T ×T offline kernel spectral clustering13 (black dotted line).
The mean classification error remains constant with ∆t, thus
showing that our algorithm does not lose any discriminative

13For which optimality results are known.
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Figure 7. Classification error against delay ∆t on BigGAN-
generated images (top) and Fashion-MNIST images (bottom).
This is the mean classification error at time t0 +∆t of a point ar-
rived at t0. The green dashed line indicate the overall classification
error when the class is chosen by a majority vote. The black dotted
line is the classification error obtained with a T × T offline kernel
spectral clustering. Experimental setting: as in Figure 6.

power between t0 and t0 + n− 1. The classification perfor-
mances of our algorithm are very close to those of the full
spectral clustering but require much less memory resources:
O(Lp+ Ln) against O(Tp+ T 2) space for the storage of
the data and the kernel matrix.

5. Concluding remarks
Leveraging tools from random matrix theory, the article
shows that, under limited memory resources, near-optimal
performances on high-dimensional data can be achieved us-
ing an online kernel spectral clustering algorithm. By means
of a thorough asymptotic analysis, we specify the optimal
performances achievable when learning on a data stream,
which we exploit to propose a novel efficient clustering
algorithm adapted to memory-limited systems.

The article not only introduces a novel algorithm for online
classification, but also paves the path towards the question
of large-dimensional learning in data streaming with theoret-
ical guarantees. Still, here we miss an information-theoretic
result of optimality for the proposed approach (which ex-
ists in the unbanded case), a key direction we currently
investigate.
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A. Useful identities
Let P + Z = X ∈ Rp×n where P is a deterministic matrix and Z is a random matrix with independent entries Zi,j ∼
N (0, 1).

Let Q =
(

X⊤X
p ⊙R− zIn

)−1

where R ∈ Rn×n is symmetric with bounded entries and z ∈ C \ Sp
(

X⊤X
p ⊙R

)
.

Proposition A.1.
∂Qk,l

∂Zi,j
= −1

p

([
XDR·,jQ

]
i,k

Qj,l +Qk,j

[
XDRj,·Q

]
i,l

)

Proof.

∂Qk,l

∂Zi,j
=

[
∂Q

∂Zi,j

]

k,l

= −1

p

[
Q
∂
(
X⊤X⊙R

)

∂Zi,j
Q

]

k,l

= −1

p

n∑

r,s=1

Qk,rQs,l
∂

∂Zi,j

n∑

t=1

Xt,rXt,sRr,s

= −1

p

n∑

r,s,t=1

Qk,rQs,lRr,s

[
∂Xt,r

∂Zi,j
Xt,s +Xt,r

∂Xt,s

∂Zi,j

]

= −1

p

(
n∑

s=1

Qk,jQs,lRj,sXi,s +
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r=1

Qk,rQj,lRr,jXi,r

)
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∂Zi,j
= −1

p

(
Qk,j

[
XDRj,·Q

]
i,l

+Qj,l

[
XDR·,jQ

]
i,k

)
since Q⊤ = Q.

Lemma A.2 ((Stein, 1981)). Let Z ∼ N (0, 1) and f : R → R be a differentiable function such that E [|f ′(Z)|] < +∞
and f(z) = oz→±∞(ez

2

). Then,
E [Zf(Z)] = E [f ′(Z)] .

Proof. Using integration by parts,

E [Zf(Z)] =
1√
2π

∫

R
zf(z)e−

z2

2 dz =
1√
2π

[
−f(z)e− z2

2

]+∞

−∞
+

1√
2π

∫

R
f ′(z)e−

z2

2 dz.

In the right-hand side, the first term vanishes since f(z) = oz→±∞(ez
2

) and the second term equals E [f ′(Z)].

Proposition A.3. Let A ∈ Rn×n be a matrix with bounded entries.

1.

E
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Z⊤Z
p
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)
Q

]

i,j
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1

p
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where D(i)
A,R is a diagonal matrix such that

[
D(i)

A,R

]
k,k

= 1
p

∑n
l=1 Ql,lAi,lRl,k = 1

p trDR·,kQDAi,· .

Proof. We start with the first equation.
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.

From proposition A.1, we know that
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therefore,
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Moreover,
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So we finally have
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The second equation can be shown in the same way.

E
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Z⊤P
p
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We are left to show the third equation.
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B. Proof of theorem 3.1
The study the spectral behavior of K̃L = X⊤X

p ⊙C is made through its resolvent

Q =
(
K̃L − zIn

)−1

where we have dropped the dependence in z to ease notations.

B.1. Analysis of the model with noise only: X = Z

In order to find the limiting spectral distribution of K̃L = X⊤X
p ⊙C, we first consider the simpler model with noise only,

i.e.,

X = Z, K̃L =
Z⊤Z
p
⊙C, Q =

(
Z⊤Z
p
⊙C− zIn

)−1

.
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B.1.1. A FIRST EQUIVALENT OF THE RESOLVENT

Let us first consider the following expression of the resolvent

Q = −1

z
In +

1

z

(
Z⊤Z
p
⊙C

)
Q

which is a rewriting of Q−1Q = In.

In order to find a deterministic equivalent of Q, we study its expected value

E [Qi,j ] = −
1

z
δi,j +

1

z
E
[(

Z⊤Z
p
⊙C

)
Q

]

i,j

.

Taking A = C in the first equation of proposition A.3, we have

zE [Qi,j ] = −δi,j +Ci,iE [Qi,j ]− E
[
ηi,iQi,j

]
+ O
n,p,L→+∞

(
1

p

)

with η ∈ Cn×n such that

ηr,s =
1

p
tr

(
Q

(
Z⊤Z
p
⊙ [C·,rCs,·]

))
.

Thus, denoting Dη = η ⊙ In, we have the matrix equivalence zQ↔ −In +Q−DηQ from which we deduce that the
resolvent is equivalent to a diagonal matrix:

Q↔ (In − zIn −Dη)
−1
.

B.1.2. ANALYSIS OF THE MATRIX η

Now taking A = C·,rCs,· in the first equation of proposition A.3, we have

E
[
ηr,s

]
=

1

p

n∑

t=1

Ct,rCs,tE [Qt,t]−
1

p

n∑

t=1

E
[
1

p
tr

(
Q

(
Z⊤Z
p
⊙ [C·,tCs,·]

))
Ct,rQt,t

]
+ O
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(
1

p

)

=
1

p

n∑

t=1

Ct,r

(
Cs,tE [Qt,t]− E

[
ηt,sQt,t

])
+ O
n,p,L→+∞

(
1

p

)

and, using the previous matrix equivalent of Q, we can write η ↔ η̄ where η̄ is a deterministic matrix such that

η̄r,s =
1

p

n∑

t=1

Ct,r

Cs,t − η̄t,s
1− z − η̄t,t

.

Therefore, η̄ has a circulant structure. Indeed, for all d ∈ Z,

η̄r+d,s+d =
1

p

r+L−1∑

t=r−L+1

Cs+d,t+d − η̄t+d,s+d
1− z − η̄t+d,t+d

d ∈ Z.

where we write η̄i,j for any i, j ∈ Z to represent η̄(i mod n),(j mod n).

B.1.3. FROM η̄ TO THE LIMITING SPECTRAL DISTRIBUTION

Since η̄ is circulant, it has a constant diagonal: η̄k,k = η0. Then, we can recognize a matrix product in the expression of
η̄r,s:

η̄r,s =
1

p

1

1− z − η0

n∑

t=1

Ct,r

(
Cs,t − η̄t,s

)
=

1

p

1

1− z − η0
[C (C− η̄)]r,s
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thus, η̄ = (p (1− z − η0) In +C)
−1

C2 and, since η0 = 1
n tr η̄,

η0 =
1

n

n−1∑

k=0

ψ2
k

p (1− z − η0) + ψk
.

Recalling that Q↔ (In − zIn −Dη)
−1, we can state the following theorem.

Theorem B.1 (Deterministic equivalent of Q when X = Z). Let z ∈ C \ lim supn,p,L→+∞ Sp(K̃L). Then,

Q↔ m(z)In with m(z) =
1

1− z − η0
and η0 is solution to the fixed-point equation

η0 =
1

n

n−1∑

k=0

ψ2
k

p (1− z − η0) + ψk
.

m is the Stieljes transform of the limiting spectral distribution of K̃L = Z⊤Z
p ⊙C.

Remark B.2. Notice that m(z) ̸= 0. Indeed, for a given z ∈ C \ lim supn,p,L→+∞ Sp(K̃L), (1− z − η0)m(z) = 1 and
the fixed-point equation prevent η0 from going to ±∞.
Proposition B.3 (Fixed-point equation for m(z)). Under the setting of theorem B.1, m(z) is also solution to a fixed-point
equation:

1 + zm(z) =
1

n

n−1∑

k=0

m(z)ψk

1 + m(z)
p ψk

.

Proof. A rewriting of η̄ = (p (1− z − η0) In +C)
−1

C2 yields another interesting formula:

η̄ =

(
p

m(z)
In +C

)−1(
p

m(z)
In +C− p

m(z)
In

)
C

η̄ = C−
(
In +

m(z)

p
C

)−1

C

therefore,

η0 =
1

n
trC

︸ ︷︷ ︸
=1

− 1

n

n−1∑

k=0

ψk

1 + m(z)
p ψk

and, since 1− η0 = 1
m(z) + z, we get the result.

B.2. Analysis of the full model: X = P+ Z

So far, we have been able to find a deterministic equivalent of the resolvent under the setting where X = Z, i.e., when the
observations are composed of noise only.

Now, we consider the setting where the observations are composed of a signal corrupted with additive noise:

X = P+ Z, K̃L =
X⊤X
p
⊙C, Q =

(
X⊤X
p
⊙C− zIn

)−1

.

Let us first prove that the limiting spectral distribution is unchanged.
Proposition B.4.

∣∣∣∣∣∣
1

n
tr

(
(P+ Z)

⊤
(P+ Z)

p
⊙C− zIn

)−1

− 1

n
tr

(
Z⊤Z
p
⊙C− zIn

)−1
∣∣∣∣∣∣

a.s.−−−−−−−→
n,p,L→+∞

0.
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Proof.
(P+ Z)

⊤
(P+ Z)

p
⊙C =

Z⊤Z
p
⊙C+A⊙C

with A = Z⊤P
p + P⊤Z

p + P⊤P
p . Notice that, Z⊤P

p , P⊤Z
p and P⊤P

p are uniformly bounded in spectral norm (from the
non-triviality condition) and their rank is at most K. Thus A is also uniformly bounded in spectral norm and has rank at
most 3K.

Let QA =
(

Z⊤Z
p ⊙C+A⊙C− zIn

)−1

and Q0 =
(

Z⊤Z
p ⊙C− zIn

)−1

. Using singular-value inequalities which can
be found in theorems A.12 and A.14 of (Bai & Silverstein, 2010),

∣∣∣∣
1

n
trQA −

1

n
trQ0

∣∣∣∣ =
1

n
|trQ0 (A⊙C)QA|

⩽
1

n
∥Q0∥ ∥QA∥

n∑

i=1

si(A⊙C) from theorems A.12 and A.14

⩽
1

n
∥Q0∥ ∥QA∥

√√√√n

n∑

i=1

s2i (A⊙C) from Jensen’s inequality

⩽
1

n
∥Q0∥ ∥QA∥

√√√√n

n∑

i=1

s2i (A) since ∥A⊙C∥F ⩽ ∥A∥F
∣∣∣∣
1

n
trQA −

1

n
trQ0

∣∣∣∣ ⩽
√

3K

n
∥Q0∥ ∥QA∥ ∥A∥ = O

n,p,L→+∞

(
1√
n

)
since A has rank at most 3K.

Since
(

Z⊤Z
p ⊙C− zIn

)−1

↔ m(z)In according to theorem B.1, proposition B.4 justifies that the limiting spectral
distribution is unchanged by the presence of signal.

As previously, we consider a rewriting of Q−1Q = In,

Q = −1

z
In +

1

z

(
(P+ Z)

⊤
(P+ Z)

p
⊙C

)
Q

and we study the expected value of Qi,j ,

E [Qi,j ] = −
1

z
δi,j+

1

z
E
[(

Z⊤Z
p
⊙C

)
Q

]

i,j

+
1

z
E
[(

Z⊤P
p
⊙C

)
Q

]

i,j

+
1

z
E
[(

P⊤Z
p
⊙C

)
Q

]

i,j

+
1

z
E
[(

P⊤P
p
⊙C

)
Q

]

i,j

.

P⊤P is deterministic so there is no work to do on the last term of the sum. Expanding the other terms yields (see proposition
A.3)

zE [Qi,j ] = −δi,j+E [Ci,iQi,j ]−E [κi,iQi,j ]−E
[
P⊤ (P+ Z)

p
D(i)

C,CQ

]

i,j

+E
[(

P⊤P
p
⊙C

)
Q

]

i,j

+ O
n,p,L→+∞

(
1

p

)

with κ ∈ Cn×n such that

κr,s =
1

p
tr

(
Q

(
(P+ Z)

⊤
(P+ Z)

p
⊙ [C·,rCs,·]

))

and D(i)
C,C is a diagonal matrix such that

[
D(i)

C,C

]
k,k

= 1
p

∑n
l=1 Ql,lCi,lCl,k.

Proposition B.5.
κ↔ η̄.
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Proof. Similarly to the proof of proposition B.4, we consider a matrix A uniformly bounded in spectral norm whose rank is
at most K, representing Z⊤P

p , P⊤Z
p or P⊤P

p and we make use of singular-value inequalities.

1

p
|tr (Q (A⊙ [C·,rCs,·]))| =

1

p

∣∣tr
(
QDC·,rADCs,·

)∣∣

⩽
1

p

n∑

i=1

si(QDC·,rADCs,·)

⩽
1

p

n∑

i=1

si(Q)si(DC·,rADCs,·)

⩽
1

p
∥Q∥

n∑

i=1

si(DC·,rADCs,·)

⩽
K

p
∥Q∥

∥∥DC·,rADCs,·

∥∥ since A has rank at most K

1

p
|tr (Q (A⊙ [C·,rCs,·]))| ⩽

K

p
∥Q∥ ∥A∥ = O

n,p,L→+∞

(
1

p

)
since

∥∥DC·,r

∥∥ =
∥∥DCs,·

∥∥ = 1.

Hence,

κr,s =
1

p
tr

(
Q

(
Z⊤Z
p
⊙ [C·,rCs,·]

))

︸ ︷︷ ︸
=ηr,s

+ O
n,p,L→+∞

(
1

p

)

So far, we have

zQ↔ −In +Q− η0Q+

(
P⊤ (P+ Z)

p
⊙C

)
Q i.e. Q↔

(
1

m(z)
In +

P⊤ (P+ Z)

p
⊙C

)−1

.

The analysis of
(

P⊤(P+Z)
p ⊙C

)
Q is summarized in the following proposition.

Proposition B.6. (
P⊤ (P+ Z)

p
⊙C

)
Q↔

(
P⊤P
p
⊙ FΨ

(
In +

m(z)

p
Ψ

)−1

F∗
)
Q.

Proof. From assumption 2.1, all diagonal entries of Q are statistically equivalent. Thus, we can have a simple matrix
equivalent of D(i)

Ct,C for all integer t ⩾ 1:

[
D(i)

Ct,C

]
k,k

=
1

p

n∑

l=1

Ql,l

[
Ct
]
i,l
Cl,k ↔

1

p

trQ

n

n∑

l=1

[
Ct
]
i,l
Cl,k ↔

m(z)

p

[
Ct+1

]
i,k

where the last equivalence is justified by proposition B.4.

Now, we can notice the following recurrence relation
[(

P⊤ (P+ Z)

p
⊙Ct

)
Q

]

i,j

↔ −
[
P⊤ (P+ Z)

p
D(i)

Ct,CQ

]

i,j

+

[(
P⊤P
p
⊙Ct

)
Q

]

i,j

↔ −m(z)

p

n∑

k=1

[
P⊤ (P+ Z)

p

]

i,k

[
Ct+1

]
i,k

Qk,j +

[(
P⊤P
p
⊙Ct

)
Q

]

i,j
[(

P⊤ (P+ Z)

p
⊙Ct

)
Q

]

i,j

↔ −m(z)

p

[(
P⊤ (P+ Z)

p
⊙Ct+1

)
Q

]

i,j

+

[(
P⊤P
p
⊙Ct

)
Q

]

i,j

.
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In particular, for all integer T ⩾ 1,

(
P⊤ (P+ Z)

p
⊙C

)
Q↔

(
−m(z)

p

)T (
P⊤ (P+ Z)

p
⊙CT+1

)
Q+

T−1∑

t=0

(
−m(z)

p

)t(
P⊤P
p
⊙Ct+1

)
Q.

We know that ∥C∥ = (2L− 1) and, using the fact that the spectral norm of a pointwise product (as well as a regular matrix
product) can be bounded by the product of the spectral norms (see theorem A.19 of (Bai & Silverstein, 2010)), we have

∥∥∥∥∥

(
−m(z)

p

)T (
P⊤ (P+ Z)

p
⊙CT+1

)
Q

∥∥∥∥∥ ⩽

∣∣∣∣
m(z)

p

∣∣∣∣
T ∥∥∥∥

P⊤ (P+ Z)

p

∥∥∥∥ |2L− 1|T+1 ∥Q∥ .

Thus, if
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1,

(
P⊤ (P+ Z)

p
⊙C

)
Q↔

(
P⊤P
p
⊙
[
+∞∑

t=0

(
−m(z)

p

)t
Ct+1

])
Q.

And, since C = FΨF∗,
+∞∑

t=0

(
−m(z)

p

)t
Ct+1 = FΨ

(
In +

m(z)

p
Ψ

)−1

F∗

which completes the proof.

We can now state the following theorem.

Theorem B.7 (Deterministic equivalent of Q when X = P+Z). Let z ∈ C\ lim supn,p,L→+∞ Sp(K̃L). If
∣∣∣ 2L−1

p m(z)
∣∣∣ <

1, then

Q↔ m(z)

(
In +

P⊤P
p
⊙ FΛF∗

)−1

with Λ = m(z)Ψ

(
In +

m(z)

p
Ψ

)−1

.

Remark B.8. This is coherent with the result of theorem B.1 when P = 0.
Remark B.9. From proposition B.3, we see that 1 + zm(z) = 1

n trΛ.

C. Proof of theorem 3.3
In this section, we use the following notation:

Sp∞(K̃L) = lim sup
n,p,L→+∞

Sp(K̃L)

C.1. Spikes

Here, P = µj⊤. Let us state a much more tractable expression of the deterministic equivalent of the resolvent.

Theorem C.1 (Deterministic equivalent of Q when P = µj⊤). Let z ∈ C \ Sp∞(K̃L). If
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1, then

Q↔ Q̄ = m(z) [DjF]

(
In +

∥µ∥2
p

Λ

)−1

[DjF]
∗

where Dj is the diagonal matrix induced by vector j.
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Proof. From theorem B.7,

Q↔ m(z)

(
In +

∥µ∥2
p

jj⊤ ⊙ FΛF∗
)−1

↔ m(z)

(
In +

∥µ∥2
p

DjFΛF∗Dj

)−1

Q↔ m(z) [DjF]

(
In +

∥µ∥2
p

Λ

)−1

[DjF]
∗ since DjF is a unitary matrix.

The sought-after spikes which encapsulate the information about our data are the singular points of the resolvent. Therefore,
their asympotical position is given by the solution in z to

1 +
∥µ∥2
p

m(z)ψk

1 + m(z)
p ψk

= 0 0 ⩽ k < n.

Since K̃L is symmetric, all solutions are real. Moreover, there cannot be any spike inside Sp∞(K̃L) (the eigenvalue must
be isolated). Therefore, we are only interested in solutions outside Sp∞(K̃L).

If ψk = 0, there is no solution, whereas if ψk ̸= 0,

1 +
∥µ∥2
p

m(z)ψk

1 + m(z)
p ψk

= 0 ⇐⇒ m(z) =
−1

∥µ∥2+1
p ψk

and, supposing z ∈ C \ Sp∞(K̃L), we have, from proposition B.3,

z =
∥µ∥2 + 1

p
ψk +

1

n

n−1∑

l=0

ψl

1− ψl

(∥µ∥2+1)ψk

.

Proposition C.2 (Singular points of Q̄). Let

ξ̄k =
∥µ∥2 + 1

p
ψk


1 +

p

n

n−1∑

l=0

ψl(
∥µ∥2 + 1

)
ψk − ψl


 0 ⩽ k < n.

The set of singular points of Q̄ is
{
ξ̄k | 0 ⩽ k < n, ψk ̸= 0

}
∩
(
C \ Sp∞(K̃L)

)
.

C.2. Alignments and phase transition

Let us denote {(ξk,uk)}0⩽k<n the pairs eigenvalue-eigenvector of K̃L. From the definition of the resolvent, we know that

Q =

n−1∑

l=0

ulu
∗
l

ξl − z
.

Therefore, with Cauchy’s integral formula and a positively oriented closed contour Γk circling around ξk and leaving the
other eigenvalues outside, we can have access to the quantity

∑

0⩽l⩽n−1
ξl=ξk

ulu
∗
l = −

1

2iπ

∮

Γk

Q(z) dz
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which is simply uku
∗
k when the associated eigenvalue has multiplicity one. Then, we can calculate the alignment of any

vector v ∈ Cn with the eigenspace associated to ξk:

∑

0⩽l⩽n−1
ξl=ξk

|v∗ul|2 = − 1

2iπ

∮

Γk

v∗Q(z)v dz.

Using the deterministic equivalent of Q, we have the following result.

Proposition C.3 (Spike alignments). For 0 ⩽ k < n such that ξ̄k is a singular point of Q̄, let Γk be a positively oriented
closed contour circling around ξ̄k and leaving all the ξ̄l ̸= ξ̄k outside.

− 1

2iπ

∮

Γk

Q̄(z) dz = ζ̄k [DjF]Dk [DjF]
∗

where

ζ̄k =
∥µ∥2

∥µ∥2 + 1


1− p

n

n−1∑

l=0


 ψl(
∥µ∥2 + 1

)
ψk − ψl



2

 and Dk = diag (1ψk=ψl

)0⩽l<n .

Proof. By residue calculus,

− 1

2iπ

∮

Γk

Q̄(z) dz = − [DjF]


 lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

(
In +

∥µ∥2
p

Λ(z)

)−1

 [DjF]

∗
.

Let 0 ⩽ l < n. If ψl ̸= ψk, then

lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

1 + ∥µ∥2

p
m(z)ψl

1+
m(z)

p ψl

= 0

whereas if ψl = ψk, L’Hôpital’s rule yields

lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

1 + ∥µ∥2

p
m(z)ψl

1+
m(z)

p ψl

=
m(ξ̄k)

d
dz

[
1 + ∥µ∥2

p
m(z)ψl

1+
m(z)

p ψl

]

z=ξ̄k

=
m(ξ̄k)

(
1 + m(ξ̄k)

p ψl

)2

∥µ∥2

p m′(ξ̄k)ψl
.

Recalling that m(ξ̄k) =
−1

∥µ∥2+1
p ψk

, we have 1 + m(ξ̄k)
p ψk = ∥µ∥2

∥µ∥2+1
. Hence,

lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

1 + ∥µ∥2

p
m(z)ψl

1+
m(z)

p ψl

=
∥µ∥2

∥µ∥2 + 1

1
∥µ∥2+1

p ψk

m(ξ̄k)

m′(ξ̄k)

= − ∥µ∥2

∥µ∥2 + 1

m2(ξ̄k)

m′(ξ̄k)
.

Let us calculate an expression of m
2(ξ̄k)

m′(ξ̄k)
. Differentiating in z the fixed-point equation of proposition B.3 yields

m(z) + zm′(z) =
1

n

n−1∑

r=0

m′(z)ψr

(1 +m(z)ψr/p)
2
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thus,

m2(ξ̄k)

m′(ξ̄k)
= −ξ̄km(ξ̄k) +

1

n

n−1∑

r=0

m(ξ̄k)ψr(
1 +m(ξ̄k)ψr/p

)2

= 1− 1

n

n−1∑

r=0

m(ξ̄k)ψr
1 +m(ξ̄k)ψr/p

+
1

n

n−1∑

r=0

m(ξ̄k)ψr(
1 +m(ξ̄k)ψr/p

)2 from proposition B.3

m2(ξ̄k)

m′(ξ̄k)
= 1− p

n

n−1∑

r=0

[
m(ξ̄k)ψr/p

1 +m(ξ̄k)ψr/p

]2

and we just need to remember that m(ξ̄k) =
−1

∥µ∥2+1
p ψk

to get the result.

We can now state the following proposition which defines the phase transition position as the value of ∥µ∥ at which ζ̄k
changes sign.
Proposition C.4 (Phase transition). For 0 ⩽ k < n,

ξ̄k is a singular point of Q̄ ⇐⇒ ζ̄k > 0.

Proof. Let us consider a singular point ξ̄k of Q̄.

As a Stieljes transform, m is increasing on all connected components of R \ Sp∞(K̃L) and the restriction of its functional
inverse z(·) to the real line, here denoted x(·), is also growing on every connected component of m(R \ Sp∞(K̃L)). Then,

as ξ̄k is outside Sp∞(K̃L), it implies x′
(

−1
∥µ∥2+1

p ψk

)
> 0.

We have

x(m) = − 1

m
+

1

n

n−1∑

l=0

ψl
1 +mψl/p

x′(m) =
1

m2
− p

n

n−1∑

l=0

[
ψl/p

1 +mψl/p

]2

thus

x′


 −1

∥µ∥2+1
p ψk


 > 0 ⇐⇒ 1− p

n

n−1∑

l=0


 ψl(
∥µ∥2 + 1

)
ψk − ψl



2

> 0.

Therefore, if ξ̄k is a singular point of Q̄, then ζ̄k > 0.

Conversely, if ξ̄k is not a singular point of Q̄, then either ψk = 0 or ξ̄k ∈ Sp∞(K̃L). If ψk = 0, we immediately see that
ζ̄k = ∥µ∥2

∥µ∥2+1
(1− p) < 0.

On the other hand, if ξ̄k ∈ Sp∞(K̃L) and ψk ̸= 0 then x′
(

−1
∥µ∥2+1

p ψk

)
⩽ 0 (otherwise ξ̄k would be a spike) and ζ̄k ⩽ 0.

D. Predictions with a Toeplitz mask
Figures 8a and 8b compare simulations with a Toeplitz mask and the predictions of theorems 3.1 and 3.3 with the ψk’s
replaced by the τk’s and F replaced by G.

Apart from extra mass around 0 in the second setting (c = 0.03 and ε = 0.6), the shape of the limiting spectral distribution
is very well predicted, as well as the position of the isolated eigenvalues. Empirical alignments |u∗

0v0|2 are also fit well the
predicted curve.

Note that, contrary to the circulant mask, the eigenvalues of T are mostly simple (see theorem 5 of (Trench, 1994)). Thus,
we also represent ζ̄+n−1 is Figure 8b, which was confounded with ζ̄+1 in Figure 3 (ψ1 = ψn−1 but τ1 ̸= τn−1).
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(a) Empirical spectral distribution (ESD) and limiting spectral dis-
tribution (LSD) of KL. Top: noise only, xi ∼ N (0, Ip). Bottom:
two-class mixture, xi ∼ N (±µ, Ip) with ∥µ∥ = 2. The y-axis
is in log scale. Green dashed lines are the asymptotic positions of
the spikes ξ̄k. Experimental setting: n = 2500, L = 750 and
p = 1250 (left) or p = 75 (right).
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(b) Asymptotic alignment ζ̄+k between versus ∥µ∥ for three values
of k. The empirical alignment is computed as the mean of |u∗

0v0|2
on 10 realizations (error bars indicate the standard deviation). Ex-
perimental setting: n = 2500, p = 75, L = 750 (c = 0.03,
ε = 0.6).

Figure 8. Predictions of theorems 3.1 and 3.3 adapted for a Toeplitz mask.

E. K-classes online kernel spectral clustering algorithm
E.1. General presentation and simulations

We use a set of spike eigenvectors
{
u
(t)
k

}
k∈K

(with a set if indices K) to estimate the |K|-dimensional “trend” of each class.

That is, denoting C[t] the class of xt, we consider the following model
[
u
(t)
k

]
i
=
[
h
(t)
k,C[t−n+i] + ϵ

(t)
k

]
i

where, for k ∈ K, h(t)
k,C ∈ Rn is the “trend” of class C and ϵ

(t)
k is a centered noise vector. A deeper analysis of the

deterministic equivalent of theorem 3.1 is needed to properly understand the behavior of the vectors h(t)
k,C . From our general

understanding so far, it is expected that they are linear combinations of a few dominant eigenvectors of T. Using this
approach, we are able to estimate the trends from

{
u
(t)
k

}
k∈K

(see the left part of Figure 9). Each point is then associated to

the class whose curve is the nearest. The details of this algorithm are given in the following subsection.

This algorithm is tested on a stream made of T = 21 000 centered raw-images from the Fashion-MNIST dataset (Xiao et al.,
2017). Their dimension is p = 784 and we want to discriminate between trouser, coat and ankle boot images in
an online fashion. We choose n = 1000 and L = 100 and we use the 5 dominant eigenvectors of K(t)

L for the estimation.

In figure 9 are displayed the shape of the dominant eigenvector u(t)
0 at a given time during the execution of the algorithm

with the estimated trends of each class14 (left) and the mean clustering error at t0 +∆t of a data point seen at t0 with the
overall classification error obtained after a majority vote (right). The classification error curve is U-shaped: classes are better
estimated around t0 + n

2 than t0 or t0 + n− 1. This can be understood by the slightly-localized shape of u(t)
0 (Figure 6,

bottom) — it is easier to discriminate between the trends in the middle of the eigenvector than on its edges. Nevertheless,
the majority vote counteract this weakness and the overall classification error touches the bottom of the U-shape.
Remark E.1. In a binary setting, Algorithm 1 does not suffer this limitation as class estimates are directly given by the sign

14This is only the first dimension of a 5-dimensional trend.
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Figure 9. Clustering on Fashion-MNIST images (trouser vs. coat vs. ankle boot). Left: dominant eigenvector of K(t)
L . Solid

curves are the estimated trend of each classh(t)
k,C . Right: Classification error against delay ∆t. This is the mean classification error at time

t0 +∆t of a point arrived at t0. The green dashed line indicate the overall classification error when the class is chosen by a majority vote.
Experimental setting: T = 21 000, n = 1000, p = 784, L = 100.

of the coordinates of u0 (no trend needs to be estimated).

Here, the overall classification error is 6.638% while a standard T × T offline kernel spectral clustering has only a 3.662%
error rate.

E.2. Details of the algorithm

We consider a set K of indices of spikes and the following model for u(t)
k , k ∈ K,

[
u
(t)
k

]
i
=
[
h
(t)
k,C[t−n+i] + ϵ

(t)
k

]
i

1 ⩽ i ⩽ n

where h
(t)
k,C ∈ Rn is the trend of class C and ϵ

(t)
k is a centered noise vector.

Our goal is to estimate the trend h
(t)
k,C from the eigenvectors

{
u
(t)
k

}
k∈K

. Since we assume they are linear combinations of a

few dominant eigenvectors of T, we define a set of indices K∗ specifying the eigenvectors {gk}k∈K∗
which we expect the

h
(t)
k,C’s being linear combinations of.

We denote Ĉ(t)[s] the class of xt−n+s estimated at time t.

In order to compute an estimation
{
Ĉ(t)[i]

}
1⩽i⩽n

of the classes at a given time t, we propose a two-step algorithm. Firstly,

we compute a rough estimation
{
Ĉ(t)0 [i]

}
1⩽i⩽n

of the classes by following the K paths with an exponential smoothing in

the coordinates of the eigenvectors
{
u
(t)
k

}
k∈K

, this is called the pre-classification step. Then, we refine this estimation with

projections on span {gk}k∈K∗
, this is the classification step.

In the following, we drop the time dependency when it is not needed to ease notations.

E.2.1. PRE-CLASSIFICATION STEP

Given the number of classes K and the eigenvectors {uk}k∈K, we consider the set of n points in R|K| defined by the
coordinates of each eigenvector: [uK]i = ([uk]i)k∈K for 1 ⩽ i ⩽ n. As i goes from 1 to n, these points draw K paths. The
goal is to guess which path (and therefore which class) each point belong to.

Let us suppose we have already estimated Ĉ0[1], . . . , Ĉ0[i− 1] and the first i− 1 coordinates of the vectors
{
h̃k

}
k∈K

such

that
[
h̃k

]
j

is an estimation of
[
hk,Ĉ0[j]

]
j

(initialization is discussed later). As for {uk}k∈K, we see
{
h̃k

}
k∈K

as a set of n

points in R|K|, which have to be estimated. The estimation of the i-th point
[
h̃K
]
i

is induced by the class estimate Ĉ0[i] —



1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

A random matrix analysis of online learning

the corresponding path is updated with an exponential smoothing:

[
h̃K
]
i
= Eα(i,uK, h̃K, Ĉ0[i]) ≡

α [uK]i +M
[
h̃K
]
I[Ĉ0[i],i]

α+M

where M =
1− α

i− I[Ĉ0[i], i]

[
1 +

1− α
α

(
1− (1− α)i−I[Ĉ0[i],i]−1

)]
,

I[Ĉ0[i], i] = max
{
1 ⩽ j ⩽ i− 1 | Ĉ0[j] = Ĉ0[i]

}
is the index of the last seen point in Ĉ0[i] and α ∈ [0, 1] is the smoothing

parameter. The reasons for such a formula are detailed in appendix F.

However, Ĉ0[i] is chosen as the class which minimizes the growth of the corresponding path:

Ĉ0[i] = argmin
Ĉ∈{Ĉ1,...,ĈK}

∥∥∥∥Eα(i,uK, h̃K, Ĉ)−
[
h̃K
]
I[Ĉ,i]

∥∥∥∥
i− I[Ĉ, i]

.

Indeed, by doing so, we minimize the Lipschitz constant of the estimated trend and ensure some regularity.

From the regularity of the true trend, hk,C is almost flat on its very first coordinates. Therefore, we can initialize the values
Ĉ0[i] for 1 ⩽ i ⩽ H with a standard clustering algorithm applied to {[uK]i}1⩽i⩽H . H is a parameter which should be taken
as small as possible to stay in a domain where the trends are almost flat while still having a few representatives of each class.
The computation of

{[
h̃K
]
i

}
1⩽i⩽H

follows from the class estimates, as presented above.

We found that a hierarchical clustering algorithm and H ≈ 10K worked well for the initialization. As for the smoothing
parameter, a good value is α ≈ 0.15.

The pre-classification step is summarized in Algorithm 2.

Algorithm 2 Pre-classification

Input: K, {uk}k∈K.
Parameters: H , α.
Output:

{
Ĉ0[i]

}
1⩽i⩽n

.

Set Ĉ0[i] for i = 1 to H with agglomerative clustering.
for i = 1 to H do[

h̃K
]
i
← Eα(i,uK, h̃K, Ĉ0[i])

end for
for i = H + 1 to n do

Ĉ0[i]← argminĈ∈{Ĉ1,...,ĈK}

∥∥∥Eα(i,uK,h̃K,Ĉ)−[h̃K]
I[Ĉ,i]

∥∥∥
i−I[Ĉ,i][

h̃K
]
i
← Eα(i,uK, h̃K, Ĉ0[i])

end for

E.2.2. CLASSIFICATION STEP

The class estimates obtained after the pre-classification step usually are not very satisfying but still are a good basis to
estimate hk,C with regressions.

In the second step of the algorithm, we are given a set {gk}k∈K∗
of eigenvectors of T. It is supposed that the trends

{hk,C}k∈K are mixtures of these eigenvectors.

From class estimates
{
Ĉ[i]
}
1⩽i⩽n

, we can compute an estimation ĥK,Ĉ of the trend of each estimated class Ĉ with a linear

regression
ĥk,Ĉ = vK∗βk,Ĉ where βk,Ĉ = argmin

β∈R|K∗|

∥∥[uk]Ĉ − [vK∗ ]Ĉ β
∥∥2
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where we use the notation [·]Ĉ to represent the restriction to Ĉ.

Then, new class estimates can be computed by associating each point to the class whose trend is the closest:

Ĉ[i] = argmin
Ĉ∈{Ĉ1,...,ĈK}

∥∥∥[uK]i −
[
ĥK,Ĉ

]
i

∥∥∥ .

We repeat this process until convergence of the class estimates. The classification step is summarized in Algorithm 3.

Algorithm 3 Classification

Input: K,
{
Ĉ0[i]

}
1⩽i⩽n

, {uk}k∈K, {vk}k∈K∗
.

Output:
{
Ĉ[i]
}
1⩽i⩽n

.

for i = 1 to n do
Ĉ[i]← Ĉ0[i]

end for
repeat

for Ĉ ∈
{
Ĉ1, . . . , ĈK

}
do

ĥK,Ĉ ← vK∗

(
[vK∗ ]

⊤
Ĉ [vK∗ ]Ĉ

)−1

[vK∗ ]
⊤
Ĉ [uK]Ĉ

end for
for i = 1 to n do
Ĉ[i]← argminĈ∈{Ĉ1,...,ĈK}

∥∥∥[uK]i −
[
ĥĈ
K

]
i

∥∥∥
end for

until convergence

E.2.3. FINAL ALGORITHM

Algorithm 4 Online Kernel Spectral Clustering

Input: K, K, {gk}k∈K∗
.

Parameters: H , α.
Output:

{
Ĉt[s]

}
1⩽s⩽n
n⩽t⩽T

.

for t = 1 to T do
Get a new point xt into the pipeline.
Compute x∗

txt−l for l = 0 to L− 1.
Update K

(t−1)
L into K

(t)
L .

u
(t)
K ← PowerIteration(K(t)

l ,u
(t−1)
K ).

if 1 ⩽ t ⩽ n then
Do an iteration as in Algorithm 2.

end if
if t ⩾ n then

Compute
{
Ĉt[s]

}
1⩽i⩽n

according to Algorithm 3 with
{
Ĉt−1[s]

}
1⩽i⩽n−1

.

end if
end for

In an online fashion, pre-classification can be performed as a warm-up during the first n time steps. Then, as t ⩾ n, only the
classification step is needed: the classes

{
Ĉt−1[s]

}
1⩽s⩽n

estimated at t− 1 (or during pre-classification if t = n) serve as a

good basis to estimate the classes at time t (both Ĉt−1[s] and Ĉt[s+1] are estimates of the class of xt−s). Moreover, the few
interesting eigenvectors u(t)

K of K(t)
L can be quickly computed with a power iteration algorithm starting at u(t−1)

K (they do
not differ much from one time step to another). The final algorithm is presented in Algorithm 4.
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F. Exponential smoothing with missing data
Let (yt)t∈N be a time series. Assume we want to compute its trend (st)t∈N. A common technique to do so is to perform an
exponential smoothing:

s0 = y0 and st+1 = αyt+1 + (1− α) st ∀t ∈ N

where α ∈ [0, 1] is the smoothing parameter. It acts as a low-pass filter which removes high-frequency noise.

Let us now assume that we do not have access to (yt)t∈N at each time step and we want to compute st+h (h ⩾ 1) with yt+h
and st only. Expanding the recurrence relation, we have

st+h = αyt+h + α

h−1∑

k=1

(1− α)k yt+h−k + (1− α)h st.

We propose to replace the unknown values yt+h−k for 1 ⩽ k ⩽ h− 1 by the linear interpolation of the trend:

st+h = αyt+h + α

h−1∑

k=1

(1− α)k
[
k

h
st +

h− k
h

st+h

]
+ (1− α)h st

= αyt+h +
α

h

(
st

h−1∑

k=1

k (1− α)k + st+h

h−1∑

k=1

k (1− α)h−k
)

+ (1− α)h st.

Using the following formulae,

h−1∑

k=1

k (1− α)k =
1− α
α

(
1− h (1− α)h−1

)
+

(
1− α
α

)2 (
1− (1− α)h−1

)

and
h−1∑

k=1

k (1− α)h−k =
1− α
α

(h− 1)−
(
1− α
α

)2 (
1− (1− α)h−1

)

we have
(
α+

1− α
h

[
1 +

1− α
α

(
1− (1− α)h−1

)])
st+h = αyt+h +

1− α
h

[
1 +

1− α
α

(
1− (1− α)h−1

)]
st.


