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Abstract—In this article, the joint fluctuations of the extreme
eigenvalues and eigenvectors of a large dimensional sample
covariance matrix are analyzed when the associated population
covariance is a finite-rank perturbation of the identity matrix.
It is shown that these fluctuations are asymptotically normal
with zero mean and a variance which is derived explicitly. This
result is used in practice to develop an original framework for
local failure localization in large sensor networks, among which
sudden parameter changes.

I. LOCAL FAILURE DETECTION: SUDDEN PARAMETER
CHANGE

In this summary, we concentrate consider on the following
sensor network model

y = Hθ + σw (1)

where H ∈ CN×p is deterministic, θ ∈ Cp and w ∈ CN

have independent and identically distributed (i.i.d.) complex
standard Gaussian entries and σ > 0. In a sensor network com-
posed of N nodes, y represents the observation through the
channel H of the vector θ, constituted of centered and normal-
ized independent Gaussian system parameters1, impaired by
white Gaussian noise. Therefore, E[yy∗] = HH∗+σ2IN , R.

Suppose now that, θ(k), the kth entry of θ experiences a
sudden change in mean and variance. The resulting observa-
tion y′ can be modeled as

y′ = H(Ip + αkeke
∗
k)θ + µkHek + σw

for some real parameters µk, αk and ek ∈ Cp defined by
ek(k) = 1 and ek(i) = 0, i 6= k. We suppose here
that µk and αk are a priori known to the experimenter (an
assumption which will be relaxed in future work). Denoting
R = HH∗ + σ2IN as in the previous example and taking
s = R−

1
2 y′, we finally have

E[ss∗] = IN + (µ2
k + (1 + αk)2 − 1)R−

1
2Heke

∗
kH
∗R−

1
2

which is here a rank-1 perturbation of the identity matrix by
the matrix

Pk , (µ2
k + (1 + αk)2 − 1)R−

1
2Heke

∗
kH
∗R−

1
2 . (2)

This generalizes to sudden changes of multiple parameters.
If the means and variances for the sensors k1, . . . , kM are

1Up to a right-product of H by a positive diagonal matrix, the variance of
the entries of θ can be assumed all equal to one without loss of generality.

modified simultaneously through the parameters µk1
, . . . , µkM

and θ(k1), . . . , θ(kM ), then

E[ss∗] = IN +R−
1
2HEΛE∗H∗R−

1
2

with E = [ek1
, . . . , ekM

] and Λ = diag(σ2
k1
, . . . , σ2

kM
), σ2

k =
µ2
k + (1 + αk)2 − 1, which is a rank-M perturbation of the

identity matrix.
Similar small rank perturbation models in the context of

local failures in large networks are provided in the complete
version of this article.

A. Detection and localization

For the model above, let us assume a general scenario
with K possible sudden change events, identified by the
index 1 ≤ k ≤ K and let now s1, . . . , sn be n successive
independent observations of the random variable s. Denote
then Σ , 1√

n
[s1, . . . , sn] ∈ CN×n. From the fact that s is

Gaussian with zero mean and covariance (IN + Pk) for a
certain k, we can write

Σ = (IN + Pk)
1
2X (3)

where X ∈ CN×n is a given matrix with Gaussian indepen-
dent entries of zero mean and variance 1/n. For simplicity
here, we assume that for each k the non-zero eigenvalues of
Pk are all distinct. We also denote here P0 = 0 for the extra
event k = 0 corresponding to the no-change scenario. The
objective of our study is to provide a detection and localization
test based on Σ to decide (i) if k = 0 is most likely than k > 0
and (ii) if k > 0, which model index k ∈ {1, . . . ,K} is the
most probable.

II. MAIN RESULT

The model (3), known as spike model has been recently
studied in e.g. [1], [2], [3]. These works characterized the
limits of the extreme eigenvalues and associated eigenvec-
tor projections of ΣΣ∗ leaving the support of the limiting
eigenvalue distribution. This happens if and only if ωi >

√
c

for some i, an assumption we consider here. The fluctua-
tions of the extreme eigenvalues have also been derived. Our
main mathematical result follows this series of works and is
concerned with the joint fluctuations of the eigenvalue and
eigenvector projections of ΣΣ∗.

Theorem 1: Let X ∈ CN×n have i.i.d. Gaussian entries of
zero mean and variance 1/n, and P =

∑K
i=1 ωiuiu

∗
i in its

spectral decomposition with ω1 > . . . > ωK > 1. Denote
Σ = (IN +P )

1
2X with K largest eigenvalues λ̂1 > . . . > λ̂K



2

and associated eigenvectors û1, . . . , ûK . Then, as N,n→∞
with N/n→ c, if ωi >

√
c,

√
N

(
|u∗kûk|2 − ξ(ωk)

λ̂k − ρk

)
⇒ N (0, Ck)

where ρk = 1 + ωk + c 1+ωk

ωk
, ξ(ωk) =

1−ω−2
k

1+ω−1
k

and

Ck =

 c2(1+ωk)
2

(c+ωk)2(ω2
k−c)

(
c (1+ωk)

2

(c+ωk)2
+ 1
)

(1+ωk)
3c2

(ωk+c)2ωk

(1+ωk)
3c2

(ωk+c)2ωk

c(1+ωk)
2(ω2

k−c)
ω2

k

 .
Moreover, for k 6= k′ such that ω,ωk′ >

√
c, the fluctuations

of λ̂k, ûk and λ̂′k, û
′
k are asymptotically independent.

The proof of this result relies on a random matrix frame-
work based on the Stieltjes transform method and complex
integration. The result provided in the complete version of
this article is more general as X is only assumed unitarily
invariant but non necessarily Gaussian and the values ωi may
have multiplicities.

Application-wise, the main contribution of this article is the
derivation of a method for detecting and localizing sudden
parameter changes in the system (1). The detection consists in
a known statistical test, already used in the context of signal
sensing, to decide whether the largest eigenvalue λ̂1 of ΣΣ∗

exceeds a critical threshold (usually around the value (1 +√
c)2, the right-edge of the asymptotic spectrum of ΣΣ∗ under

the null hypothesis).
The novelty of the present article lies in the localization

framework, upon change detection, which can be performed
here by testing the most probable perturbation matrix Pk in
the model of Equation (2). The test relies on a “maximum-
likelihood”-like procedure based on the asymptotic distribution
of the eigenvector projections corresponding to the largest
eigenvalues of ΣΣ∗, as well as on the asymptotic distribution
of the largest eigenvalues if µk, σk are a priori known. That is,
the test consists in the following estimator k? for the change
index:

k? = arg max
1≤k≤K

rk∏
i=1

f
(√

N(v̂k,i − vk,i);Ck,i

)
where f(x;C), C ∈ Cm×m, is the m-variate real normal
density of zero mean and variance C at point x, and Ck,i is
defined as a straightforward application of Theorem 1, where
we denoted

v̂k,i ,

(
|u∗k,iûi|2

λ̂i

)
, vk,i ,

(
ξ(ωk,i)
ρk,i

)
where we assumed Pk =

∑rk
i=1 ωk,iuk,iu

∗
k,i and ρk,i = 1 +

ωk,i + N
n

1+ωk,i

ωk,i
.

A. Simulations

We apply the localization algorithm above for the network
model y = Hθ+σw, with N = 10, where the entries of HH∗

are presented in Figure 1. We assume that the entries of θ are
CN(0, 1) are that θ1 suddenly drops to zero. The minimum
observability ratio N/n is 0.8. In Figure 2, we depict Monte
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Fig. 1. Network of N = 10 sensors. The correlation E[y(i)∗y(j)] between
data on sensors i and j, i 6= j, can be read on the link (i, j), while E[|y(i)|2]
variances are shown in parentheses.
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Fig. 2. Correct detection (CDR) and localization (CLR) rates for different
levels of false alarm rates (FAR) and different values of n, for failure of
parameter θ1 in the sensor network of Figure 1. The minimal theoretical n
for asymptotic observability is n = 8.

Carlo simulation curves of sudden change detection and lo-
calization for different detection false alarm rates (FAR), with
increasing observation window size. The simulation shows that
more than n = 8 observations are needed to carry out perfect
localization, which is explained by the loose approximation of
the asymptotic Gaussian fluctuations for perturbation matrices
Pk with ωk,i '

√
c.

III. CONCLUSION

In this article, a computationally cheap local failure lo-
calization framework is designed based on the study of the
asymptotic fluctuations of eigenvalues and eigenvector projec-
tions of small rank perturbation of Gaussian random matrices.
Simulations applied to sudden parameter change localization
corroborate the efficiency of the approach but also raise its
inherent limitations.
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