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Abstract—In this paper, a new multicell OFDM blind power
detection method is proposed. Relying on recent results of free
deconvolution, our algorithm enables the terminal to count
the number of surrounding base stations and to determine
the power received from each of them, based on a limited
number of snapshots. This is in sharp contrast with classical
asymptotic blind techniques. A theoretical analysis is proposed
to study the impact of frequency selectivity and the number of
receive/transmit antennas. Simulations are provided to sustain the
theoretical claims and are compared against classical techniques.

I. I NTRODUCTION

The ever increasing demand of high data rate has pushed
system designers to exploit the wireless channel medium to
the smallest granularity. In this respect, OFDM (Orthogonal
Frequency Division Multiplexing) modulation has been chosen
for the next common standard in most wireless communication
systems (e.g. Wi-Max [3], 3GPP-LTE [2]). OFDM converts a
frequency selective fading channel into a set of flat fading
channels [12], therefore providing a high flexibility in terms
of power and rate allocation. However, due to this flat fading
nature, OFDM suffers from a lack of diversity and from strong
interferers in multi-cell systems. This requires system level
interference management (with proper multi-cell scheduling)
from a network MIMO (Multiple Input Multiple Output) point
of view [4].

In order to design a viable network-wide OFDM system,
a key parameter that needs to be estimated is the Signal to
Interference plus Noise Ratio (SINR), i.e. the power received
at the terminal originating from one base station over the
cumulated power of the interfering base stations plus back-
ground noise power. Ideally, one needs to access the respective
Signal to Noise Ratio (SNR) of every cell in the network (i.e.
the ratio between the power of the received signal received
that originated from the transmitter and the noise level). In
the realm of cognitive networks [16], each terminal needs to
determine the uplink quality link (via the downlink channel
in TDD mode) with reduced feedback from the network in
order to decide autonomously how to split the different packet
data. Several examples are provided in [17]-[18]. Usually,this
difficult problem of source separationis treated with respect
to the signal statistics [13], [14], [15] under the hypothesis of
a high number of received snapshots. However, in practice,

this hypothesis can never be met due to the high mobility of
the users.

In this paper, we use recent results on free deconvolution to
show that one can estimate the received power of every rele-
vant (i.e. in detection range) base station in an OFDM network.
Apart from second order statistics, no prior knowledge on the
input signal constellations is required. Also large amounts of
received samples (compared to the FFT size) are not demanded
for our scheme to perform efficiently. Interestingly, one can
count the total number of effective surrounding cells and derive
every individual SNR level (seen from the terminal) of the base
stations. To the authors knowledge, no previous contribution
has yet considered this OFDM multiple SNR detection setting.
This work makes extensive use offree deconvolutiontech-
niques. Those techniques were initially applied in [5] to derive
the respective powers of users in a Code Division Multiple
Access (CDMA) network.

The paper is structured as follows: In section II, we in-
troduce the multicell environment model. In section III, we
review classical methods used to derive SINR in OFDM
systems. In section IV, we provide the algorithm to determine
the per-cell SNR. A discussion on the gains and limitations
of this novel method is carried out in section V, before
we present the simulation results that sustain the theoretical
claims. Finally, in section VII we draw our conclusions.

Notations: In the following, boldface lower case symbols
represent vectors, capital boldface characters denote matrices
(IN is the size-N identity matrix). The spacesM(A, i, j) and
M(A, i) are the sets ofi×j andi×i matrices over the algebra
A, respectively. The Hermitian transpose is denoted(·)H . The
operatordiag(x) turns the vectorx into a diagonal matrix.
Ck

n is the (k, n) binomial coefficient. The normalized trace
for matrices withN columns is denotedtrN (·) andE[·] is the
expectation.

II. D OWNLINK MODEL

Let us consider, as depicted in figure 1, a set ofNB base
stations and one UE (User Equipment) withNr = 1 receiving
antennae. The network uses OFDM modulation with a sizeN
FFT. Let us also denote byM the expected maximumnumber
of base stations (ideallyNB ≤ M ). In the following, we
shall only deal withM and no longer useNB , considering
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Fig. 1. System Model

then a network ofM base stations, of which some could
be of null power. The link between the UE and the base
stationk is a fast-fading complex Gaussian channelhk ∈ C

N ,
coupled with a slow-fading path lossLk = 1/Pk with Pk

the mean received power originating from base stationk. The
UE also suffers Additive White Gaussian Noise (AWGN) of
power σ2. The base stationk sends at time instantl the
frequency-domain OFDM symbols(l)

k = (s
(l)
1k , . . . , s

(l)
Nk)T that

we first assume standard Gaussian (i.e. with zero mean and
unit variance). The noiseσn(l) is added at the reception, with
n(l) = (n

(l)
1 . . . , n

(l)
N )T also standard Gaussian. Therefore, the

received signal vectory(l) = (y
(l)
1 , . . . , y

(l)
N )T at time instant

l reads

y(l) =

M−1
∑

k=0

P
1

2

k Dks
(l)
k + σn(l) (1)

with Dk = diag(hk) = diag([hk1 . . . hkN ]).
This summation over theM cells can be rewritten

y(l) = HP
1

2 θ
(l) + σn(l) (2)

with θ
(l) = (s

(l)
1 , . . . , s

(l)
M )T .

H ∈ M(C, N,MN) is the concatenated matrix of the
matricesDk, k ∈ [1,M ]

H =







h11 · · · 0 · · · hM1 · · · 0
...

. ..
... · · ·

...
.. .

...
0 · · · h2N · · · 0 · · · hMN






(3)

andP ∈ M(R, N) the diagonal matrix

P = diag([P1, P2, . . . , PM ]) ⊗ IN (4)

where the symbol⊗ denotes the Kronecker product.
Let us now assume that theM channels are slowly varying,

so that we can concatenateL samplesy(l) (l = 1, . . . , L) into
matrix Y = [y(1) · · ·y(L)] ∈ M(C, N, L) and have the more
general matrix product

Y = HP
1

2 Θ + σN (5)

whereΘ ∈ M(C,MN,L) andN ∈ M(C, N, L) are concate-
nation matrices of theL vectorsθ(l) andn(l) respectively. The
entries ofH are fixed over theL channel uses.

This then imposes the minimum of allM channel coherence
times to be greater thanLTs with Ts the OFDM symbol
period.

N = 256, P = {P1, P2, P3} = {4, 2, 1}

L EstimatedP̃ [our algorithm] ‖P − P̃‖2

512 {5.82, 2.90,−1.7} [{3.80, 2.16, 1.00}] 11.42

1024 {4.26, 3.60,−0.8} [{3.62, 2.37, 0.94}] 5.87

2048 {4.52, 2.69,−0.2} [{4.22, 1.55, 1.12}] 1.77

4096 {4.20, 2.65, 0.18} [{4.09, 2.06, 0.78}] 1.41

8192 {4.10, 2.28, 0.58} [{4.05, 1.89, 0.92}] 0.27

16384 {3.97, 2.42, 0.89} [{3.95, 2.24, 0.99}] 0.19

32768 {4.07, 1.95, 0.99} [{4.03, 1.95, 0.98}] 0.01

TABLE I
CLASSICAL MOMENT-BASED METHOD

III. C LASSICAL POWER DETECTION

Usual power detectors consider the second as well as higher
order statistics of the received signals. This requires to esti-
mate the followingempirical moments:

{

( 1
L
YYH)k, k ≥ 1

}

.
These techniques work well whenL goes to infinity while
N is finite, or at least when the ratioN/L tends to zero
when bothN and L go to infinity. Indeed, with growingL,
( 1

L
YYH−σ2IN )k tends toE[(HPHH)k], which gives access

to matrix P, as shown in IV.
As a consequence, one can retrieve the valuesPk (as will

be proved in section IV) directly from the normalized traces
(also calledmoments) of { 1

L
(YYH − σ2IN )k} when L is

large compared toN . However, in practice, this case is rarely
met due to mobility of the UE. In fact, we wishN to be
fairly large (such that the ratio between the system bandwidth
over the coherence bandwidth is small) whileL is limited
by the channel coherence time. Therefore, even ifN and
L are large, the problem falls in a situation where the ratio
N/L is not close to zero so that expectation-based methods
are far from accurate. In this context, the previous classical
method does not work since the expectation taken for large
L is not valid whenN grows along withL. This is shown
in table I which provides the results and quadratic errors of
estimates ofP under different values ofL using the same
algorithm as described in section IV-A based on the moments
of 1

L
(YYH−σ2IN ) (instead of the moments of1

L
HPHH for

which comparative results, based on the algorithm of section
IV, are presented in brackets). This confirms that largeL/N
ratios are required for this classical scheme to be valid.

For a deeper analysis of those classical techniques, refer
to [19]. In this contribution, we shall also use a technique
based on moments, relying on recent work onRandom Matrix
Theory(RMT) [6] andFree Deconvolution[5], that are briefly
introduced in the following section.

IV. A PPLICATION OFFREE DECONVOLUTION TO

MULTIPLE SNR DETECTION

In order to recover thePi powers, one needs to access
the entries ofHPHH and more specifically, as shall be
shown later, the eigenvalue distribution ofHPHH . In RMT,
this distribution is called theempirical distribution of the
matrix HPHH and is denotedµHPHH . For those distri-
butions, we associatefree momentsMk of order k defined



as Mk = E[trN (HPHH)k]. In particular, a random matrix
A ∈ M(C, N) is calledstandard Wishartif it can be written
A = 1

L
XXH , with X ∈ M(C, N, L) a standard Gaussian

random matrix (i.e. a matrix with standard i.i.d. Gaussian
entries). The empirical distribution ofA is the Marchenko-
Pastur law [6] that we denoteµηc

, with c = N/L. Those
Wishart matrices have a generalized version in which the
column entries ofX are correlated through a covariance matrix
ΣX. Recent work onFree Probability [7] and RMT [5], [9]
provide several tools to derive the empirical distributions of
the sum and product of random matrices. In particular, when
the matrix at hand is of theinformation plus noisetype
(those random matrices are deeply studied in [5]), then it is
possible to access the empirical distribution of the information
signal given the empirical distribution of the received noisy
signal. This is the main result that we use in this work,
which is part of the general framework offree deconvolution.
In the following, we shall use the symbols⊞, ⊟, ⊠ and
� respectively to retrieve the empirical distribution of the
sum, difference, product and inverse of two random matrices
respectively. For instance

µA+B = µA ⊞ µB (6)

µC = µA � µB (7)

with C such thatA = CB.
In our problem, described in the form of model (5), it turns

out that theN×N matrix 1
L
YYH is aninformation plus noise

matrix with N a Gaussian random matrix (hence1
L
NNH is

a Wishart matrix). Therefore, for largeN and L, one can
derive the empirical distribution of1

L
HP

1

2 ΘΘHP
1

2 HH (i.e.
µ

1

L
HP

1

2 ΘΘHP
1

2 HH
) from µ 1

L
YYH . This requires knowledge

of the noise powerσ2 and reads [5]

µ
1

L
HP

1

2 ΘΘHP
1

2 HH
=
(

(µ 1

L
YYH � µηc

) ⊟ δσ2

)

⊠ µηc
(8)

wherec = N/L since the noise matrix isN × L.
Also, the random entries ofΘ in equation (5) are standard

Gaussian and independent. Therefore1
L
P

1

2 HHHP
1

2 ΘΘH is
a generalized Wishart matrixwith covarianceP

1

2 HHHP
1

2 .
As such, µ

P
1

2 HHHP
1

2

can be recovered from
µ

1

L
P

1

2 HHHP
1

2 ΘΘH
when the couple (N,L) is large

with a constant ratioc′ = MN/L (M is constant) [5]

µ
P

1

2 HHHP
1

2

= µ
1

L
P

1

2 HHHP
1

2 ΘΘH
� µη

c′
(9)

The left expression of equation (8) is slightly different from
the desired expression in the right part of equation (9). Still,
thanks to the trace property, we have the link [6]

µ
1

L
P

1

2 HHHP
1

2 ΘΘH
=

1

M
µ

1

L
HP

1

2 ΘΘHP
1

2 HH
+

(

1 −
1

M

)

δ0

(10)
Finally, we similarly connect the left part of equation (9) to

µHPHH through

µ
P

1

2 HHHP
1

2

=
1

M
µHPHH +

(

1 −
1

M

)

δ0 (11)

The empirical distribution ofHPHH was then derived from
the empirical distribution of1

L
YYH . As a consequence, the

free momentsdk = E[trN (HPHH)k] can be retrieved from
the free momentsmk = E[trN ( 1

L
YYH)k]. Surprisingly, it

is shown in [8] that for any of the free classical operations
(additive and multiplicative [de]convolution), the set ofthe
first k moments of the [de]convolution results can be exactly
recovered from the set of thek first moments of the operands
(and vice-versa). This substancially reduces the computational
effort.

The details of how to recover the momentsdk from the
momentsmk as well as fundamentals of Random Matrix
Theory and Free Deconvolution are provided in [19].

Our interest though is to find the diagonal entries ofP.
Remarkably, it turns out that the matrixHPHH is diagonal.
Hence, for large(N,L) couples, we can easily derive all the
theoreticalfree momentsdk of the distributionµHPHH [6]
since all the(HPHH)

p
are diagonal matrices with entry

{

(HPHH)
p
}

ij
=

(

M
∑

k=1

Pk|hki|
2

)p

δj
i (12)

and then thepth order momentdp = E[trN (HPHH)p] of
HPHH can then be approximated for largeN by

dp =
1

N

N
∑

j=1

(

M
∑

k=1

Pk|hkj |
2

)p

(13)

At this point, expression (13) contains too many unknowns
since, in addition to thePk, also thehij are unknown. In fact
those unknownshij are the key that allows for the multiple
SNR recovery provided that the channelcoherence bandwidth
is small compared to the system bandwidth. The reason lies
in the diversity engendered by high channel selectivity. This
is thoroughly discussed in section V. In the following we
therefore discuss the frequency selective scenario under the
hypothesis that the ratiocoherence bandwidthover system
bandwidthis small.

A. How to find thePk

To deduce the cell power values from the momentsdp, we
need to derive independent equations of thedp in the variables
{Pk, k ∈ {1, . . . ,M}}. Again, as will be discussed in section
V, the M channels’ frequency diversity is the key to provide
those equations. Let us start by deriving, for largeL, the mo-
mentsdp as in (13), which, forp ∈ {1, . . . ,M}, form a system
of M equations for theM unknowns{Pk, k ∈ {1, . . . ,M}}.

In this case, sinceN is large, (13) can be approximated by

dp = Eh

(

M
∑

k=1

Pk|hkj |
2

)p

(14)

whereEh denotes the expectation over the variableshij .
If N is larger than the typical coherence bandwidth size,

the approximation of (14) is accurate. We then have a high
confidence that the channel correlations do not have a strong
impact in the final results. Based on the classical moments



of the Rayleigh-distributed variables|hkj |, we can tehrefore
derivedp as

dp =
p!

22p

∑

k1,...,kM
P

i
ki=p

M
∏

i=1

{

ki
∑

k=0

(2k)!(2[ki − k])!

(k!)2([ki − k]!)2

}

P ki

i (15)

The proof of formula (15) and further details about the “large
N ” hyptothesis are provided in [19].

Therefore the system of equations formed by (15) for
p ∈ {1, . . . ,M} consists of multivariate polynomials in
P1, . . . , PM . This homogenous symmetric multivariate poly-
nomial system can be rewritten

M
∑

k=1

P p
k = Qp(d1, . . . , dp) (16)

in which polynomial functionsQk ∈ R[d1, . . . , dk] are theo-
retically determined in [19].

System (16) is then easier to solve. Its solution, the vector
of powers(P1, . . . , PM ), is unique and corresponds to theM
roots (counted with their multiplicities) of the polynomial in
X of degreeM

XM − Π1X
M−1 + Π2X

M−2 − . . . + (−1)MΠM (17)

where the elementsΠk are related to the
∑

j P i
j by the

Newton-Girard formula[10]

(−1)kkΠk +
k
∑

i=1

(−1)k+i





M
∑

j=1

P i
j



Πk−i = 0 (18)

A thorough and clear study of the particularM = 3
case as well as the complete derivations that lead to theQk

polynomials are derived in [19].

V. D ISCUSSION

First, as already mentioned in the previous sections, our
algorithm simplifies to a mere power detector when the
number of sampling periodsL is larger than the FFT size
N . This would be valid whenL is fairly larger thanN but
this imposes very long accumulations, which is no longer
valid for the typical coherence time encountered in OFDM.
Equivalently,N could be limited to very few elements. But
then most of the provided information is discarded, which will
heavily degrade the performance.

The channel conditions are also of primary importance.
Indeed, if only one simulation shot is run (with sufficiently
large N and L), and if the channel is very small, then the
channel frequency response will be rather flat over the whole
bandwidth.

This implies that all the moments ofHPHH will form
a correlated system of equations and (16) cannot be derived
since equation (15) is no longer valid. At best we can retrive
the approximated total power received from all cells from such
a situation. This is why a short coherence bandwidth (with
respect to the total bandwidth) is desired.
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Fig. 2. Cell power detection,N = 512, L = 1024, Averaged over 1000
trials

If this small coherence bandwidth is not provided, then the
scheme can be extended to use multiple antennae to introduce
independent channel realizations. Thus, instead of using an
N × L matrix Y at the reception, we can easily extend the
scheme to use anNNr × L data matrix.

VI. SIMULATION AND RESULTS

In the following, we use the results that were previously
derived in the case of a three-cell network (i.e.NB = M = 3)
that the UE wishes to track. The set of cells studied in this
part are of relative powersP1 = 4, P2 = 2, P3 = 1.

For increased performance of our simulations, we shall
average the estimateddp values over 1000 channel realizations
which we model as exponential decaying. Their delay spreads
vary from 1 to N/4 samples.

In figure 2, we took matrices of sizeN = 512, L = 1024
and a Rayleigh channel of lengthN/8 samples. A hundred
realizations of this process are run. The SNR is 10dB. Figure
2 shows that(P1, P2, P3) are well recovered.

The next experiment aims to estimate the noise influence
on the cell power recovery. This is obtained by comparing the
SNR = 30dB case to theSNR = −10dB scenario. Figure 4
provides the results (with 1000 accumulations over 100 trials)
and shows that, surprisingly, whatever the noise level (even if
it actually perfectly matches one specific cell power), the cell
power recovery is substancially the same ifN, L are large
enough.

Also, we need to test the robustness of our algorithm against
practical channels and not only “ideal” i.i.d or theoretical
exponential decaying channels with high delay spread. Thisis
shown in figure 3 that proposes a comparison between the ideal
long channel situation and the 3GPP-LTE [2] standardized
Extended Vehicular A (EVA) and Extended Typical Urban
(ETU) channels with characteristics
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Channel Type RMS Delay Spread Channel Length
EVA 357ns N/27
ETU 991ns N/13

Here we considered a mobile handset with 2 antennaeNr =
2, working under a sizeN = 256-FFT, with SNR = 10dB.
L equals1024 and the results are averaged over a thousand
trials, to assure fair comparison with the previous results.
The cumulated distribution function of the detected power
distribution for those channels is provided in figure 3. The
latter shows a rather good behaviour in both ETU and EVA
channels. Nonetheless their short delay spreads lead to less
performant results. Note also that a certain bias in the mean
power estimates is introduced in this case.

Surprisingly, it turns out that the chosen zero mean unit
variance distribution of the input signalss(l) does not matter:
the results show the same performance. This is a general
observation in free deconvolution which has not been proven
yet. Therefore in our simulations, QPSK modulations showed
the exact same behaviour as purely Gaussian distributed input
signals. Also, we carried out some simulations in which
we purposely tookNB > M (e.g. BS = 4 base stations
emitting while onlyM = 3 are assumed). This has fairly bad
consequences since the characteristic polynomial (17) often
has non-real solutions. As a consequence, the number of base
stations should always be upper bounded.

The uplink scenario in which a base station wants to
determine the powers of multiple UE’s in its cell can be
equally derived by changingM into the number of potential
users in the cell andNr into the number of antennae at the
base station.

VII. C ONCLUSION

In this contribution, we demonstrated a practical way to
blindly detect neighboring cells in a distributed OFDM net-
work. Assuming constant transmission in those cells on a
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Fig. 4. Cell power detection atSNR = −10dB (left) andSNR = 30dB

(right), N = 512, L = 1024, Averaged over 1000 trials

fairly large bandwidth (large enough to ensure that the channel
coherence bandwidth is small in comparison), we showed that
one can blindly determine the individual SNR of every cell.
This is particularly suitable for next generation OFDM systems
which aim to reduce the amount of synchronization sequences
to keep track of the neighboring cells.
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