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Abstract—In this paper, a new multicell OFDM blind power this hypothesis can never be met due to the high mobility of
detection method is proposed. Relying on recent results of free the users.
deconvolution, our algorithm enables the terminal to count , this paper, we use recent results on free deconvolution to
the number of surrounding base stations and to determine - .
the power received from each of them, based on a limited show_tha_t one can estimate the rece_lved_ power of every rele-
number of snapshots. This is in sharp contrast with classical vant (i.e. in detection range) base station in an OFDM networ
asymptotic blind techniques. A theoretical analysis is proposed Apart from second order statistics, no prior knowledge an th
to study the impact of frequency selectivity and the number of jnput signal constellations is required. Also large ameunft
receive/transmit antennas. Simulations are provided to sustain 8 6ived samples (compared to the FFT size) are not demanded
theoretical claims and are compared against classical techniques. - .
for our scheme to perform efficiently. Interestingly, onen ca
count the total number of effective surrounding cells anivde
|. INTRODUCTION every individual SNR level (seen from the terminal) of theda
The ever increasing demand of high data rate has puststations. To the authors knowledge, no previous contobuti
system designers to exploit the wireless channel mediumHas yet considered this OFDM multiple SNR detection setting
the smallest granularity. In this respect, OFDM (Orthodondhis work makes extensive use &rke deconvolutiortech-
Frequency Division Multiplexing) modulation has been aos niques. Those techniques were initially applied in [5] toie
for the next common standard in most wireless communicatitime respective powers of users in a Code Division Multiple
systems (e.g. Wi-Max [3], 3GPP-LTE [2]). OFDM converts &ccess (CDMA) network.
frequency selective fading channel into a set of flat fading The paper is structured as follows: In section Il, we in-
channels [12], therefore providing a high flexibility in nes troduce the multicell environment model. In section Ill, we
of power and rate allocation. However, due to this flat fadingview classical methods used to derive SINR in OFDM
nature, OFDM suffers from a lack of diversity and from strongystems. In section IV, we provide the algorithm to deteamin
interferers in multi-cell systems. This requires systewmelle the per-cell SNR. A discussion on the gains and limitations
interference management (with proper multi-cell schedpli of this novel method is carried out in section V, before
from a network MIMO (Multiple Input Multiple Output) point we present the simulation results that sustain the theateti
of view [4]. claims. Finally, in section VII we draw our conclusions.
In order to design a viable network-wide OFDM system, Notations: In the following, boldface lower case symbols
a key parameter that needs to be estimated is the Signakdpresent vectors, capital boldface characters denotdcemt
Interference plus Noise Ratio (SINR), i.e. the power reseiv (Iy is the sizeV identity matrix). The spaceB((A, i, j) and
at the terminal originating from one base station over ti{(A, ) are the sets afx j andi x i matrices over the algebra
cumulated power of the interfering base stations plus back; respectively. The Hermitian transpose is dendt¢. The
ground noise power. Ideally, one needs to access the ragpeadperatordiag(x) turns the vectorx into a diagonal matrix.
Signal to Noise Ratio (SNR) of every cell in the network (i.eC* is the (k,n) binomial coefficient. The normalized trace
the ratio between the power of the received signal receivéml matrices withNV columns is denotedr (-) andE[] is the
that originated from the transmitter and the noise level). kxpectation.
the realm of cognitive networks [16], each terminal needs to
determine the uplink quality link (via the downlink channel
in TDD mode) with reduced feedback from the network in Let us consider, as depicted in figure 1, a set\Ngf base
order to decide autonomously how to split the different gackstations and one UE (User Equipment) with = 1 receiving
data. Several examples are provided in [17]-[18]. Usu#lliiz antennae. The network uses OFDM modulation with a aize
difficult problem of source separations treated with respect FFT. Let us also denote byl the expected maximumumber
to the signal statistics [13], [14], [15] under the hypoikesf of base stations (ideallywy < M). In the following, we
a high number of received snapshots. However, in practichall only deal withA and no longer uséVg, considering

II. DOWNLINK MODEL



N =256,P ={P1,P,P3} = {4,2,1}

L EstimatedP [our algorithm] P — P2
o 512 {5.82,2.90, —1.7} [{3.80,2.16,1.00}] 11.42
Sh/ 1024 {4.26,3.60, —0.8} [{3.62,2.37,0.94}] 5.87
2048  {4.52,2.69,—0.2} [{4.22,1.55,1.12}] 1.77
4096 {4.20,2.65,0.18} [{4.09,2.06,0.78}] 1.41
8192  {4.10,2.28,0.58} [{4.05,1.89,0.92}] 0.27
16384 {3.97,2.42,0.89} [{3.95,2.24,0.99}] 0.19
32768 {4.07,1.95,0.99} [{4.03,1.95,0.98}] 0.01
Fig. 1. System Model TABLE |

CLASSICAL MOMENT-BASED METHOD

then a network ofM base stations, of which some could

be of null power. The link between the UE and the base

stationk is a fast-fading complex Gaussian chanhgle CV, Il. CLASSICAL POWERDETECTION

coupled with a slow-fading path losk, = 1/P; with P, Usual power detectors consider the second as well as higher
the mean received power originating from base statiofhe order statistics of the received signals. This requiressto e
UE also suffers Additive White Gaussian Noise (AWGN) ofate the followingempirical moments{ (: YY*)* k> 1}.
power o2. The base statiork sends at time instant the These techniques work well wheh goes to infinity while
frequency-domain OFDM symbff) - (5§Qv~--,5§\l/)k)T that [V is finite, or at least when the rati®//L tends to zero
we first assume standard Gaussian (i.e. with zero mean &een both/V-and L go to infinity. Indeed, with growing’,
unit variance). The noisen() is added at the reception, with (7 YY" —o”Ly)* tends toE[(HPH'")*], which gives access
n® = (... )T also standard Gaussian. Therefore, thH® matrixP, as shown in IV. _ _
received signal vectog(!) = (y§1)7 o 7y](\lf))T at time instant AS @ consequence, one can retrieve the vavags_sas will

| reads be proved in section 1V) directly from the normalized traces

(also calledmoments of {1 (YY" — o%Iy)*} when L is

M-1 large compared tév. However, in practice, this case is rarely
yO=>" P2Dyst + on (1) met due to mobility of the UE. In fact, we wisiV to be

k=0 fairly large (such that the ratio between the system banitiwid
with Dy, = diag(hy) = diag([hk1 . . . hen])- over the coherence bandwidth is small) whileis limited
This summation over tha/ cells can be rewritten by the channel coherence timelherefore, even ifN and

L are large, the problem falls in a situation where the ratio

1
y" =HP:6Y +on 2) N/L is not close to zero so that expectation-based methods
with ) = (sgl), e ,s%{))T. are far from accurate. In this context, the previous classic
H € M(C,N,MN) is the concatenated matrix of themethod does not work since the expectation taken for large
matricesDy, k € [1, M] L is not valid whenN grows along withL. This is shown
hiy - 0 o ha e 0 in table | which provides the results and quadratic errors of
estimates ofP under different values of. using the same
H=1: -~ ... : (3 algorithm as described in section IV-A based on the moments
0 - hay -+ 0 - hywy of L(YY" —0%Iy) (instead of the moments ¢gfHPH" for

which comparative results, based on the algorithm of sectio

IV, are presented in brackets). This confirms that lafg@v

P =diag([P1, P, ..., Py]) ®1Iy (4) ratios are required for this classical scheme to be valid.

For a deeper analysis of those classical techniques, refer
Let us now assume that thef channels are slowly varying,to [19]. In this contribu'gion, we shall also use a technique

so that we can concatenatesamplesy® (I = 1, ... L) into based on moments, relying on recent_workRmndom Matrix

matrix Y = [y() ---y(1)] € M(C, N, L) and have the more Theory(RMT) [6] and Free Deconvolution5], that are briefly

general matrix product

andP € M(R, N) the diagonal matrix

where the symbok denotes the Kronecker product.

introduced in the following section.

N IV. APPLICATION OFFREEDECONVOLUTION TO
Y =HPz0O + 0N ) MULTIPLE SNRDETECTION

where® € M(C, MN, L) andN € M(C, N, L) are concate- In order to recover theP; powers, one needs to access
nation matrices of thé vectors#") andn() respectively. The the entries of HPH and more specifically, as shall be
entries ofH are fixed over thd. channel uses. shown later, the eigenvalue distribution HIPH . In RMT,
This then imposes the minimum of &lf channel coherence this distribution is called theempirical distribution of the
times to be greater tham7, with 7, the OFDM symbol matrix HPH” and is denoteduypsr. For those distri-
period. butions, we associatBee moments\/;, of order k defined



as M, = E[try(HPH")*]. In particular, a random matrix ~ The empirical distribution cHPH" was then derived from
A € M(C, N) is calledstandard Wisharif it can be written the empirical distribution oPYYH As a consequence, the
A = 1XXH, with X € M(C, N, L) a standard Gaussianfree momentsl;, = [trN(HPHH) ] can be retrieved from
random matrix (i.e. a matrix with standard i.i.d. Gaussiathe free momentsn, = E[try(+YYH)*]. Surprisingly, it
entries). The empirical distribution oA is the Marchenko- is shown in [8] that for any of the free classical operations
Pastur law [6] that we denotg,,,, with ¢ = N/L. Those (additive and multiplicative [de]convolution), the set tife
Wishart matrices have a generalized version in which tHiest & moments of the [de]convolution results can be exactly
column entries oKX are correlated through a covariance matrirecovered from the set of thefirst moments of the operands
Yx. Recent work orFree Probability[7] and RMT [5], [9] (and vice-versa). This substancially reduces the comiputt
provide several tools to derive the empirical distribusicsf effort.

the sum and product of random matrices. In particular, whenThe details of how to recover the moments from the
the matrix at hand is of thenformation plus noisetype momentsm; as well as fundamentals of Random Matrix
(those random matrices are deeply studied in [5]), then it Theory and Free Deconvolution are provided in [19].
possible to access the empirical distribution of the infation Our interest though is to find the diagonal entriesRf
signal given the empirical distribution of the received syoi Remarkably, it turns out that the matHPH” is diagonal.
signal. This is the main result that we use in this workjlence, for largg N, L) couples, we can easily derive all the
which is part of the general framework frée deconvolution theoreticalfree momentsi, of the distribution uyprz [6]

In the following, we shall use the symbol§, B, X and since all the(HPHY)” are diagonal matrices with entry

N respectively to retrieve the empirical distribution of the

sum, dlfference, product and inverse of two random matrices {(HPHH } (Z Pklhm|2> (12)
respectively. For instance

1a+s = pa B s (6) and then thep'™ order momentd, = E[try (HPH)?] of
e = pa N uB (7) HPH? can then be approximated for Iargé by
with C such thatA = CB.
In our problem, described in the form of model (5), it turns dp = 57 Z ZPk\hkﬂ 13)
out that theN x N matrix + Y'Y is aninformation plus noise J=1 k=1
matrix with N a Gaussian random matrix (hen%eNNH i At this point, expression (13) contains too many unknowns

a Wishart matrix). Therefore, for Iargef and L, one can since, in addition to thé,;, also theh;; are unknown. In fact
derive the empirical distribution ofHP :@O7P2H (ie. those unknownsg;; are the key that allows for the multiple
My Hl)2@)@HPHIH) from 1 LyyH- This requires knowledge SNR recovery provided that the chanigeherence bandwidth
of the noise power? and reads 5] is small compared to the system bandwidth. The reason lies
in the diversity engendered by high channel selectivityisTh
e ((u%yyH N fn,) 5502) X u,. (8) is thoroughly discussed in section V. In the following we
E therefore discuss the frequency selective scenario urder t
wherec = N/L since the noise matrix i3/ x L. hypothesis that the raticoherence bandwidtlover system
Also, the random entries @ in equation (5) are standardbandwidthis small.
Gaussian and independent. Therefée: H? HP:©0" is .
a generalized Wishart matriwith covarianceP3H#HP3. A Howto find thep,
As such, u can be recovered from To deduce the cell power values from the momefjiswe

P2 3 HAZHP 3 . . . . . .
M%P%HHHW@@H when the couple (N,L) is large need to derive independent equations ofdpén the variables

J o : {Py,k € {1,...,M}}. Again, as will be discussed in section
with & constant ratia’ = MN/L (M is constant) [5] V, the M channels’ frequency diversity is the key to provide
those equations. Let us start by deriving, for laigehe mo-
mentsd,, as in (13), which, fop € {1,..., M}, form a system
The left expression of equation (8) is slightly differerdrft  of 1/ equations for thel/ unknowns{P, k € {1,..., M}}.

the desired expression in the right part of equation (9, Sti | this case, sinceéV is large, (13) can be approximated by
thanks to the trace property, we have the link [6]

M p
L , L+ (1 - 1) 8 dp = Enp (% Pklhkj|2> (14)

Fptgnups = Pipturapieen N Hio ©)

Hiptunuprieer ~ Jrfinpleerpinn M
(10)
Finally, we similarly connect the left part of equation (8) t
HHPHH through

wherekE,;, denotes the expectation over the varialiles
If N is larger than the typical coherence bandwidth size,
the approximation of (14) is accurate. We then have a high
1 confidence that the channel correlations do not have a strong
Pplprpps = JpHHPHI T <1 N M> o (11) impact in the final results. Based on the classical moments



of the Rayleigh-distributed variablgs,;|, we can tehrefore Cell Power Detection — SNR=10dB
Sent Powers = [1 2 4], N=2048, L=4096, ChLen=N/8

derived, as Averaged over 1000 realisations
M ks 50F ‘ ‘ ‘ ‘ ‘ ‘ ‘
! S (2K)! 20k — KD o,
b= 2 1l {Z CE el S A A
kiye.kar i=1 Lk=0 20
Zi ki=p c T
g 35
The proof of formula (15) and further details about the “Garc 3 5|
N hyptothesis are provided in [19]. B
. [a)
Therefore the system of equations formed by (15) f =
p € {l,...,M} consists of multivariate polynomials in 2 sl
Py, ..., Py. This homogenous symmetric multivariate poly & |
nomial system can be rewritten 10
sl
M oL
PP = di.....d 16 1 15 2 25 3 35 4
kz:l Qp( v 7 p) ( ) Power
in which polynomial functions), € R[ds,...,d;] are theo- Fig. 2. Cell power detectionN = 512, L = 1024, Averaged over 1000
retically determined in [19]. trials
System (16) is then easier to solve. Its solution, the vector
of powers(P, ..., Py), is unique and corresponds to thé
roots (counted with their multiplicities) of the polynorhia If this small coherence bandwidth is not provided, then the
X of degreeM scheme can be extended to use multiple antennae to introduce
" M1 Ao " independent channel realizations. Thus, instead of using a
XY —ILXY T +ILXY " =+ (-1)" Iy (17) N x L matrix Y at the reception, we can easily extend the

where the element§l, are related to thezj P; by the scheme to use aiv.N, x L data matrix.

Newton-Girard formulg10]

o VI. SIMULATION AND RESULTS

k
k k+1 % _
(=1)"kIlx + Z(fl) ZPJ I =0 (18) In the following, we use the results that were previously
=1 g=1 derived in the case of a three-cell network (g = M = 3)
A thorough and clear study of the particuldd = 3 that the UE wishes to track. The set of cells studied in this

case as well as the complete derivations that lead tape Part are of relative powers; =4, P, =2, P; = 1.

polynomials are derived in [19]. For increased performance of our simulations, we shall
average the estimatet] values over 1000 channel realizations
V. DISCUSSION which we model as exponential decaying. Their delay spreads

First, as already mentioned in the previous sections, o(@y from1 to N/4 samples.
algorithm simplifies to a mere power detector when the In figure 2, we took matrices of siz& = 512, L = 1024
number of sampling periodé is larger than the FFT sizeand a Rayleigh channel of lengtN/8 samples. A hundred
N. This would be valid wher?. is fairly larger thanN but realizations of this process are run. The SNR is 10dB. Figure
this imposes very long accumulations, which is no long@r shows tha(P;, %, P;) are well recovered.
valid for the typical coherence time encountered in OFDM. The next experiment aims to estimate the noise influence
Equivalently, N could be limited to very few elements. Buton the cell power recovery. This is obtained by comparing the
then most of the provided information is discarded, which wiSN R = 30dB case to the&§ N R = —10dB scenario. Figure 4
heavily degrade the performance. provides the results (with 1000 accumulations over 100s)ria

The channel conditions are also of primary importancend shows that, surprisingly, whatever the noise levelr(éve
Indeed, if only one simulation shot is run (with sufficientlyit actually perfectly matches one specific cell power), th# c
large N and L), and if the channel is very small, then thepower recovery is substancially the sameNif L are large
channel frequency response will be rather flat over the whateough.
bandwidth. Also, we need to test the robustness of our algorithm against

This implies that all the moments dIPHY will form practical channels and not only “ideal” i.i.d or theoretica
a correlated system of equations and (16) cannot be deriwsgonential decaying channels with high delay spread. iBhis
since equation (15) is no longer valid. At best we can retrivghown in figure 3 that proposes a comparison between the ideal
the approximated total power received from all cells frorahsu long channel situation and the 3GPP-LTE [2] standardized
a situation. This is why a short coherence bandwidth (witextended Vehicular A (EVA) and Extended Typical Urban
respect to the total bandwidth) is desired. (ETU) channels with characteristics



Cell Power Detection - SNR=-10dB Cell Power Detection - SNR=30dB

Cell Power Detection — SNR=10dB - CDF Sent Powers = [1 2 4], N=512, L=1024, ChLen=N/8 Sent Powers = [1 2 4], N=512, L=1024, ChLen=N/8
Sent Powers = [1 2 4] N=512. L=1024 Averaged over 1000 realisations Averaged over 1000 realisations
For different channels - o
1 ; ; ; ; ; = «l “

09

0.8

Power Distribution
Power Distribution

0.7

0.6

0.5

Fig. 4. Cell power detection &8N R = —10dB (left) and SNR = 30dB

o4r (right), N = 512, L = 1024, Averaged over 1000 trials
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ok ' jﬂigz | fairly large bandwidth (large enough to ensure that the Bhn
' coherence bandwidth is small in comparison), we showed that
o os T 1 15 2 25 3 85 4 45 5 one can blindly determine the individual SNR of every cell.
Power

This is particularly suitable for next generation OFDM gyss

which aim to reduce the amount of synchronization sequences
Fig. 3. Cell power detection of LTE short Channels= 1024, Averaged to keep track of the neighboring cells.
over 1000 trials
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