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ABSTRACT

Logistic regression, one of the most popular machine learn-
ing binary classification methods, has been long believed to
be unbiased. In this paper, we consider the “hard” classifi-
cation problem of separating high dimensional Gaussian vec-
tors, where the data dimension p and the sample size n are
both large. Based on recent advances in random matrix the-
ory (RMT) and high dimensional statistics, we evaluate the
asymptotic distribution of the logistic regression classifier and
consequently, provide the associated test performance. This
brings new insights into the internal mechanism of logistic
regression classifier, including a possible bias in the separat-
ing hyperplane, as well as on practical issues such as hyper-
parameter tuning, thereby opening the door to novel RMT-
inspired improvements.

Index Terms— high dimensional statistic, logistic regres-
sion, machine learning, random matrix theory.

1. INTRODUCTION

Most theoretical results and analyses in statistical learning are
derived under the assumption that the sample size n is over-
whelmingly larger than the feature dimension p. Under the
current big data paradigm, where it is more accurate to as-
sume n ∼ p (or even p � n), understanding the resulting
impact of standard statistical learning methods when n and
p are commensurately large is becoming a growing research
concern in modern statistics [1–8].

Indeed, as already shown several times in the literature,
some long-held beliefs supported by classical results (and in-
tuition) break down when n, p are comparably large, a prob-
lem often related to the curse of dimensionality. For instance,
the recent study [9] sheds new light on the high dimensional
behavior of logistic regression, or more precisely on the max-
imal likelihood estimator β obtained by maximizing the pos-
terior probability P (y|x) = σ(yβT

∗x), with x ∈ Rp the
feature vector, y ∈ {−1, 1} the binary target variable, and
σ(t) = 1

1+e−t the logistic sigmoid function, over a set of
training data {xi, yi}, i = 1, . . . , n, where xi ∼ N (0, Ip).
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The authors of [9] show that, for commensurately large n, p,
the maximal likelihood estimator is biased, contradicting the
expectation of classical theory that the maximal likelihood es-
timator is asymptotically unbiased for n � p. Also, its vari-
ability is greater than commonly predicted. Consequently, the
commonly used procedure for significance test of the regres-
sion coefficients needs to be adjusted for improved accuracy.

Inspired by the work of [9], this article aims to provide
the asymptotic distributions of β under a more practical data
model with no constraint on the independence of features
and a natural mixture structure of linking components to the
classes (as presented in Section 2). Additionally, in order to
incorporate into the analysis framework the situations where
the maximal likelihood estimation is an ill-posed problem
without unique solution, a Tikhonov regularization term of
adjustable weight λ is included in the objective function. Ac-
cording to [10], such situations are bound to occur in high
dimensional problems when the dimensionality ratio p/n is
above a certain threshold cth.

Besides corroborating the findings of [9] in an extended
setting, the theoretical results in this paper notably point out
that even when the estimation problem is well-posed, it is ben-
eficial to the generalization performance to use a regularized
solution, in spite of an even more biased β. More surprisingly,
when the data covariance is the identity matrix, the optimal
generalization performance is actually achieved at λ → ∞,
suggesting the usage of a significantly emphasized regular-
ization in practice.

Analyzing learning systems in the regime where n is com-
parable to p often involves advanced technical arguments: the
learned parameters no longer converge to deterministic limits
as when n� p but are instead intricately related to the train-
ing data, especially when the learning system admits no ex-
plicit solution as in the case of logistic regression. To capture
the asymptotic statistical properties of implicit learning meth-
ods, many related works [1,9,11] rely on a “double leave-one-
out” approach, based on the procedure of eliminating one data
sample and one data feature from the input dataset. The appli-
cability of the leave-one-feature-out approach in these works
however depends on the independence and statistical equiva-
lence of data features, which no longer holds for the general-
ized model under study. A new strategy combining arguments



from random matrix theory and the leave-one-observation-
out procedure is therefore derived for this analysis.

The remainder of the article is organized as follows. We
establish the system model under study in Section 2 and
present our main results in Section 3, while a brief review
of the technical approach is deferred to Section 4. Section 5
ends the article with future perspectives.

Notations: Boldface lowercase (uppercase) characters
stand for vectors (matrices). The notation (·)T denotes the
transpose operator. The norm ‖ · ‖ is the Euclidean norm for
vectors and the operator norm for matrices. The notation d−→
denotes the convergence in distribution.

2. PRELIMINARIES

Let x1, . . . ,xn ∈ Rp be independent vectors from two bal-
anced distribution classes C1, C2 (so that C1 and C2 both have
cardinality n/2). We assume the data vectors xi ∈ Ca for
a ∈ {1, 2} follow a Gaussian mixture model such that

xi ∼ N ((−1)aµ,C)

for some mean µ ∈ Rp and covariance C ∈ Rp×p with asso-
ciated labels yi = −1 if xi ∈ C1 and yi = 1 if xi ∈ C2. To
achieve an asymptotically non-trivial misclassification rate,
we shall (as in [12]) work under the following assumptions:

Assumption 1 (Growth rate). As n → ∞, p/n → c > 0.
Besides, ‖µ‖ = O(1) and ‖C‖ = O(1) (with respect to p).

Note that {xi, yi} follows a logistic regression model as

P (yi|xi) =
P (yi)P (xi|yi)

P (yi)P (xi|yi) + P (−yi)P (xi| − yi)

=
1

1 + e2yiµTC−1xi
= σ(yiβ

T
∗xi)

with β∗ = 2C−1µ and σ(t) = 1
1+e−t the logistic sigmoid

function. The maximal quadratically regularized likelihood
estimate β is thus the solution of

min
β∈Rp

1

n

n∑
i=1

ρ(βTx̃i) +
λ

2
‖β‖2 (1)

where ρ(t) = ln(1 + e−t), x̃i = yixi ∼ N (µ,C).
To investigate the asymptotic performance of the logistic

regression classifier, it is of crucial importance to understand
the statistical properties of β. The main technical difficulty of
this analysis lies in the fact that β, as the solution of a non-
trivial optimization problem, does not have an explicit form.
Nonetheless, by cancelling the loss function derivative with
respect to β we obtain the following implicit relation

λβ =
1

n

n∑
i=1

cix̃i, ci ≡ ψ(βTx̃i) (2)

where ψ(t) ≡ −∂ρ(t)∂t = 1
1+et .

Therefore, β can be seen as a linear combination of all
x̃i’s, weighted by the coefficient ci. The idea is to understand
how x̃i (and its statistical properties) affects the correspond-
ing coefficient ci (or more precisely, βTx̃i). However, as a
solution of (1), β depends on all x̃i’s in an intricate manner,
we handle this correlation by establishing a “leave-one-out”
version of β, denoted β−i, that is asymptotically close to β
and independent of x̃i, by solving (1) for all x̃j , j 6= i. As
it turns out in the technical development of Section 4, we can
relate ci to βT

−ix̃i (the latter being a Gaussian random vari-
able since x̃i ∼ N (µ,C) and independent of β−i) through
the proximal mapping (which is frequently used in convex
optimization [13]), as stated in the lemma below.

Lemma 1. Under Assumption 1, there exist two positive de-
terministic constants m,σ2 such that

βT
−ix̃i

d−→ r ∼ N (m,σ2).

Let function gκ : R 7→ R be given by

gκ(t) =
(
proxκ(t)− t)

/
κ

where the proximal mapping proxκ(t) is defined by proxκ(t) =

argminz∈R

(
ρ(z) + (z−t)2

2κ

)
. Then,

ci
d−→ c ∼ gκ(r)

where κ is a deterministic constant dependent of m,σ2, de-
termined by the following fixed-point equation

κ ≡ 1

n
tr

(
λIp − E

[
ψ′(r + κgκ (r))

1− κψ′(r + κgκ (r))

]
C

)−1
C

with ψ′(t) ≡ ∂ψ(t)
∂t = − et

(1+et)2 .

3. THEORETICAL ANALYSIS

3.1. Main results

We now introduce the main result of this article as follows.

Theorem 1 (Distribution of β). Let Assumption 1 hold. Then,
under the notations of Lemma 1,

‖β − β̄‖ → 0 where (λIp + τC) β̄ ∼ N (ηµ, γC/n)

with (η, γ, τ) ∈ R3
+ the unique solution of the following sys-

tem of equations

η = E[gκ(r)], γ = E[g2κ(r)], τ = E[gκ(r)(m− r)]/σ2

(3)
for some r ∼ N (m,σ2) with

m ≡ ηµT (λIp + τC)
−1

µ

σ2 ≡ η2µT (λIp + τC)
−1

C (λIp + τC)
−1

µ

+
γ

n
tr
(

(λIp + τC)
−1

C
)2
.



The proof sketch of Theorem 1 can be found in Section 4.
Note that Theorem 1 allows also to determine the unknown
parameters m,σ2 in Lemma 1, thereby giving directly the
generalization error of x̃i, obtained by leaving it out from the
training process and treating it as unseen data.

Corollary 1 (Test performance). Let Assumption 1 hold.
Then the test performance of the classifier measured by the
misclassification rate is given by

P
(
βT
−ix̃i < 0

)
−Q

(m
σ

)
= op(1)

with Q(t) ≡ 1√
2π

∫∞
t

exp(−u2/2)du.

Figure 3.1 reports the empirical distribution of βT
−ix̃i ver-

sus a Gaussian distribution N (m,σ2) from Theorem 1 for
one realization. We observe a close match of the asymptotic
results on finite data samples already for not too large n, p.

0 1 2
0

0.5

1

D
is

tr
ib

ut
io

n
of

β
T −
i
x̃
i

Empirical distribution of βT
−ix̃i

Gaussian distribution N (m,σ2)

Fig. 1. Comparison between βT
−ix̃i and a Gaussian distribu-

tion N (m,σ2) as defined in Theorem 1 with µ = [2, 0p−1],
C = Ip, for λ = 1, p = 256 and n = 512.

3.2. Interpretation

The unregularized solution which, if well-defined, is retrieved
by taking λ = 0 in the results of Theorem 1, gives rise to

‖β − β̄‖ → 0 where β̄ ∼ N
(
(η/2τ)β∗, (γ/nτ

2)C−1
)

where we recall that β∗ = 2C−1µ is the vector of the true
parameters. A first remark is that the high dimensional max-
imum likelihood β is biased in the sense that its expecta-
tion converges to a rescaled version of the true β∗, which
is reminiscent of the conclusions in [9] under the setting of
xi ∼ N (0, Ip).

Turning to the regularized solutions, it can be observed
from Theorem 1 that when λ 6= 0, the asymptotic expec-
tation of β is different from β∗ in both scale and direction.
From a classification viewpoint, using a rescaled β∗ achieves
the same oracle test performance as β∗, meaning that only

biases in direction are detrimental to the classification perfor-
mance. However, it is found that the performance is actu-
ally improved with regularization, despite the presence of a
more severe bias. This is because γ/η2, which is an indicator
of the variability of β, is minimal for extremely regularized
solutions (λ → ∞). Indeed, according to (3), η, γ equal re-
spectively the first and second moment of the random variable
c = gκ(r) (as defined in Lemma 1). It can then be shown that
the random variable c converges to 1/2 as λ → ∞, where
γ/η2 reaches a minimal value of 1.

To summarize, while the variability of β is at its lowest in
the limit λ → ∞, the undesired direction bias is only elimi-
nated at the other extreme λ → 0. There is thus a trade-off
between learning the correct direction and reducing the ran-
domness for β through the tuning of λ.

It should be pointed out that even though the classification
error is usually minimized at finite λ, as in the case of the C2

covariance in Figure 2, it continually decreases as λ → ∞
when the data covariance equals Ip. A highly regularized so-
lution is therefore favorable in this special case, as confirmed
in Figure 2 for C1 = 2Ip. The underlying reason behind this
conterintuitive phenomenon is easily understood with our re-
sults: the asymptotic expectation of β is always aligned to
β∗ for any λ when C = Ip; it then remains to minimize the
variability of β, which can be achieved for λ→∞.
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Fig. 2. Misclassification error as a function of λ, with µ =
[1, 1, 0p−2], C1 = 2Ip and C2 = diag[1, 5, 1p−2], where
p = 128, n = 512 and with number of test samples ntest =
512. Empirical results obtained by averaging over 500 runs.

4. TECHNICAL APPROACH

As discussed at the end of Section 2, we shall connect
βTx̃i to ci by establishing a “leave-one-out” version of
β that is independent of xi. To this end, we denote β−i
the solution of (1) with X̃−i ≡ [x̃1, . . . , x̃i−1, x̃i+1, x̃n] ∈



Rp×(n−1), all training data except {xi, yi}, such that β−i =
1
n

∑
j 6=i ψ(βT

−ix̃j)x̃j . The difference β − β−i is therefore
given by

λ(β − β−i) =
1

n

∑
j 6=i

(
cj − ψ(βT

−ix̃j)
)

x̃j +
1

n
cix̃i

=
1

n
X̃−i∆c−i +

1

n
cix̃i (4)

with ∆c−i ∈ Rn−1 the vector with j-th entry equal to cj −
ψ(βT

−ix̃j) for all j 6= i.
Note that under Assumption 1, ‖x̃i‖ is of order O(

√
p)

with high probability. Establishing that the ci’s are of order
O(1), we deduce from (2) that ‖β‖ (and ‖β−i‖) is of or-
der O(1) and from (4) that ‖β − β−i‖ is of order O(1/

√
p).

Moreover, using the fact that ψ(t) is Lipschitz continuous, we
have cj −ψ(βT

−ix̃j) = O(1/
√
p) that is smaller compared to

cj , which further allows for the following estimate

cj − ψ(βT
−ix̃j) = ψ′(βT

−ix̃j)(β − β−i)
Tx̃j +O(1/p)

= ψ′(βT
−ix̃j)

1

nλ

(
x̃T
j X̃−i∆c−i + cix̃

T
j x̃i

)
+O(1/p)

by performing a Taylor expansion of ψ(t) around t = βT
−ix̃j ,

with ψ′(t) ≡ ∂ψ(t)
∂t = − et

(1+et)2 < 0. Assembling the n − 1

equations for j 6= i and we get

∆c−i =

(
λIn−1 −

1

n
D−iX̃

T
−iX̃−i

)−1
1

n
D−iX̃

T
−ix̃ici+op(1)

with D−i ∈ Rn−1 the diagonal matrix with (j, j)-entry equal
to ψ′(βT

−ix̃j). Plugging in the above expression of ∆ci into
(4) we reach

(β−β−i)Tx̃i =
ci
n

x̃T
i

(
λIp −

1

n
X̃−iD−iX̃

T
−i

)−1
x̃i+op(1).

(5)
The RHS of (5) being a quadratic 1

n x̃T
i Mx̃i for some M of

bounded operator norm and independent of x̃i, classical RMT
results yield the following approximation.

Lemma 2 (Asymptotic approximation of quadratic form).
Let Assumption 1 hold. Then with probability one,

1

n
x̃T
i

(
λIp −

1

n
X̃−iD−iX̃

T
−i

)−1
x̃i − κ→ 0

where κ is the unique solution of κ = 1
n tr (Q̄C) with

Q̄ ≡

(
λIp − E

[
ψ′(βTx̃)

1− κψ′(βTx̃)

]
C

)−1
.

From Lemma 2 and (2)-(4) we obtain the implicit relation
ci = ψ(βTx̃i) = ψ(βT

−ix̃i + ciκ), the solution of which is
given via gκ as defined in Lemma 1 as

ci = gκ(βT
−ix̃i)

which gives a new expression of β from (2) as

λβ =
1

n

n∑
i=1

gκ

(
βT
−ix̃i

)
x̃i. (6)

As discussed at the end of Section 2, since β−i is inde-
pendent of x̃i, βT

−ix̃i is a Gaussian random variable of mean
µTE[β−i] and variance E[βT

−iCβ−i] that are asymptotically
close to

m ≡ µTE[β], σ2 ≡ E[βTCβ] = tr
(
CE[ββT]

)
(7)

so that the statistical properties of βT
−ix̃i are naturally con-

nected to those of β.
However, note that in (6), the term gκ(βT

−ix̃i) highly de-
pends on x̃i so that E[β] is still not easily accessible. To
address this issue, we further “separate” the dependence of
x̃i = µ + zi from βT

−ix̃i by writing

zi = z̃i +
βT
−izi

βT
−iCβ−i

Cβ−i = z̃i +
βT
−izi

σ2
Cβ−i + op(1)

so that E[(βT
−izi)z̃i] = 0 with E[z̃i] = 0, E[z̃iz̃

T
i ] = C −

1
σ2 CE[ββT]C. As a consequence, (6) can be decomposed as

λβ− 1

n

n∑
i=1

gκ

(
βT
−ix̃i

) βT
−izi

σ2
Cβ−i =

1

n

n∑
i=1

gκ

(
βT
−ix̃i

)
(µ+z̃i)

which yields the following relation

(λIp + τC)β = ηµ + u + op(1)

with (τ, η, γ) ∈ R3
+ given by (3), u ≡ 1

n

∑n
i=1 ciz̃i and

E[u] = 0, E[uuT] =
γ

n

(
C− 1

σ2
CE[ββT]C

)
and therefore

β = η (λIp + τC)
−1

µ + (λIp + τC)
−1

u + op(1)

with concludes the proof of Theorem 1.

5. FUTURE PERSPECTIVES

While this article concentrates on logistic regression classifi-
cation, the technical approach developed here for the analysis
of logistic regression is directly adaptable to other classifica-
tion algorithms of empirical risk minimization with various
loss functions, allowing for the possibility of optimizing the
design of loss function with respect to the data statistics.

Another direction of future investigation is to construct
an estimator of the optimal λ by capitalizing on the theoret-
ical results in this paper and employing the arguments from
random matrix theory.
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