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ABSTRACT
Leveraging on recent random matrix advances in the performance
analysis of kernel methods for classification and clustering, this
article proposes a new family of kernel functions theoretically
largely outperforming standard kernels in the context of asymp-
totically large and numerous datasets. These kernels are designed
to discriminate statistical means and covariances across data classes
at a theoretically minimal rate (with respect to data size). Applied
to spectral clustering, we demonstrate the validity of our theoretical
findings both on synthetic and real-world datasets (here, the popular
MNIST database as well as EEG recordings on epileptic patients).

Index Terms— Spectral clustering, inner product kernels, ran-
dom matrix theory.

I. INTRODUCTION
With the advent of the big data era, a strong pressure has recently

been set on the development of powerful machine learning methods
to perform classification or regression tasks involving large and
numerous datasets (i.e., under a “large p, large n” regime). These
methods notably involve non-linear approaches such as neural
networks and kernel-based algorithms which, as an aftermath of
their non-linear character, are difficult to analyze. In a recent
line of works initiated in [1], in the large p and n asymptotics,
kernel random matrices have been explored and have led to a
completely renewed understanding of kernel approaches, starting
with the asymptotic performance (and sometimes inconsistency) of
kernel classification and spectral clustering. This includes kernel-
based (least-square) support vector machines [2], semi-supervised
classification [3] and spectral clustering [4]–[6], but also neural net-
work derivatives such as extreme learning machines [7]. The main
lever to analyze the performance of kernel matrices K ∈ Rn×n
in the large dimensional regime (p, n → ∞ with p/n → c0 > 0)
lies in the fact that, under appropriate (what we shall call here
“asymptotically non-trivial”) growth rate assumptions on the data
statistics, the entries Kij = f(xTi xj) or Kij = f(‖xi − xj‖2)
of K tend to converge to a limiting constant, irrespective of the
data class (when classification is concerned), thereby allowing for a
study of K through a Taylor expansion; this gives way in particular
to the possible analysis of the eigenvectors of K or to functionals
of K for all large p, n. These expansions notably set forth the
discriminative effect of kernel-based classification methods as they
tend to emphasize (in the structure of the dominant eigenvector
of K notably) the statistical difference between the class means
and class covariances, this emphasis being strongly related to the
derivatives of f at a certain location. It has been notably confirmed,
both theoretically on synthetic Gaussian mixture models but also in
practice on real datasets that specific choices of f are more adapted
to datasets containing either pronounced differences between class
means as in the case of the popular MNIST dataset [8] while others
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are better tuned to classes having similar means but comparatively
strongly differing covariances [9].

An important side remark of [4] however emphasized the fact
that most natural kernels (such as the popular radial basis function
kernel, given by Kij = f(‖xi−xj‖2) with f(t) = exp(−t/2)) are
incapable to discriminate between class covariances at an optimal
rate. By specifically choosing f to attain such high “covariance
discriminative” power (precisely by taking f such that f ′(τ) =
0 for τ the converging value of all ‖xi − xj‖2 for translation-
invariant kernels, or such that f ′(0) = 0 for inner-product kernels),
[6] indeed demonstrates a complete change in the random matrix
structure of K and in the overall performance of classification.
However, these functions f , be they highly powerful to discriminate
data with distinct covariances, have as a side effect the property of
completely masking the difference between the statistical means
of the classes, thus leading up to extremely poor performances in
means-dominated datasets (such as with MNIST).

The objective of this article is precisely to conciliate the findings
of [4], [6] by proposing a new kernel parametrization that set
emphasis to both differences in statistical means and covariances
of the data classes, to their optimal discriminate rate. To this
end, we shall study inner-product kernel matrices K designed with
f ′(0) = O(1/√p) (rather than O(1) as in [4] or zero as in [6])
for datasets arising from a Gaussian mixture model with minimal
growth rate (with respect to p) in the distances between means
and covariances. These minimal rate conditions are in fact optimal
in the sense that Neyman-Pearson hypotheses tests with perfectly
known class means and covariances cannot achieve better rates.

Notation: Vectors are denoted with boldface lowercase letters
and matrices by boldface uppercase letters. The norm ‖.‖ stands for
the Euclidean norm for vectors and the operator norm for matrices.
The vector 1n ∈ Rn stands for the vector filled with ones. C+ is
defined to be the set of complex numbers with a positive imaginary
part. The Dirac mass is δx.

II. MODEL AND MAIN RESULTS
Consider n independent vectors x1, . . . ,xn ∈ Rp belonging

to a mixture of k Gaussian distributions C1, . . . , Ck such that for
xi ∈ Ca, xi = µa +

√
pwi, for some µa ∈ Rp and wi ∼

N (0, p−1Ca), with Ca ∈ Rp×p a nonnegative definite matrix. We
assume without loss in generality that the vectors are sorted as
xn1+···+na−1+1, . . . ,xn1+···+na ∈ Ca for a = 1, . . . , k.

We assume the large dimensional random matrix regime by
which both p and n grow large at the same rate. Under the described
data model, conditioning on the knowledge of the statistical means
and covariances of each vector xi, a Neyman-Pearson hypothesis
test applied to the data can decide on the genuine data class
with asymptotically non-trivial error (i.e., with probability of error
neither 0 nor 1/k) when the following growth rate conditions (items
1–3 below) are assumed.

Assumption 1 (Growth rate). As n→∞, p/n→ c0 > 0, na
n
→

ca > 0. Furthermore,



1) For µ◦ =
∑k
a=1 caµa and µ◦a = µa − µ◦, ‖µ◦a‖ = O(1).

2) For C◦ =
∑k
a=1 caCa and C◦a = Ca−C◦, ‖Ca‖ = O(1)

and trC◦a = O(√p).
3) 1√

p
trC◦aC

◦
b converges in [0,∞).

4) 1
p
trC◦ converges to τ > 0.

Under those conditions, it was shown in [4, Remark 12] that
estimating the class labels by spectral clustering on K does not per-
form better than random guess for generic f , unless the condition

1√
p
trC◦aC

◦
b = O(1) is relaxed to to 1√

p
trC◦aC

◦
b = O(√p), or

that f is chosen so that f ′(τ) = 0 for translation-invariant kernels
or f ′(0) = 0 for inner-product kernels. But the latter choice comes
along with a complete annihilation of the class means in the spectral
clustering inner workings (a setting carefully studied in [6]).

As made clear by a careful random matrix analysis, setting
instead f ′(τ) = O(p−

1
2 ) (or f ′(0) = O(p−

1
2 )) allows for a fair

treatment of both class means and covariances in the classification
procedure. For simplicity of exposition, we focus here on the case
of inner-product kernels with f ′(0) = O(p−

1
2 ). We thus have the

following key assumption on the kernel function design.

Assumption 2 (On the kernel function). The kernel function f is
three-times continuously differentiable in a neighborhood of 0 with
f(0), f ′′(0), f ′′′(0) constant with p while f ′(0) = α√

p
for some

α ∈ R. We shall also denote β = 1
2
f ′′(0).

For instance, the kernels f(x) = β(x+ p−
1
2 β−1α)2 or

f(x) = e−β(x+p
− 1

2 β−1α)2 satisfy the conditions of Assumption 2.

The kernel studied in [6] thus corresponds to the particular case
of Assumption 2 with α = 0. As for [4], we shall see that it might
be considered as a limiting setting where α is arbitrarily large.

For subsequent use, we introduce the following notations

M , [µ◦1, · · · ,µ◦k] ∈ Rp×k

T ,

{
1
√
p
trC◦aC

◦
b

}k
a,b=1

W , [w1, . . . ,wk] ∈ Rp×n

J , [j1, · · · , jk] ∈ Rn×k

P , In −
1

n
1n1Tn ∈ Rn×n

with ja ∈ Rn the canonical vector of cluster Ca defined by (ja)i =
δxi∈Ca . Having specified the conditions on f , let us now define K
as the inner-product random matrix

K
∆
=

{
f
(

1
p
(x◦i )

Tx◦j

)
, i 6= j

0 , i = j

with x◦i = xi − 1
n

∑n
i=1 xi and f satisfying Assumption 2.

Under this parametrization, we shall successively show that the
matrix K composed of non-linear and intricately dependent entries
asymptotically behaves in a simpler “almost linear” manner. From
this simplified form, the asymptotic spectral characterization of K
will be understood, in particular its dominant eigenvector contents.

As in [1] and following-up works, the non-linearity in K is
treated by noticing that, as p→∞, Kij → 0 for all i 6= j, thereby
allowing for an entry-wise Taylor expansion of K. The theoretical
difficulty next lies in the random matrix analysis of all matrix
terms arising from the Taylor expansion. The key particularity
that makes the setting f ′(0) = O(p−

1
2 ) so fundamental is that,

in [4], the terms affected by the differences trC◦aC
◦
b used to

vanish (as a result of being absorbed by background noise) when
trC◦aC

◦
b = O(√p); by letting f ′(0) = O(p−

1
2 ), the dominant

background noise (but also the differences in means) are reduced
and now comparable to the terms involving trC◦aC

◦
b (as long as

β = 1
2
f ′′(0) 6= 0). An interesting side effect is that a second

noise term then arises, and leads to a peculiar phenomenon where
a mixture between a Marcenko–Pastur [10] type and a semi-circle
type [11] noise eigenvalue distribution is observed in the limiting
spectrum of K. Still, this complication in the “noise spectrum”
paradoxically comes along with a much simplified “signal spec-
trum”, as shown in the subsequent results.

Theorem 1. Under Assumption 1 and 2, let K̂ be given by:

K̂ = αPWTWP + βPΦP + UAUT

A =

[
αMTM + βT αIk

αIk 0

]
U =

[
J
√
p
,PWTM

]
Φ
√
p
=
{
((ω◦i )

Tω◦j )
2δi 6=j

}n
i,j=1

−
{
tr(CaCb)

p2
1na1Tnb

}k
a,b=1

.

Then, ∥∥∥√p (PKP +
(
f(0) + τf ′(0)

)
P
)
− K̂

∥∥∥ a.s.−→ 0.

Theorem 1 states that, up to centering and scaling, K is asymp-
totically equivalent to K̂. In particular, an immediate corollary of
Theorem 1 is that both matrices asymptotically share (again, up
to centering and scaling) the same eigenvalues as well as isolated
eigenvectors (i.e., eigenvectors associated to eigenvalues found at
non-vanishing distance from any other eigenvalue). We may then
study the asymptotic spectral properties of K (and as a result, the
classification performance of algorithms based on K) through K̂.

As previously hinted at, it is first interesting to note that K̂ is
the sum of i) the random matrices αPWTWP (of the Marcenko–
Pastur type) and βPΦP (of the Wigner type, as shown in [6])
having entries of order O(p−1) and of ii) a maximum rank
k− 1 matrix containing linear combinations of the class-wise step
vectors ja intricately scaled through the inner-products between
class means (MTM) and class covariance-products (T). This may
be identified as part of the large family of spiked random matrix
models [12], with the particularity that the low-rank addition is not
independent of the noise part and that the noise part itself is a
mixture between random Wishart and random symmetric matrices.

Random matrix theory today possesses all necessary tools to
assess the eigenspectrum of such spiked random matrix models. As
a common denominator, their eigenvalues are usually composed of
a tightly connected “bulk” of eigenvalues along with up to k − 1
isolated eigenvalues, the eigenvectors associated with which align
to some extent to the eigenvectors in U (and thus, importantly here,
to linear combinations of the vectors j1, . . . , jk).

In particular, understanding the asymptotic performance of spec-
tral clustering demands to characterize the isolated eigenvectors
of K. For these to be asymptotically informative, their associated
eigenvalues must be found away from the main eigenvalue “bulk”.
In the following results, we evaluate the conditions upon which this
transition phenomenon (i.e., the appearance of spiked eigenvalues)
between asymptotically uninformative and informative eigenvectors
occurs. We start by identifying the defining equations for the
eigenvalue distribution of K.

Theorem 2 (Eigenvalues Bulk). Let Assumptions 1 hold. Then,
as p → ∞, the spectral distribution νn , 1

n

∑n
i=1 δλi(K̂) (with



λi(X) the eigenvalues of X) almost surely converges (in the weak
sense of probability measures) to the probability measure ν defined
on a compact support S and having Stieltjes transform m(z) =∫ ν(dt)

t−z defined for z ∈ C+, as the unique solution in C+ of

1

m(z)
= −z + α

p
trC◦

(
Ik +

αm(z)

c0
C◦
)−1

− 2β2

c0
ω2m(z)

where ω = limp→∞
1
p
tr(C◦)2.

Fig. 1: Eigenvalues of K (up to recentering) versus limiting law,
p = 2048, n = 4096, k = 2, n1 = n2, µi = 3δi, f(x) =
1
2
β
(
x+ 1√

p
α
β

)2

. (Top left): α = 8, β = 1, (Top right): α =

4, β = 3, (Bottom left): α = 3, β = 4, (Bottom right): α =
1, β = 8.

Figure 1 shows for different values of the parameters α and
β the histogram of the eigenvalues of K versus the theoretical
bulk ν from Theorem 2.1. Note that ν is indeed a mixture of the
Marcenko–Pastur law (more visible when α � β) and a Wigner
semi-circle law (especially appearant as β � α). The regime under
study thus exhibits a tradeoff between the regime considered in [4]
(where α is theoretically infinite and only a Marcenko–Pastur law
appears in the theoretical formulas) and the regime considered in [6]
(where α = 0 and a semi-circle law is obtained).

With Theorem 2 in place, it now remains to determine the
conditions under which isolated eigenvalues can be found in the
spectrum of K, i.e., eigenvalues falling outside the support S
of the limiting measure ν. This is obtained by means of now
standard random matrix techniques (see e.g., [12]) dedicated to
spiked models. The main result is provided in Theorem 3 below,
explicited here for simplicity in the case where k = 2 classes with
equal number of vectors per class, i.e., for n1 = n2.

Theorem 3. Let Assumption 1 and 2 hold and let ρ ∈ R \ S be
such that

m(ρ)

4c0
(αg(ρ)δ + βθ) + 1 = 0 (1)

with g(ρ) = 1
p
tr(Ip +

αm(ρ)
c0

C◦)−1, δ = ‖µ◦1 − µ◦2‖2, and θ =
1√
p
tr(C1 −C2)

2.

Then, there exists λj eigenvalue of K̂ such that

|λj − ρ|
a.s.−→ 0.

Any real number ρ satisfying equation (1) therefore corresponds
to the (almost sure) limit of some eigenvalue of K (again, up to
a shift and scaling). This equation in general has a solution for
sufficiently large differences in class means, through the Euclidean
norm distance δ, or in class covariances, through the Frobenius

1Obtained from the inverse formula ν(dt) = 1
π
limε→0 =[m(t+ iε)]dt

norm distance θ. This induces a detectability phase transition
depending on the values of the pair (δ, θ). Thus, for sufficiently
large δ or θ and appropriately set α, β, Equation 1 has a solution,
which implies the presence of an isolated eigenvalue outside S
and to a corresponding eigenvector “aligned to some extent” to
the canonical class vectors ja’s. Specifically, for every isolated
eigenvalue λ of K, the associated eigenvector uλ can be written as
a linear combination of the class canonical vectors added to residual
noise. Since the data are statistically interchangeable within the
classes, we can write

uλ = η1
j1√
n1

+ η2
j2√
n2

+ σ1ω1 + σ2ω2 (2)

where ω1 and ω2 are unit norm vectors supported respectively on
the indices of class C1 and C2, and orthogonal to respectively j1 and
j2. The scalars η1, η2 can be seen as the empirical averages of the
eigenvector entries in class C1 and C2 while the σ1 and σ2 represent
the class standard deviations of the eigenvector fluctuations around
η1

j1√
n1

and η2
j2√
n2

. Intuitively, the larger |η1 − η2| the more the
separation between eigenvector entries mapped to C1 and those
mapped to C2 and thus the better the clustering performance. A
precise analysis of the limiting values of those parameters (similar
to the approach in [4]) leads to the following result.

Theorem 4 (Isolated eigenvector). Let λ be an isolated eigenvalue
of K̂ with almost sure limit ρ, and uλ its associated eigenvector
decomposed as (2). Then, for both a = 1 and a = 2

(ηa)
2 =

m(ρ)2

2m′(ρ)

1

1− m(ρ)2

4m′(ρ)
αg′(ρ)
c0

δ
+ o(1)

where m(ρ) and g(ρ) are defined in Theorem 2 and m′(ρ), g′(ρ)
are their respective first derivatives.

Under this model (i.e., for k = 2 with n1 = n2), the limiting
structure of eigenvector uλ is quite symmetric, as seen through the
fact that η1 = −η2 + o(1). This in particular immediately implies
that σ2

1 = σ2
2 + o(1) = 1

2
− η2

1 + o(1).
Such a symmetric model can be for example obtained by letting

Ca = Ip +
√

θ
2κ
p−5/4WaW

T
a for some κ > 0, and with

W1,W2 ∈ Rp×κp two independent random matrices having i.i.d.
N (0, 1) entries so that 1√

p
tr(C1 −C2)

2 a.s.−→ θ,. In this case, the
asymptotic correct classification Pc(α, β) obtained by clustering
eigenvector uλ based on the signs of its entries satisfies

Pc(α, β)−Q

(√
η2

1− η2

)
a.s.−→ 0 (3)

where 1
η2

= 2m′(ρ)
m(ρ)2

(1− m(ρ)2

4m′(ρ)
αg′(ρ)
c0

δ).
As an illustration, Figure 2 depicts the limiting values for

Pc(α, β) as per (3) for different values of α
β

and as a function of δ
and θ. The figure strongly sets forth the importance of a proper
choice of α, β depending on the specifics of the classification
task, i.e., either means-dominant or covariance-dominant. In par-
ticular, as previously anticipated, a large value for α

β
yields better

performances in means-dominant disciminative tasks (bottom of
Figure 2); conversely, small values of α

β
are adapted to covariance-

dominant tasks (top of Figure 2).
Upon anticipation of the most discriminative attribute of the

data at hand, our results therefore provide an instructive direction
to appropriate kernel choice. In supervised or semi-supervised
learning tasks, δ and θ can be estimated through appropriate
(random matrix-based) estimators, thereby helping in the choice
of appropriate values for α and β. An application of this principle
is performed in the subsequent section on real datasets.
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Fig. 2: p
n

= 1
2

, k = 2, c1 = c2, µi = δδi, δ ∈ [1 : 20],
C1,C2 as in the symmetric setting with θ ∈ [1 : 20], f(x) =
1
2
β
(
x+ 1√

p
α
β

)2

. Probability of correct recovery for different
settings α

β
= 1

8
(top), α

β
= 1 (Middle), α

β
= 8 (Bottom), a function

of δ (x-axis) and θ (y-axis).

III. APPLICATIONS
Our study has so far provided theoretical results for Gaussian

mixture models, notably emphasizing the appropriateness of a
kernel having first derivative scaling as O(p−

1
2 ) with the data

size p. In this section, we demonstrate that these findings are
confirmed when applied to realistic datasets. The first dataset
under consideration is the popular MNIST database of handwritten
digits [8]. In this dataset, the classes (the different digits) are
evidently more discriminative in means than in covariances, as
confirmed by Table I. The second dataset is the epileptic EEG
database from [9] which consists of five sets (A to E), each
containing p = 100 single EEG channel segments of 23.6s each.
Sets A and B report measures on 5 healthy volunteers and sets
C − E on 5 epileptic patients; each set is composed of 4097
samples. This dataset demonstrates more variations in the class
covariances as shown again in Table I.

For both examples, kernel spectral clustering is performed on
the dominant eigenvector of a subset of two classes, using k-
means (rather than the eigenvector entry signs) to discriminate the

Table I: Class means and class covariances differences for some
real datasets.

DATASETS ‖µ◦1 − µ◦2‖2 1
p
tr(C1 −C2)

2

MINIST (DIGITS 1, 7) 612.7 71.1
MINIST (DIGITS 3, 6) 441.3 39.9
MINIST (DIGITS 3, 8) 212.3 23.5
EEG (SETS A,E) 2.4 10.9

classes. The results are depicted in Figure 3 for the MNIST data and
Figure 4 for the EEG data. A clear observation is that extremely
poor performances are obtained in the MNIST case for α

β
' 0

while conversely extremely good performances are found on EEG
for that setting, as was anticipated. Yet, note that the optimal value
of α

β
for the MNIST case does not demand that β → 0; rather,

an optimal value for α
β

is found within the range [0, 10], thereby
suggesting that the differences in covariance are also exploited to
some extent.
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Fig. 3: Spectral clustering of the MNIST database for varying α
β

.
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Fig. 4: Spectral clustering of the EEG database for varying α
β

.

IV. CONCLUSION
By relying on recent random matrix advances in big data

machine learning, the article has introduced a new kernel function
model for kernel-based statistical learning methods. The kernel
relies heavily on the need to balance the weight carried by the
statistical means and covariances in the data classes. While our
results are based on idealistic Gaussian mixture models, simulations
on realistic databases confirm the importance of such a kernel
choice. Yet, the method only accounts so far for the performances
obtained when optimally fine-tuning the hyperparameters (denoted
α and β here and directly related to the first derivatives of the kernel
function f ) and does not provide a clear recipe for performing such
a fine-tuning offline. This, and a much more comprehensive setting
(accounting for more than two classes and more generic means and
covariances models) shall be discussed in an extended version of
the present study.
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