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Abstract—This paper considers a large multi-user time-division
duplex (TDD) system, where the base station (BS) acquires
channel state information via pilot signaling from the users.
In the downlink the BS employs zero-forcing (ZF) and reg-
ularized zero-forcing (RZF) precoding. We derive the optimal
sum rate maximizing amount of channel training using sum rate
approximations from the large system analysis of MISO downlink
channels under (R)ZF precoding. Moreover, in the regime of high
signal-to-noise ratio (SNR), we derive approximate solutions of
the optimal amount of training for both schemes that are of
closed-form. By comparing the two schemes, we find that RZF
requires less training than ZF, but the training interval of both
schemes is equal for asymptotically high SNR. Furthermore,
simulations are carried out which demonstrate the accuracy of
our approximate solutions.

I. INTRODUCTION

It is well known that the capacity region of the multiple-
input single-output (MISO) broadcast channel is achieved by
dirty-paper coding (DPC) [1]. Although optimal, DPC has a
high computational complexity. Therefore, attention has been
drawn away from DPC toward more practical schemes such as
zero-forcing (ZF) or regularized ZF (RZF) precoding. How-
ever, the achievable sum rate under all precoding strategies is
heavily dependent on the channel state information available
at the transmitter (CSIT). In practical systems, the channel is
approximately constant over a finite amount of channel uses
and thus, the CSIT is always imperfect. Consequently, it is
important to study the impact of limited channel coherence
interval on the achievable system throughput.

In this contribution, we focus on time-division duplex
(TDD) multi-user systems, where uplink (UL) and downlink
(DL) channels are assumed perfectly reciprocal. In a TDD
system, CSIT is usually obtained from pilot signaling in the
UL and is subsequently used to pre-process the data streams by
applying ZF or RZF precoding. Since channel acquisition and
data transmission are carried out within one channel coherence
interval, there exists a non-trivial trade-off in the allocation of
resources between channel training and data transmission.

Previous work has primarily focused on describing this
trade-off under ZF precoding for an equal number of users K
and transmit antennas M [2]–[6], using bounds on the sum-
rate gap between perfect CSIT and imperfect CSIT. In this

work we use a different approach. Instead of bounds on the
sum rate for all (K,M) we provide deterministic approxima-
tions that are asymptotically accurate as (K,M) grow large at
a constant rate β,M/K. These approximations are referred
to as deterministic equivalents. More precisely, we make use
of deterministic equivalents of the signal-to-interference plus
noise ratio (SINR) under ZF precoding for M>K and RZF
precoding for M≥K [7] to characterize the optimal trade-off
between channel training and data transmission. Moreover, we
derive closed-form expressions for the sum rate maximizing
amount of training in the high signal-to-noise ratio (SNR)
regime.

The contributions of this paper are (i) the application of
large system approximations to compute the optimal (sum rate
maximizing) amount of channel training, (ii) the comparison
of the optimal channel training under ZF precoding (β>1) and
RZF precoding (β≥ 1), and (iii) novel closed-form solutions
of the optimal training for both schemes at high SNR.

Notation: In the following boldface lower-case and upper-
case characters denote vectors and matrices, respectively. The
operators (·)H, tr(·) and E[·] denote conjugate transpose, trace
and expectation, respectively. The N×N identity matrix is IN

and log(·) is the logarithm to base e.

II. SYSTEM MODEL

Consider a MISO downlink channel where an M -antenna
base station (BS) transmits to K single-antenna mobile users.
At a given time instant the signal yk received by user kth is

yk = hH
kx + nk, k = 1, 2, . . . ,K, (1)

where hH
k ∈C1×M is the channel of user k with independent

and identical distributed (i.i.d.) complex Gaussian entries of
zero mean and unit variance, x∈CM×1 is the transmit vector
and the n1, n2, . . . , nK are i.i.d. complex Gaussian additive
noise terms with zero mean and variance σ2. The transmit
vector x is subject to an average power constraint

E[‖x‖2] ≤ P. (2)

Therefore the (downlink) SNR ρdl at each user is ρdl , P/σ2.
We assume a block-fading channel HH =[h1,h2, . . . ,hK ]∈

CM×K , i.e. the channel H remains constant over a block of



T channel uses before changing independently from block to
block. Due to the finite coherence interval T , only Ĥ, an
imperfect estimate of the true channel matrix H, is available
at the BS. We model Ĥ as

Ĥ =
√

1− τ2H + τQ, (3)

where Q∈CK×M is the matrix of channel estimation errors
containing i.i.d. entries of zero mean and unit variance, and
τ ∈ [0, 1]. The parameter τ reflects the amount of distortion
in the channel estimate Ĥ. Furthermore, we suppose that H
and Q are mutually independent as well as independent of
the information symbols sk and the noise terms nk. A similar
model for the imperfect CSIT has been used in [8]–[10].

Following [4]–[6], we constrain the user terminals to trans-
mit at a peak power of Pul per channel use. The UL noise is
assumed to be white complex Gaussian with variance σ2.1

III. TRANSMISSION SCHEME

We consider a TDD system where UL and DL share the
same channel at different times. Therefore, it is possible for
the BS to estimate the channel from known pilot signaling
from the users. The channel coherence interval T is divided
into Tt channel uses for UL training and T −Tt channel uses
for coherent transmission in the DL. Note that in order to
coherently decode the information symbols, the users need
to know their effective (precoded) channels. This is usually
accomplished by a common training phase in the DL prior to
the data transmission. As shown in [11], a minimal amount
of training (at most one pilot symbol) is sufficient when data
and pilots are processed jointly. Therefore, we assume that the
users have perfect knowledge of their effective channels and
we neglect the overhead associated with common training.

In a TDD system, the imperfections in the CSIT are
caused by (i) channel estimation errors, (ii) imperfect channel
reciprocity due to different hardware in the transmitter and
receiver and (iii) the channel coherence interval T . In what
follows we assume that the channel is perfectly reciprocal and
we study the joint impact of (i) and (iii).

A. Uplink Training Phase

In our setup, the distortion τ2 in the CSIT is solely caused
by an imperfect channel estimation at the BS and is identical
for all entries of H. To acquire CSIT, each user transmits Tt≥
K orthogonal pilot symbols over the UL channel to the BS.
Subsequently the BS estimates all K channels simultaneously.
At the BS, the signal rk received from user k is given by

rk =
√
TtPulhk + nk, (4)

where we assumed perfect reciprocity of UL and DL channels.
That is, the UL and DL channel coefficients are equal and
the UL noise terms nk = [n1, n2, . . . , nM ]T are statistically
equivalent to their respective DL analog. Subsequently the BS
performs a minimum mean square error (MMSE) estimation

1The assumption of equal noise power in UL and DL might not hold in
practice, since the sources of noise are different for UL and DL and it is
likely that they have different variances.

of each channel coefficient hij (i= 1, . . . ,K, j= 1, . . . ,M ).
Due to the orthogonality property of the MMSE estimation
[12], the estimates ĥij of hij and the corresponding estimation
errors h̃ij are i.i.d. complex Gaussian distributed and we can
write

ĥij =
√

1− τ2hij + τqij , (5)

where both hij and qij have zero mean unit variance. The
variance τ2 of the estimation error h̃ij is given by [4]

τ2 =
1

1 + Ttρul
, (6)

where we define the uplink SNR ρul as ρul ,Pul/σ
2.

B. Data Transmission Phase

We focus on equal power allocation among the users. The
information symbols sk of the kth user are i.i.d. complex
Gaussian sk∼CN (0, 1). Since Tt channel uses have already
been consumed to train the BS about the user channels, there
remains an interval of length T −Tt for DL data transmission.

Prior to the transmission, the symbols sk are linearly
precoded to form the transmit signal

x =
K∑

k=1

gksk, (7)

where gk∈CM×1 is the beamforming (BF) vector of user k.
The BF vectors are not of unit norm but set to fulfill the power
constraint (2), i.e. denoting G , [g1,g2, . . . ,gK ] ∈ CM×K ,
from (2) we obtain tr(GGH) ≤ P .

Under a sum power constraint, the optimal ZF precoder Gzf

[13] and RZF precoder Grzf take the form

Gzf = ξĤH
(
ĤĤH

)−1

, (8)

Grzf = ξ
(
ĤHĤ +MαIM

)−1

ĤH, (9)

where the scaling factor ξ is set to fulfill the power constraint
tr(GGH) ≤ P and the regularization scalar α > 0 in (9)
is scaled by M to ensure that, as (K,M) grow large, both
trĤHĤ and trMαIM grow with the same order of magnitude.

IV. PERFORMANCE METRIC AND LARGE SYSTEM
APPROXIMATION

In this section we introduce the ergodic sum rate as our
performance measure and briefly review a large system ap-
proximation of the SINR of ZF and RZF precoding.

A. Ergodic Sum Rate

We measure the performance of the system in terms of
ergodic sum rate Rsum, defined as

Rsum =
T − Tt

T

K∑
k=1

EH log (1 + γk) , (10)



where the factor (T −Tt)/T appears since data is transmitted
in the reduced interval T−Tt and the SINR γk of user k reads

γk =
|hH

kgk|2
K∑

j=1,j 6=k

|hH
kgj |2 + σ2

. (11)

B. Large System Approximation of the SINR

To gain valuable insight into the system behavior, several
bounds of the sum rate (10) have been proposed in e.g. [4]–
[6]. Here we utilize an approximation of the sum rate derived
for large (K,M) but bounded ratio β=M/K [7].

We define a deterministic equivalent of the SINR γk as any
γ◦k , such that

γk − γ◦k
M→∞−→ 0, (12)

almost surely. Thus, γ◦k is an approximation of γk for all SNR
and its accuracy increases as (K,M) grow large. We use γ◦k
to approximate the sum rate as

R◦sum =
T − Tt

T

K∑
k=1

log (1 + γ◦k) . (13)

In [7], we present numerical results showing that R◦sum is an
accurate approximation of Rsum even for not so large (K,M).
Now, we briefly review the results for γ◦k under ZF and RZF
precoding.

1) Zero-forcing Precoding: In [7, Corollary 2], for β > 1,
the SINR γzf of ZF precoding can be approximated by

γ◦zf =
1− τ2

τ2 + 1
ρdl

(β − 1). (14)

2) Regularized Zero-forcing Precoding: In [7, Corollary
1], for β ≥ 1, the SINR γrzf of RZF precoding can be
approximated by

γ◦rzf =
β(1− α?◦)− 1 + d(α?◦, β)

2α?◦β
, with (15)

d(α?◦, β) =
√
β2(α?◦)2 + 2α?◦β(1 + β) + (1− β)2, (16)

α?◦ =
(

1 + τ2ρdl

1− τ2

)
1

βρdl
. (17)

Notice that both γ◦zf and γ◦rzf are independent of the particular
user k.

V. OPTIMIZATION OF CHANNEL TRAINING

The approximation (13) is very accurate and can be used to
optimize the training length Tt. By substituting γ◦zf into (13),
the approximated sum rate R◦,zfsum of ZF precoding takes the
form

R◦,zfsum = K

(
1− Tt,zf

T

)
log

(
1 +

1− τ2

τ2 + 1
ρdl

(β − 1)

)
. (18)

Similarly, for RZF the approximated sum rate R◦,rzfsum is

R◦,rzfsum = K

(
1− Tt,rzf

T

)
log (1 + γ◦rzf) , (19)

where γ◦rzf is given in (15).
The distortion τ2 in the CSIT is solely caused by an

imperfect channel estimation at the BS and is identical for
all entries of H. Substituting (6) into (18) and (19), we obtain

R◦,zfsum = K

(
1− Tt,zf

T

)
log

(
1 +

Tt,zfρul(β − 1)
1 + Tt,zf

ρul

ρdl
+ 1

ρdl

)
,

(20)

R◦,rzfsum = K

(
1− Tt,rzf

T

)
log
(

1
2

+
1
2
wρdl(β − 1) +

d(w)
2

)
,

(21)

d(w) =
√

(1− β)2w2ρ2
dl + 2wρdl(1 + β) + 1, (22)

w =
Tt,rzfρul

1 + Tt,rzfρul + ρdl
. (23)

For β>1 under ZF precoding and β≥1 for RZF precoding, it
is easy to verify that the functions R◦,zfsum and R◦,rzfsum are strictly
concave in Tt,zf and Tt,rzf in the interval [K,T ], respectively,
where K is the minimum amount of training required, due
to the orthogonality of the pilot sequences. Therefore we can
apply standard convex optimization algorithms [14] to evaluate

T ?◦
t,zf = arg max

K≤Tt,zf≤T
R◦,zfsum, (24)

T ?◦
t,rzf = arg max

K≤Tt,rzf≤T
R◦,rzfsum . (25)

In the following we derive approximate closed-form solutions
to (24) and (25) for high SNR. We distinguish two cases, (i)
ρdl, ρul →∞, c, ρdl/ρul finite and (ii) ρdl →∞, ρul finite.
In contrast to case (i), the system in case (ii) is interference-
limited due to the finite transmit power of the users.

A. Case 1: ρdl, ρul→∞ with finite ratio ρdl/ρul

We derive approximate, but explicit, solutions for the opti-
mal training intervals T ?◦

t,zf , T
?◦
t,rzf in the high SNR regime and

derive their limiting values for asymptotically low SNR.
1) High SNR Regime: The sum rate R◦sum can be written

as a function of the per-user rate under perfect CSIT R̄◦ and
the per-user rate gap ∆R◦ as

R◦sum = K

(
1− Tt

T

)[
R̄◦ −∆R◦

]
, (26)

where for ZF and RZF we have R̄◦zf =log(1+ρdl(β−1)) and
R̄◦rzf =

1
2 + 1

2ρdl(β − 1) + d(1)
2 , respectively, and

∆R◦zf = log

(
(β − 1)(ρdl + 1)

1 + 1
ρdl

+ Tt,zf [ 1c + ρul(β − 1)]

)
(27)

∆R◦rzf = log
(

1 + ρdl(β − 1) + d(1)
1 + wρdl(β − 1) + d(w)

)
. (28)



Denoting ψ,1 + 1
ρdl

+ Tt,zf [ 1c + ρul(β − 1)], the derivatives
take the form

∂R◦,zfsum

∂Tt,zf
=− K

T
(R̄◦zf −∆R◦zf) +K

(
1− Tt,zf

T

)
×

(β − 1)(ρdl + 1)[ 1c + ρul(β − 1)]
ψ2 + (β − 1)(ρdl + 1)ψ

, (29)

∂R◦,rzfsum

∂Tt,rzf
=− K

T
(R̄◦rzf −∆R◦rzf)

+K

(
1− Tt,rzf

T

)
w′ρdl(β − 1) + d′

1 + wρdl(β − 1) + d
, (30)

where w′=∂w/∂Tt,rzf =(1/ρul +c)/(Tt,rzf +1/ρul +c)2 and
d′=∂d/∂Tt,rzf =[(β − 1)2ww′ρ2

dl + w′ρdl(1 + β) + 1]/d. In
(29) and (30) the per-user rate-gap ∆R◦zf and ∆R◦rzf can be
neglected since ∆R◦zf � R̄◦zf and ∆R◦rzf � R̄◦rzf , respectively.
For ρdl, ρul →∞ and c=ρdl/ρul finite, solving (29) and (30)
for Tt,zf and Tt,rzf , respectively, we obtain

T ?◦
t,zf = max

[
c

2

√
1 + 2

2T + c

cR̄◦zf
− c

2
,K

]
, (31)

T ?◦
t,rzf =

max
[

c
2

√
1 + 2T+c

cR̄◦
rzf
− c

2 ,K
]

if β = 1,

max
[

c
2

√
1 + 2 2T+c

cR̄◦
rzf
− c

2 ,K
]

if β > 1.
(32)

Thus, the optimal training intervals scale as T ?◦
t,zf , T

?◦
t,rzf∼

√
T

and T ?◦
t,zf , T

?◦
t,rzf∼1/

√
log(ρdl). Under ZF precoding the same

scaling has been reported in [2], [3], [6].
From (31) and (32) it is clear that as ρdl → ∞ both

T ?◦
t,zf , T

?◦
t,rzf tend to K, the minimum amount of training.

Moreover, for β > 1, R̄◦rzf ≥ R̄◦zf with equality if ρdl→∞.
Therefore, RZF requires less training than ZF, but the training
interval of both schemes is equal for asymptotically high SNR.
In case of full system loading (β = 1), RZF requires less
training compared to the scenario where β>1.

2) Low SNR Regime: For asymptotically low SNR
ρdl, ρul→0 with constant ratio c=ρdl/ρul, applying a second
order Taylor expansion around ρdl =0, equations (20) and (21)
take the form

R◦,zfsum = K

(
1− Tt,zf

T

)
Tt,zf(β − 1)

c
ρ2

dl + o(1), (33)

R◦,rzfsum = K

(
1− Tt,rzf

T

)
Tt,rzfβ

c
ρ2

dl + o(1). (34)

Maximizing equations (33) and (36) with respect to Tt,zf

and Tt,rzf , respectively, yields T ?◦
t,zf = T ?◦

t,rzf = T/2. For ZF
precoding, the limit has also been reported in [5].

B. Case 2: ρdl →∞ with finite ρul

For ZF precoding and ρdl →∞, the sum rate (20) can be
approximated as

R◦,zfsum ≈ K

(
1− Tt,zf

T

)
log (1 + Tt,zfρul(β − 1)) . (35)

Setting the derivative of (35) with respect to Tt,zf to zero,
yields

log(a/ω(Tt,zf)) = ω(Tt,zf)− 1, (36)
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Fig. 1. ZF and RZF, optimal amount of training with β =2, ρdl =20 dB,
ρul =10 dB, RZF is indicated by circle marks.

where a,ρulT (β−1)+1 and ω(Tt,zf),(Ta)/[T +Tt,zf(a−
1)]. Equation (36) can be written as

ω(Tt,zf)eω(Tt,zf ) = ae. (37)

Notice that ω(Tt,zf)=W(ae), where W(z) is the Lambert W-
function, defined as the unique solution to z=W(z)eW(z), z∈
R. Solving ω(Tt,zf)=W(ae) for Tt,zf yields

T ?◦
t,zf =

1
ρul(β − 1)

(
a

W(ae)
− 1
)
. (38)

For asymptotically low ρul we obtain limρul→0 T
?◦
t,zf =T/2.

For RZF, no accurate closed-form solution to Tt,rzf can be
obtained.

VI. NUMERICAL RESULTS

In this section we present simulation results that verify our
theoretical derivations.

The accuracy of the SINR approximations (14) and (15)
of ZF and RZF, respectively, has been established in [7]
and needs no further justification. In Figure 1, we compare
the approximated optimal training intervals T ?◦

t,zf , T
?◦
t,rzf to

T ?
t,zf , T

?
t,rzf computed via exhaustive search and averaged over

1,000 independent channel realizations. The regularization
term α is computed using the large system approximation
α?◦ in (17). Figure 1 shows that the approximate solutions
T ?◦

t,zf , T
?◦
t,rzf are starting to become very accurate for K = 16.

Moreover, it can be observed that the approximations in (31)
and (32) match very well. Further notice that for β = 2, ZF
and RZF need approximately the same amount of training, as
predicted by equations (31) and (32).

Figure 2 depicts the optimal relative amount of training
T ?◦

t /T for ZF and RZF precoding. We observe that T ?◦
t /T

decreases with increasing SNR as O(1/
√

log(ρdl)). That is,
for increasing SNR the estimation becomes more accurate
and resources for channel training are reallocated to data
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transmission. Furthermore, T ?◦
t /T saturates at K/T due to the

orthogonality constraint on the pilot sequences. Furthermore,
as expected from (31) and (32), we observe that the optimal
amount of training is less for RZF than for ZF precoding.
Moreover, the relative amount of training T ?◦

t /T for both ZF
and RZF converges at low SNR to 1/2 and at high SNR to the
minimum amount of training K, as predicted by the theoretical
analysis.

Figure 3 shows the ergodic sum rate under ZF precoding
with fixed UL SNR ρul =5 dB for various training intervals.
We observe (i) no significant difference in the performance
of the schemes employing either optimal training T ?

t,zf com-
puted via exhaustive search or T ?◦

t,zf obtained from a convex
optimization of the large system approximation (20), (ii) a
small performance loss at low and medium SNR of the (high-

SNR) approximation of T ?◦
t,zf in (38) and (iii) a significant

performance loss if the minimum training interval K is used
for all SNR. We conclude that our approximation in (38)
achieves very good performance and can therefore be utilized
to compute Tt,zf very efficiently.

VII. CONCLUSION

This paper analyzed the optimal trade-off between channel
training and data transmission for a given channel coher-
ence interval in a TDD multi-user system under ZF and
RZF precoding in the downlink. Based on a large system
approximation of the sum rate we derive novel closed-form
approximations of the optimal training interval that maximizes
the system sum rate. The results help the system designer to
easily determine the optimal amount of pilot signaling as a
function of the basic system parameters.
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