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Abstract—We study the second-order coding rate of the
multiple-input multiple-output (MIMO) Rayleigh block-fading
channel via statistical bounds from information spectrum meth-
ods and random matrix theory. Based on an asymptotic analysis
of the mutual information density which considers the simulta-
neous growth of the block length n and the number of transmit
and receive antennas K and N , we derive closed-form upper
and lower bounds on the optimal average error probability when
the code rate is within O(1/

√
nK) of the asymptotic capacity.

A Gaussian approximation is then used to establish an upper
bound on the error probability for arbitrary code rates which is
shown by simulations to be accurate for small N , K, and n.

I. INTRODUCTION

Tha channel capacity describes the maximal rate at which
data exchange with vanishing error probability is possible,
provided that the length of each codeword is allowed to
grow without limit. By focusing on this asymptotic limit,
the theory of information ignores the role of delay as an
important parameter. Although the channel capacity and the
related Shannon theory constitute a scientific success story [1],
in many real-world applications, relatively short block lengths
are required due to either delay and/or complexity constraints.
Thus, it is important to analyze the required back-off from
capacity to guarantee a certain error probability for a given
block length. Unfortunately, in the finite block-length regime,
there are no exact tractable formulas to facilitate the analysis.
This is in particular the case for practical quasi-static fading
multiple-input multiple-output (MIMO) channels.

Among the first to investigate bounds on the error proba-
bility for a given coding rate were Feinstein and Shannon [2],
[1] who established the convergence of the optimal rate to
the capacity with growing block length. These bounds are
based on the fundamental relation between the information
density [3], the coding rate, and the error probability. The
optimal exponential rate of decrease of the error probability
was derived by Gallager [4]. However, his result does not
provide the best upper bound on the average error probability
in channel coding when the transmission rate is larger than
the capacity [5]. Focusing on the characterization of channel
capacity via this statistical approach, Strassen [6] derived
a general expression for the discrete memoryless channel
with unconstrained inputs, where the notion of normal ap-
proximation of the second-order coding rate was introduced
for the first time. Unfortunately, Strassen’s approach cannot

be generalized to channels with input constraints (e.g., the
Gaussian and the fading MIMO channels). Further work on
the asymptotic block-length regime via information-spectrum
methods established the most general capacity formula [7]
which required a novel statistical bound [8], [9] in the converse
proof. The authors of [10], [5] investigated the finite block-
length regime and the second-order coding rate of several
channel models in presence of cost (or input) constraints.
Along the same lines, the scalar additive white Gaussian noise
(AWGN) block-fading channel was addressed in the coherent
and non-coherent settings in [11] and [12], respectively.

In this paper, we investigate the finite block-length regime of
the MIMO Rayleigh block-fading channel. The case of study is
made difficult because the channel does not satisfy the ergodic
requirements to apply the usual tools for the analysis of the
second-order coding rate. Following our first contribution in
[13], we therefore study the asymptotic behavior of the error
probability when the coding rate is a perturbation of order
O(1/

√
nK) of the asymptotic capacity while the block-length

n, and the number of transmit and receive antennas K and
N , respectively, grow infinitely large at the same rate. In this
asymptotic regime, we establish a new lower and upper bound
on the optimal average error probability and apply them to
obtain an upper bound approximation for finite n.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the following MIMO fading channel:

yt =
1√
K

Hnxt + σwt, t = {1, . . . , n} (1)

where yt ∈ CN is the channel output at time t, Hn is a realiza-
tion of the random channel matrix Hn ∈ CN×K whose entries
are independent and identically distributed (i.i.d.) CN (0, 1)
and the index n is used to remind that Hn is constant for the
duration of n channel uses, xt is the realization of the random
channel input xt ∈ CK×1 at time t, and σwt is the realization
of the random noise vector σwt ∈ CN at time t whose
entries are i.i.d. CN

(
0, σ2

)
. The transmitter has only statistical

knowledge about Hn while the receiver knows Hn perfectly.
In particular, we will assume Hn, xt, and wt to be independent
for each t. We define Xn = (x1 · · ·xn) ∈ CK×n, Wn =
(w1 · · ·wn) ∈ CN×n, and Yn = (y1 · · ·yn) ∈ CN×n,
and their random counterparts Xn = (x1 · · ·xn) ∈ CK×n,



Wn = (w1 · · ·wn) ∈ CN×n, and Y n = (y1 · · · yn) ∈ CN×n.
For Γ > 0, we further define

SnΓ
4
=

{
Xn ∈ CK×n

∣∣∣ 1

nK
trXn(Xn)H ≤ Γ

}
(2)

i.e., the set of inputs Xn with energy constraint Γ.
The mutual information density of PY n|Xn , i.e., the proba-

bility measure of Y n conditioned on Xn, is defined by [3]

I
(n)
N,K

4
=

1

nK
log

PY n|Xn(dY n|Xn)

PY n(dY n)
(3)

where, for a given Xn, PY n|Xn(·|Xn)/PY n is the Radon–
Nykodym derivative of PY n|Xn(·,Xn) with respect to PY n if
PY n|Xn(·,Xn)� PY n and is set to ∞ otherwise.

Of particular importance is the case of independent Gaus-
sian inputs, i.e., xt ∼ CN (0,ΓIK), for which the mutual
information density takes the form

I
(n)
N,K = CN,K +R

(n)
N,K (4)

where

CN,K
4
=

1

K
log det

(
IN +

Γ

σ2K
Hn(Hn)H

)
(5)

R
(n)
N,K

4
=

1

nK
tr

[(
Γ

K
Hn(Hn)H + σ2IN

)−1

Y n(Y n)H

−Wn(Wn)H
]
. (6)

Note that such inputs do not respect the energy constraint (2).
Definition 1: A (P

(n)
e ,Mn,Γ)-code Cn for the channel

model (1) with power constraint (2) consists of:
• An encoder mapping: ϕ :Mn 7−→ CK×n.

The transmitted symbols are Xn
m = ϕ(m) ∈ SnΓ for

every message m uniformly distributed over the set
Mn = {1, . . . ,Mn} of messages.

• A decoder mapping: φHn : CN×n 7−→Mn ∪ {e}
which produces the decoder’s decision m̂ = φHn(Yn

m),
Yn
m = 1√

K
HnXn

m + σWn, on the transmitted message
m, or the error event e.

For a code Cn with block length n, codebook size Mn, encoder
ϕ, and decoder {φHn}Hn∈CN×K , the average error probability
is defined as

P (n)
e = P (n)

e (Cn)
4
=

1

Mn

Mn∑
m=1

Pr
[
m̂ 6= m

∣∣m] (7)

where the probability is taken over the random variables Wn

and Hn.
Let supp(Cn) denote the codebook {ϕ(1), . . . , ϕ(Mn)}. The

optimal average error probability for the rate R with energy
constraint Γ is defined as

P(n)
e (R)

4
= inf
Cn:supp(Cn)⊆SnΓ

{
P (n)
e (Cn)

∣∣∣ logMn

nK
≥ R

}
. (8)

The exact characterization of P(n)
e (R) for fixed n,K,N

is generally intractable. In the case of stationary discrete
memoryless single-input single-output (SISO) additive white

Gaussian noise (AWGN) channels, there have been recent
efforts [5] (see also [10] and [6]) to establish error probability
approximations when the coding rate is within O(1/

√
n) of

the ergodic capacity as n grows large. However, immediate
extensions of these results to block-fading channels, as con-
sidered in this paper, are not possible because the ergodic
capacity for these channels is not defined. To circumvent this
issue, [11] assumes coding over a large number of independent
realizations of increasingly large block-fading channels, which
makes the overall channel ergodic (the article is actually re-
stricted to SISO channels but would easily adapt to the MIMO
case). In the present article, we take the approach of inducing
ergodicity by growing the channel matrix dimensions. Indeed,
letting K,N → ∞, the i.i.d. structure of Hn makes the
channel ergodic in the limit. Precisely, we assume here that
K,N, n → ∞ while n

K = β and N
K = c for some constants

β, c > 0. This will be denoted by n
(β,c)−−−→∞. In this limiting

regime, the per-antenna capacity of the channel converges for
almost every channel realization to an asymptotic limit C. We
can then characterize the error probability in the second-order
coding rate, i.e., when the coding rate is within O(1/

√
nK)

of the limiting capacity C. With these assumptions, similar
to [5], [10], P(n)

e (R) is replaced by the following tractable
limiting error probability:

Definition 2: The optimal average error probability for the
second-order coding rate r with input energy constraint Γ is

Pe(r|β, c,Γ)
4
= inf

{Cn}∞n=1

supp(Cn)⊆Sn

 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣
lim inf
n

(β,c)−−−→∞

√
nK

(
1

nK
logMn − C

)
≥ r

}
(9)

where
C = lim inf

n
(β,c)−−−→∞

E[CN,K ]. (10)

Without loss of generality and for simplicity, we take Γ = 1
and denote Sn 4= Sn1 and Pe(r|β, c)

4
= Pe(r|β, c, 1).

III. MAIN RESULTS

A. Bounds on the optimal average error probability

Theorem 1 (Bounds on Pe(r|β, c)): For x > 0 and c > 0,
define

δ0(x)
4
=
c− 1

2x
− 1

2
+

√
(1− c+ x)2 + 4cx

2x

with derivative

δ′0(x) = − δ0(x) (1 + δ0(x))

1− c+ x+ 2xδ0(x)

and denote, for σ2 > 0,

θ−
4
=

[
−β log

(
1− 1

c

δ0(σ2)2

(1 + δ0(σ2))2

)
+
(
c+ σ4δ′0(σ2)

)] 1
2

θ+
4
=

[
−β log

(
1− 1

c

δ0(σ2)2

(1 + δ0(σ2))2

)
+ 2

(
c− σ2δ0(σ2)

)] 1
2

.



Then, for the channel model (1) with unit input energy
constraint, the optimal average error probability Pe(r|β, c)
satisfies:

• If r ≤ 0, Φ

(
r

θ−

)
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
• If r > 0,

1

2
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
.

Proof: The full proof is provided in [14]. Although the
theorem provides closed-form bounds on Pe(r|β, c), it must
not hide the fact that its proof is quite involved. Our approach
follows closely Hayashi’s method [5]. The major difficulty
and technical contribution lie in the thorough analysis of
the asymptotic statistics of I(n)

N,K under different assumptions
on the distribution PXn of Xn. We make extensive use of
tools from random matrix theory, especially the characteristic
function approach due to Pastur, see, e.g., [15], along with
the integration by parts formula for Gaussian vectors and
the Poincaré–Nash inequality. In contrast to the usual setting
of large random matrix theory, because of (2), Xn (Xn)

H

is only bounded in trace rather than in spectral norm. This
complicates the analysis at many occasions. In a nutshell, for
the lower bound, we prove that IX

n

N,K (where IX
n

N,K is I(n)
N,K

conditioned on a particular Xn) has a variance which scales as
O(1+ 1

K tr (An)
2
) with An = I− 1

nX
n(Xn)H, which can then

grow infinitely large or not, depending on Xn ∈ Sn. We then
show that if 1 − ε ≤ 1

Kn trXn(Xn)H ≤ 1, for some ε small,
I

(n)
N,K , when properly centered and scaled, satisfies a central

limit theorem (CLT). The minimization of the corresponding
asymptotic error probability then brings the limiting mean C
and variance θ2

− for r < 0 or ∞ for r ≥ 0. For the upper
bound, we use a sequence of Gaussian inputs Xn with variance
less than but arbitrarily close to 1. In this case, we prove
that the random variable I(n)

N,K satisfies a CLT with asymptotic
mean C and variance θ2

+.
Theorem 1 indicates that, for sufficiently large channel

dimensions and block length, the optimal error probability
when coding close to the ergodic capacity is contained within
two explicit bounds which depend only on c, β, and σ2. In the
AWGN scenario of [5], [10], the corresponding bounds were
found to depend only on σ2. Note that, for code rates above
the ergodic capacity limit (i.e., for r > 0), the lower bound
is very pessimistic and can be far from the upper bound. In
contrast, for r < 0, both bounds are generally very close to
one-another. This can be seen from Fig, 1 which depicts the
bounds on the optimal average error probability for varying
second-order coding rates r and different SNR values (defined
as SNR = σ−2), including also the extreme high- and low-
SNR cases. We choose c = 2 and β = 16. For negative
second-order coding rates, the gap between the upper and
lower bounds is rather small and decreases with either growing
r or decreasing SNR.

Remark 1: One can show that for every c, β, σ2 > 0, Φ
(
r
θ+

)
> Φ

(
r
θ−

)
, r < 0

Φ
(
r
θ+

)
> 1

2 , r > 0 .
(11)
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Fig. 1. Bounds on the optimal average error probability as a function of the
second-order coding rate r for different SNRs and the parameters c = 2 and
β = 16.

Apart for r = 0, the lower and upper bounds on the
optimal average error probability are therefore never equal.
This is in sharp contrast to [5], [10] where, for SISO AWGN
channels, the bounds are proved to be equal. The reason
for this discrepancy lies in the presence of the random
channel Hn which naturally induces a dependence of the
second order statistics of I(n)

N,K on the “fourth order moment”
E[K−1tr (n−1Xn(Xn)H)2] of PXn . The weak lower bound
1/2 for r > 0 is in particular a consequence of the impossi-
bility to bound the fourth order moment of PXn from above
under the sole constraint (2). In [5], [10], only (scalar) second
order moments of PXn play a role in the second order statistics
of I(n)

N,K . These are easily controlled by (2).

Remark 2: In [15, Theorem 1], it was shown that

E [CN,K ] = C +O
(
n−2

)
(12)

where the limiting mutual information C is given as

C = log(1 + δ0) + c log

(
1 +

1

σ2(1 + δ0)

)
− δ0

1 + δ0
(13)

with δ0 = δ0(σ2) as defined in Theorem 1. Thus, the optimal
average error probability may be alternatively written as

Pe(r|β, c) = inf
{Cn}∞n=1

supp(Cn)⊆Sn

 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣
lim inf
n

(β,c)−−−→∞

√
nK

(
1

nK
logMn − E[CN,K ]

)
≥ r

}
(14)

since
lim inf
n

(β,c)−−−→∞

√
nK (E[CN,K ]− C) = 0. (15)



In the finite N,K, n-regime, we may therefore see the optimal
average error probability as an approximation of the optimal
achievable error under the rate constraint

1

nK
logMn ≥ E[CN,K ] +

r√
nK

. (16)

Note that the relation (15) is fundamentally dependent on the
Gaussianity of Hn. Indeed, (12) is a much stronger result
than the well-known convergence of the per-antenna mutual
information to its asymptotic limit (see, e.g., [16]) which
holds for channels composed of arbitrary i.i.d. entries with
finite second-order moment. It was precisely shown in [17,
Theorem 4.4] that, whenever the entries of Hn have a non-
zero fourth-order cummulant κ = E

[
|Hn

11|
4
]
− 2, a bias term

B proportional to κ arises such that (15) must be modified
to
√
nK (E[CN,K ]− C) → B as n

(β,c)−−−→ ∞. In this case
the equivalence of (14) and (9) does not hold. For Gaussian
channels (since κ = 0 and then B = 0), however, the
asymptotic mutual information is reached at a sufficiently fast
rate of O(n−2) [15].

Remark 3: We may also consider the second-order outage
probability Pout(r|β, c) for the rate r, which we define as

Pout(r|β, c)
4
= inf
{Cn:supp(Cn)⊆Sn}∞n=1

 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣
lim inf
n

(β,c)−−−→∞
K

(
1

nK
logMn − C

)
≥ r

}
.

Note that Pout(r|β, c) = Pe(rβ
1
2 |β, c). This definition allows

us to study the behavior of Pout(r|β, c) for growing β. In
the finite dimensional setting, this corresponds to increasing
the block length while maintaining N and K (and thus the
capacity KC) fixed. This cannot be performed on Pe(r|β, c)
since, by growing n,

√
nKC grows as well. From the above

definition and Theorem 1, we have

min

{
Φ

(
r

θout
−

)
,

1

2

}
≤ Pout(r|β, c) ≤ Φ

(
r

θout
+

)
(17)

where θout
−

4
= β−

1
2 θ− and θout

+
4
= β−

1
2 θ+. Interestingly, for

r ≤ 0, as β →∞, we recover the limiting outage probability
of MIMO Gaussian fading channels , e.g., [17],

lim
β→∞

Pout(r|β, c) = Φ
( r

θout

)
(18)

with

θout 4=

[
− log

(
1− 1

c

δ0(σ2)2

(1 + δ0(σ2))2

)] 1
2

. (19)

Although both results coincide, there is a fundamental differ-
ence in the way they are obtained. In [17], the block length
is assumed to be infinitely large from the start and then the
limit is taken in N and K. In contrast, we have obtained (18)
by changing the order of both limits.

Figure 2 depicts the bounds on Pout(r|β, c) in (17) as a
function of β for different values of c, assuming SNR = 10 dB
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Fig. 2. Bounds on the second-order outage probability as a function of β
for different values of c, r = −1, and SNR = 10 dB. The limiting outage
probability is Pout

4
= Pout(r|∞, c).

and r = −1 fixed. For each value of c we also provide the
limiting outage probability as given in (18). The upper and
lower bounds are seen to approach the outage probability at a
rate O(β−1) as β grows, which can be easily proved.

B. Finite dimensional approximation

We now provide an upper bound approximation on the
optimal average error probability for arbitrary coding rates
R in the finite dimensional regime. We assume transmissions
with an average energy constraint rather than a peak energy
constraint and define (P̄

(n)
e ,Mn, 1)-codes as the equivalent to

(P
(n)
e ,Mn, 1)-codes with input distribution PXn satisfying a

unit average energy constraint, i.e., PXn ∈ S̄n, where

S̄n 4=
{
PXn

∣∣∣ E [ 1

nK
trXn(Xn)H

]
≤ 1

}
. (20)

We then define the optimal average error probability P̄(n)
e (R)

for rate R under unit average energy constraint as

P̄(n)
e (R)

4
= inf
Cn:PXn∈S̄n

{
P̄ (n)
e (Cn)

∣∣∣∣ 1

nK
logMn ≥ R

}
(21)

where P̄ (n)
e (Cn) is the average error probability for a given

(P̄
(n)
e ,Mn, 1)-code.
Before we continue, we need to introduce an auxilliary

lemma which is a simple generalization of Feinstein’s lemma
[2] to arbitrary input distributions:

Lemma 1 (Variation of Feinstein’s lemma): Let n ≥ 1 be
an integer and let PXn ∈ An be an arbitrary probability
measure where An ⊆ P(CK×n). Denote by Y n the output
from the channel PY n|Xn corresponding to the input Xn.
Then, there exists a block length n codebook of size Mn that,
together with the maximum a posteriori (MAP) decoder, forms
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a code Cn whose average error probability P (n)
e (Cn) satisfies

P (n)
e (Cn) ≤

inf
γ>0

{
Pr

[
log

PY n|Xn(dY n|Xn)

PY n(dY n)
≤ log γ

]
+
Mn

γ

}
. (22)

Proof: The full proof is provided in [14].

Since Lemma 1 holds in particular for An = S̄n it can be
used to prove the following result:

Theorem 2 (Approximation of Feinstein’s upperbound):
Let {Rn}∞n=1 be a real sequence. Then, there exists a real
sequence {`n}∞n=1 such that

P̄(n)
e (Rn) ≤ Φ

(√
nK

θ+
(Rn − C + δ∗n)

)
+ e−nKδ

∗
n + `n

with `n ↓ 0 as n
(β,c)−−−→∞, where

δ∗n
4
=
(
C −Rn + θ2

+

)
[1−√

1−
(C −Rn)2 + (nK)−1θ2

+ log
(
2πnKθ2

+

)
(C −Rn + θ2

+)2


and where C is given by (13) and θ+ is defined in Theorem 1.

Proof: The full proof is provided in [14].

Note that Theorem 2 fully exploits Lemma 1 in the sense
that, for all finite n, the optimal choice for γ (whose role
is played by δ∗n here) in (22) is considered. This quantity is
known to be zero in the asymptotic limit, so that it does not
appear in Theorem 1. Nonetheless, since we cannot obtain
the convergence rate of `n to zero with respect to that of
δ∗n, the potential gains of Theorem 2 cannot be analytically
assessed. This is in contrast to [10] where a Berry–Esseen
inequality is used to show that, for Rn = C + (nK)−1/2r,
δ∗n = O(n−1 log n), while `n = O(n−1).

Figure 3 provides the comparative performance of Theo-
rem 1 and Theorem 2 as an approximation of Feinstein’s
upper bound (Lemma 1) for P̄(n)

e (R). Precisely, the curves
of Figure 3 are associated to the following approximations of
the upper bound on P̄(n)

e (R):
infδ>0

{
Pr
[
I

(n)
N,K ≤ R+ δ

]
+ e−nKδ

}
(Feinstein)

Φ
(√

nK
θ+

(R− C + δ∗n)
)

+ e−nKδ
∗
n (Theorem 2)

Φ
(√

nK
θ+

(R− C)
)

(Theorem 1)

where I
(n)
N,K is the mutual information density for Gaussian

inputs Xn defined in (4) with Γ = 1. We consider three
different sets of parameters (K,N, n). As expected, the larger
all these parameters, the smaller the gap between the bounds
of Theorem 2 and Theorem 1. For small values of these
parameters, the approximation by Theorem 2 provides a much
better approximation of Lemma 1 due to a non-negligible value
of δ∗n.
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.
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