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ABSTRACT

In this article we provide new theoretical results concerning
the performance of spectral clustering in settings where both
the amount and the size of the data are large. We are able
to show that kernel graph Laplacian matrices can be approxi-
mated by an analytically tractable random matrix model. This
approximation is then used in order to characterize the behav-
ior of the eigenvalues of interest as well as the corresponding
eigenvectors allowing one in turn to predict the clustering per-
formance and the impact of the kernel choice thereon.

Index Terms— Spectral clustering, kernels, unsupervised
learning theory, random matrix theory, Gaussian mixture
models

1. INTRODUCTION

The spectral clustering framework has been known to perform
well in many unsupervised learning contexts such as speech
separation and other complex clustering tasks [1]. Theoretical
bounds and guarantees on the performance of spectral clus-
tering have been published, e.g., in [2–4]. However, the exact
behavior of the eigenpairs of kernel graph Laplacians used for
clustering is not yet sufficiently well understood. It has been
shown in [5] for a family of kernels that these challenges can
be approached by means of random matrix theory. The aim
of this work is to extend these results to the class of kernels
depending on the inner product of the features. Our main con-
tributions comprise a tractable random matrix approximation
for normalized symmetric graph Laplacians in a setting where
the data are drawn from a Gaussian mixture model (GMM)
with a given set of parameters, the characterization of the iso-
lated eigenvalues and eigenvectors of this model with regard
to clustering capability, and finally the impact of the kernel
choice on the clustering performance. Proofs are omitted due
to space limitations and will be given in an extended version
of this article.

Notation: By ‖·‖ we denote the Euclidean norm for vec-
tors and the spectral norm for matrices. 〈·, ·〉 stands for the
standard inner product. 1n denotes the n-dimensional col-
umn vector full of ones. In is the n× n identity matrix.
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2. SYSTEM MODEL

Let x1, . . . , xn ∈ Rp be n samples drawn from a p-variate
K-component GMM. Component a is characterized by its
mean vector µa and covariance matrix Ca, a = 1, . . . ,K.
Thus, we can express xi as µa + wi where a is the compo-
nent observation i belongs to and wi ∼ N (0, Ca). The set
of indices generated by component a is denoted as Ca with⋃K
a=1 Ca = {1, . . . , n} and Ca∩Cb = ∅ for all a 6= b. The

mixing weights of the GMM are indicated by πa. We will
be concerned with the regime where both the dimensionality
and the number of samples are very large which is a common
setting in machine learning applications. In asymptotic sense
we require n, p→∞ in such a way that pn → c ∈ (0,∞).

As it should be inconsequential to clustering, we first sub-
tract the empirical mean from the data. For notational con-
venience we define the centralized observations and means
as x◦i := xi − 1

n

∑n
j=1 xj and µ◦a := µa −

∑K
i=1 πiµi, re-

spectively. In this study we will focus on the family of ker-
nel functions k(xi, xj) = f

(
1
p

〈
x◦i , x

◦
j

〉)
for building a fully

connected affinity matrix A with Aij = Aji = k(xi, xj)
where f may be any three times differentiable function fulfill-
ing f(0), f ′(0) 6= 0. Clearly, the clustering task is easy if the
components are sufficiently distinct. Conversely, if the com-
ponents tend to coincide, no clustering is possible. Hence,
we will concentrate on critical cases given by Assumption 1
where clustering is non-trivial .

Assumption 1. As n and p grow large, the GMM parameters
remain bounded as 1

p trCa = O(1), 1
p trCaCb = O(1), and

‖µa − µb‖ = O(1) for all a, b ∈ {1, . . . ,K}.

Spectral clustering does not operate on the affinity matrix
A directly but rather on the random graph Laplacian defined
asL := D−AwhereD = diag (A1n) is the degree matrix of
A. However, it is often beneficial to use a modification of this
definition as pointed out in [6]. In this work we will concen-
trate on the spectral properties of the symmetric normalized
Laplacian Lsym := D−

1
2LD−

1
2 = In − D−

1
2AD−

1
2 . For

notational convenience we drop the identity In and the minus
in the definition thereby obtaining the matrix D−

1
2AD−

1
2 .

Clearly, D
1
21n is an eigenvector of this matrix and has one

as its eigenvalue. Hence, we are able to separate the analysis
of this eigenvector from the rest by subtracting its eigenspace



from D−
1
2AD−

1
2 . This leads to a more tractable random ma-

trix model we will focus on, namely,

L′ := n
f(0)

f ′(0)

(
D−

1
2AD−

1
2 − D

1
21n1

T
nD

1
2

1TnD1n

)
(1)

where we introduced the scaling factors n and f(0)
f ′(0) in order to

ensure that ‖L′‖ = O(1) and to avoid cumbersome notation
later on. Note that L′ is a symmetric but not necessarily a
positive semi-definite matrix.

3. MAIN RESULTS

A norm-consistent tractable approximation of kernel matrix
models has been proposed in [7]. We extend this result to the
case where the data are generated by a GMM. Since, upon our
kernel restriction and Assumption 1, in the large n, p regime,
Aij → 0 for all i 6= j, the idea is to approximate f by its
(sufficiently large order) Taylor series expansion around zero.
We will use the definitions

M := [µ◦1, . . . , µ
◦
K ] , (2)

J := [j1, . . . , jK ] , (3)

P := In −
1

n
1n1

T
n , (4)

T :=

{
1

p
trCaCb

}K
a,b=1

, (5)

W := [w1, . . . , wn] (6)

where ja ∈ {0, 1}n is the indicator vector of component a
with its i-th entry being 1 if i ∈ Ca and 0 otherwise.

Theorem 1. Consider the matrix

L̂′ = P
WTW

p
P + P

Adiag

f ′(0)
P + PV A1V

TP (7)

where

V :=

[
J
√
p
,

1
√
p
PWTM

]
, (8)

A1 :=

[
MTM + f ′′(0)

2f ′(0)T IK
IK 0

]
, (9)

Adiag := diag
(
J

{
f

(
1

p
trCa

)}K
a=1

(10)

− f ′(0)J

{
1

p
trCa

}K
a=1

)
− f(0)In. (11)

Then, as n, p→∞, ∥∥∥L′ − L̂′∥∥∥→ 0 (12)

almost surely.

Now using the much more analytically tractable model
L̂′ we are able to analyze the spectrum of L′. Note that the
first two addends in Eq. (7) have high rank scaling with n, p
while the third term is a perturbation of rank 2K. Provided
that the components of the GMM are sufficiently different, as
per standard random matrix theory results for spiked models,
the latter will produce at most 2K eigenvalues away from the
ensemble of the eigenvalues of the high rank term [8]. Their
respective eigenvectors, which align to some extent to J , may
then be used for clustering. Clearly, the eigenvalues of L̂′ are
the values of z solving det (L̂′ − zI) = 0. Now, in order to
find the isolated eigenvalues we may factor out the high rank
part. Then, by applying Sylvester’s determinant theorem, the
equation may be rewritten as

detQ−1z · det
(
I2K +A1V

TPQzPV
)

= 0 (13)

where Qz is defined as

Qz :=

(
P
WTW

p
P + P

Adiag

f ′(0)
P − zIn

)−1
(14)

for z away from the eigenvalues of P WTW
p P + P

Adiag

f ′(0) P .
Using the Gaussian tools for random matrices, a framework
introduced in [9, Chapter 2], we derive the following lemma.

Lemma 1. As n, p → ∞, for all z outside the support of the
eigenvalue distribution of P WTW

p P + P
Adiag

f ′(0) P

Qz ↔ Q̄z := cdiag
(
{ga(z)1na}

K
a=1

)
−

{(
1

z
+ c

ga(a)gb(z)∑K
i=1 πigi(z)

)
1na1

T
nb

n

}K
a,b=1

(15)

in the sense that 1
n tr (DnQz) − 1

n tr
(
DnQ̄z

)
→ 0 and

dT1,n
(
Qz − Q̄z

)
d2,n → 0 almost surely for all deterministic

Hermitian matrices Dn and deterministic vectors d1,n, d2,n
of bounded norms. Thereby, (g1, . . . , gK) is the unique vec-
tor of Stieltjes transforms of real measures satisfying the fixed
point equations

ga(z) =

(
−zc

[
1− 1

z

Adiag,a

f ′(0)
+

1

p
trCa

¯̃Qz

])−1
(16)

with

¯̃Qz :=

(
−z

[
Ip +

K∑
i=1

πigi(z)Ci

])−1
. (17)

For given z, the value of ga(z) in (16) can be found nu-
merically using a fixed point iteration. Lemma 1 allows us
to obtain Theorem 2 by replacing the random matrix Q by its
deterministic equivalent Q̄.



Theorem 2. Define

Γz :=
1

p
JTPQ̄zPJ, (18)

Gz := IK +

(
f ′′(0)

2f ′(0)
T − zMT ¯̃QzM

)
Γz (19)

and let ρ ∈ R be away from the eigenvalue support of
P WTW

p P +
Adiag

f ′(0) such that Gρ has a zero eigenvalue of mul-
tiplicity mρ. Then L′ has mρ eigenvalues λi, . . . , λi+mρ−1
converging to ρ as n, p→∞.

This result shows that the analysis of outlying eigenvalues
can be done on a completely deterministic K ×K matrix. A
general intuition here is that the bigger the distance of these
eigenvalues is from the limiting support of P WTW

p P +
Adiag

f ′(0)

and also from each other, the better clustering results can be
expected. However, to make this claim more rigorous we
need to study the behavior of the corresponding eigenvectors.
Thereby, we omit the analysis of the eigenvector D

1
21n, the

treatment of which is very different from the rest, and will
provide it in an extended version of this article.

Let λl, . . . , λl+mρ−1 be isolated eigenvalues of L′ given
by Theorem 2, all converging to ρ. Furthermore, let Πρ be the
projector onto the eigenspace associated with these eigenval-
ues. Then the K ×K matrix

Y :=
1

n
diag (π)

−1
JTΠρJ diag (π)

−1
, (20)

where π = (π1, . . . , πK), carries information on the align-
ment between Πρ and J . In particular, if mρ = 1 we have
Πρ = ulu

T
l with ul being the eigenvector corresponding to

eigenvalue λl of L′ converging to ρ. Up to its sign this eigen-
vector can be modelled as

ul =

K∑
a=1

αla
ja√
na

+ σlaw
l
a. (21)

Thereby, wla is a random vector of norm one orthogonal to
ja, supported on the indices i ∈ Ca whereas αla and σla
are the coefficients denoting the component-wise alignment
of ul to ja and the standard deviation of the eigenvector
fluctuation around its component-wise mean αla

ja√
na

, respec-
tively. The diagonal values of Y carry information about the
component-wise eigenvector means, namely, Yaa = |αla|2
while for two components a and b the off-diagonal ele-
ment Yab provides the sign of the product of these means,
i.e, sgn (Yab) = sgn (αlaα

l
b). Similarly, the sum of the

component-wise variances is given as

K∑
a=1

(σla)2 = (1− trY )mρ. (22)

In Theorem 3 we show that Y is asymptotically deterministic.

Theorem 3. As n, p→∞

1

p
JTΠρJ = −Γρ

mρ∑
i=1

(Vr,ρ)i (Vl,ρ)
T
i

(Vl,ρ)
T
i G
′
ρ (Vr,ρ)i

+ o(1) (23)

where Vl,ρ and Vr,ρ are K ×mρ matrices containing left and
right eigenvectors ofGρ corresponding to the eigenvalue zero
as their columns, respectively. Furthermore,G′ρ is the deriva-
tive of Gz w.r.t. z evaluated at z = ρ.

Hence, the statistical parameters of the eigenvectors de-
pend on the same deterministic rank K matrix Gρ as the po-
sitions of their corresponding isolated eigenvalues.

4. SPECIAL CASE

The results given in Section 3 do not allow for an immediate
interpretation. Therefore, we now provide a compelling case
study making full use of our previously stated findings. As-
sume that K = 2 and let the covariance matrices be C1 =
Ip + ∆, C2 = Ip − ∆ where ∆ is any p × p matrix sat-
isfying tr ∆ = 0 such that C1 and C2 are positive definite
and set π1 = π2 = 0.5. In this case it can be shown that
g1(z) = g2(z) have the explicit solution denoted as

g0(z) = c2
[
z2 − 2

(
1 +

a0
f ′ (0)

+
1

c

)
z + 1 +

1

c2

+ 2
a0

f ′ (0)
+

(
a0

f ′ (0)

)2

+
2a0

f ′ (0) c
− 2

c

]
(24)

where a0 = f(1) − f ′(0) − f(0). It can be concluded
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(b) Histogram of L̂′

Fig. 1. Comparison of the histograms of L′ and L̂′

from (24) that the eigenvalues of P WTW
p P + P

Adiag

f ′(0) P are
distributed according to a shifted version of the Marchenko-
Pastur law with support [S−, S+] ∪ δc<1{0} where

S± =
a0
f ′(0)

+

(
1±

√
1

c

)2

. (25)

Focusing on isolated eigenvalues greater than S+ we identify
that their existence as per Theorem 2 is equivalent to

0 ≥ g0(ρ) ≥ − 1

1 +
√
c
, (26)



where

g0(ρ) ∈

−1

2
s± 1

2

√
s2 − 4

f ′′(0)
2f ′

1
p tr ∆2

 (27)

with

s := 1 +
1 + 1

4 ‖µ1 − µ2‖2
f ′′(0)
2f ′

1
p tr ∆2

. (28)

We find that there is at maximum one such eigenvalue λ1. For
the matrix Y of its corresponding eigenvector u1 we obtain
the explicit solution

Y =

2cg0(ρ)

[
−1 1
1 −1

]
g′0 (ρ)

(
2 f

′′(0)
f ′(0)

1
p tr ∆2 + 4

(1+g0(ρ))
2 ‖µ1‖2

) . (29)

Due to the symmetry of this model we are able to infer that
the component-wise mean magnitudes and variances of this
eigenvector do not depend on the component. Therefore, we
obtain from (22) that(

σ1
1

)2
=
(
σ1
2

)2
=

1

2
(1− trY ) . (30)

Assuming that the fluctuations have a Gaussian distribution,
we are able to express the probability of clustering error, i.e.,
the probability that a sample gets associated with the wrong
component, based on this eigenvector only as

Perr = Φ

(
−
√

2Y11
1− 2Y11

)
(31)

where Φ(x) =
∫ x
−∞

1√
2π
e−

1
2x

2

.

To demonstrate the accuracy of our results we instantiate
the specialized model with the parameters p = 1200, n =
1000, and c = 1.2. We set ∆ = diag (0.3I600,−0.3I600)

and µ1 = 4
√

1
p {δi≤600}

p
i=1, µ2 = 4

√
1
p {δ601≤i}

p
i=1 and

we choose f to be the (indefinite) Sigmoid kernel [10], i.e.,

f

(
〈xi, xj〉

p

)
= tanh

(
α
〈xi, xj〉

p
+ θ

)
(32)

with α = 1.2 and θ = 1. To ensure visual interpretability
of the results, the samples are generated in component-wise
order (which does not affect the spectrum). Figure 1 shows
the eigenvalue histograms of the matrices L′ and its approxi-
mation L̂′ with the predicted bounds S± depicted by vertical
dashed lines. Note that in both Fig. 1 (a) and (b) there is
exactly one isolated eigenvalue λ1 ≈ 4.86. The correspond-
ing eigenvectors and their theoretical means are depicted in
Fig. 2. Approximately 5.0% of the samples cannot be clus-
tered correctly. The simulation is consistent with our theoret-
ical prediction yielding ρ ≈ 4.80 and Perr ≈ 0.049. Figure 3
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Fig. 2. Eigenvectors corresponding to the largest eigenvalue
and their theoretical means (thick red lines)
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Fig. 3. Perr as a function of 1
p tr ∆2 and ‖µ1 − µ2‖2

demonstrates the behavior of the theoretical error probabil-
ity Perr when only u1 is used for clustering as a functional
of the differences of the component means and the parameter
∆. Perr = 0.5 means that clustering is completely random
whereas Perr close to zero suggests a good component sepa-
rability. Note that the impact of the covariance matrix and the
means on the clustering quality can be drastically influenced
by the sign of f ′′(0)

f ′(0) which we change in Fig. 3 (a) in (b) by
choosing different values for the Sigmoid parameter θ.

5. CONCLUSIONS

The spectral analysis conducted in this work enables impor-
tant insights into the eigenpair behavior of random graph
Laplacians. We characterized the existence and positions of
isolated eigenvalues and provided a probabilistic model of the
corresponding eigenvectors essential to spectral clustering.
Explicit interpretable results as well as an error probability
function were given for a specialized model and the impact of
the GMM parameters on the possibility to cluster was shown
to be influenced by the signs of the kernel derivatives. Simu-
lations illustrated the high accuracy of our theoretical findings
in finite size settings. Since the used tools are not restricted
to GMMs it is likely that our results will generalize to other
generative and even non-parametric models. We believe that
our work can serve as a strong basis for a better understanding
and the enhancement of the final step of spectral clustering
often performed using the naive K-means algorithm.
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