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ABSTRACT

This article discusses the asymptotic performance of classi-
cal machine learning classification methods (from discrim-
inant analysis to neural networks) for simultaneously large
and numerous Gaussian mixture modelled data. We first pro-
vide theoretical bounds on the minimally discriminable class
means and covariances under an oracle setting, which are then
compared to recent theoretical findings on the performance
of machine learning. Non-obvious phenomena are discussed,
among which surprising phase transitions in the optimal per-
formance rates for specific hyperparameter settings.

Index Terms— Random matrix theory, classification,
kernel methods, neural networks, LDA/QDA.

1. INTRODUCTION

The renewed interest for machine learning spurred by the big
data movement leads statisticians to reconsider the asymptotic
performance of statistical learning when both the number of
data n and their dimension p grow simultaneously large, i.e.,
under a random matrix regime. In this regime, many conven-
tional estimators, starting with the sample covariance matrix,
are known to become inconsistent [1, 2, 3]. The field of ran-
dom matrix theory has provided a deep understanding on the
limitations and possible corrections of such “large p, large n”
statistics, yet mostly for linear estimators (such as in array
processing [4, 5], wireless communications [6, 7], detection
and estimation [8], etc.). Dealing with non-linear operators,
as in machine learning (kernel methods, neural nets), is more
challenging and only very recent works have provided first
steps into understanding and improving machine learning for
large dimensional data [9, 10, 11].

The article aims to extract from these recent articles con-
clusions in terms of optimal discriminative performance rates
in the classification of Gaussian mixture models and com-
pare them to the optimal oracle performance of the Neyman–
Pearson test for known class distributions.

This work is supported by the ANR RMT4GRAPH Project (ANR-14-
CE28-0006).

2. SYSTEM SETTING AND OBJECTIVES

Let x1, . . . , xn ∈ Rp be a set of vectors to be classified, either
in a supervised, semi-supervised, or unsupervised manner.
For simplicity, we consider a binary setting: x1, . . . , xn1 be-
long to class C1 and xn1+1, . . . , xn to class C2, with ni = |Ci|.
We further restrict ourselves to the setting where the xi’s are
independent and arise from a Gaussian mixture model,1 i.e.,
for µ1, µ2 ∈ Rp and nonnegative definite C1, C2 ∈ Rp×p,

xi ∈ Ca ⇔ xi ∼ N (µa, Ca).

We will discuss the asymptotic performance of various
classification methods as n, p → ∞ with p/n → c0 > 0,
our objective being twofold:

1. we first characterize the fundamental limits of Gaus-
sian mixture classification under the oracle setting
where µ1, µ2 and C1, C2 are known; these limits are
expressed in terms of the minimal “distance scaling
rate” between µ1 and µ2, and C1 and C1 with respect
to n, p which ensures asymptotically non trivial classi-
fication (i.e., neither perfect nor impossible);

2. we compare the asymptotic oracle performance to
those achieved by standard classification methods (dis-
criminant analysis, kernel methods, random neural
networks) with various degrees of available samples
(from supervised classification to clustering).

The random matrix regime is interesting as it corresponds
to the rate where C1, C2 can no longer be consistently esti-
mated by sample covariances. As such, simple plug-in esti-
mators (as we shall see with the popular QDA method) are
bound to induce large performance losses with respect to or-
acle and thus possibly a loss in the minimally discriminable
rates for ‖µ1 − µ2‖ and ‖C1 − C2‖. But random matrix the-
ory has for long provided a series of consistent estimators
for functionals of C1, C2 (i.e., mappings from Rp×p to R),
some of which, as we shall see, are at the core of most well-
performing classifiers; these classifiers often maintain close-
to-optimal discriminative power.

1But many results to be introduced in the following are valid for a much
larger scope of statistical distributions.



3. MAIN RESULTS

To avoid unnecessary complications, we make the following
base hypotheses.

Assumption 1 (Growth Rate Control). The matrices C1, C2

are invertible and, as p→∞, for ‖ · ‖ the operator norm,

lim inf
p

max{‖Ca‖, ‖C−1a ‖} <∞ for a ∈ {1, 2}.

When convenient, we further use the shortcut definitions

µ ≡ µ1 − µ2, ∆C ≡ C1 − C2.

3.1. Oracle Classification

Under the setting of Section 2, let x ∈ Rp be a vector gen-
uinely belonging to class C1, i.e., x ∼ N (µ1, C1). Further
assume for simplicity that, when observed, x has prior prob-
ability 1

2 to belong to class Ci. Then, for perfectly known
µ1, µ2 and C1, C2, the (decision optimal) Neyman–Pearson
test for its belonging to C1 consists in the comparison test

(x− µ2)TC−12 (x− µ2)− (x− µ1)TC−11 (x− µ1) ≶ log
|C1|
|C2|

.
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Ip has the same distribution as w, the random variable S(x)
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A careful application of Lyapunov’s central limit theorem
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The classification performance of x is thus only non-
trivial (e.g., converging neither to 0 nor 1) if both S̄ and√
VS are of the same order of magnitude (with respect to p).

Assume first that C1 = C2 ≡ C; then from Assumption 1,

S̄ =
1

p
µTC−1µ = O(‖µ‖2/p)√

VS =
2

p

√
µTC−1µ = O(‖µ‖/p).

As a consequence, for a non-trivial asymptotic classification,
we demand here that in the worst case, in order of magnitude,
‖µ‖ ∼p ‖µ‖2, i.e., ‖µ‖ = O(1). The associated asymptotic
correct classification probability P(S(x) > 0) thus satisfies

P(S(x) > 0)−Q
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du the Gaussian tail function.
Under this minimal constraint ‖µ‖ = O(1), we now rein-

corporate C1 6= C2 in such a way that ‖∆C‖ = o(1). A
Taylor expansion of (3)–(4) around C = C1 leads to

S̄ =
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from which it unfolds that ‖∆C‖ must be at least of order
O(p−

1
2 ) (so that tr (C−1∆C)2 = O(1)) for the difference

∆C to have discriminative power. The associated asymptotic
classification probability in this case satisfies

P(S(x) > 0) ∼ Q

−
√
µTC−11 µ+ 1

2 tr (C−11 C2 − Ip)2

2

 .

Consequently, when µ1, µ2 and C1, C2 are a priori
known, non-trivial classification is achieved for

‖µ‖ ≥ O(1), or ‖∆C‖ ≥ O(p−
1
2 )

where Xp ≥ O(pα) stands for lim infp p
−αXp > 0. This

forms an optimal asymptotic baseline for Gaussian mixture
classification that statistical learning methods cannot outper-
form. In the following, we discuss the performances of a
class of such methods, retrieved from a series of recent ar-
ticles based on advanced random matrix considerations.

3.2. Asymptotic Performance of Machine Learning Tools

3.2.1. Supervised learning: LDA and QDA

In [13], the authors consider the popular linear and quadratic
discriminant analysis (LDA and QDA) supervised classifiers.
Those classifiers assume a two-class Gaussian mixture model
for the data, as introduced presently. In its most general form
(QDA), the classifier consists in estimating µa’s and Ca’s
by sample means and covariances from two sets of data la-
belled in class C1 or C2. The estimators are then plugged in
(1) in place of the genuine parameters. The respective num-
bers n1 and n2 of data from class C1 and C2 are such that
n1, n2 = O(p), with n1, n2 > p (in order for sample covari-
ance matrices to be invertible with probability one).

In [13], it is shown that the noise induced by the es-
timation of C1 and C2 has a debilitating effect on classi-
fication. Indeed, in order to perform the comparison (2),



S(x) needs to be consistently estimated. If x = µ1 + C
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TĈ−12 x is a biased

estimator for 1
pw

TC
1
2
1 C
−1
2 C

1
2
1 w. Nonetheless, random ma-

trix theory provides advanced results to correct these bi-
ases, and in particular (1 − p

n ) 1
px
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induces a dominating O(p−
1
2 ) noise. This noise also dom-

inates the term 1
pµ

TC−12 µ in S(x). As a consequence,
to obtain a non-trivial classification rate, either constraint
‖∆C‖ = O(p−

1
2 ) or ‖µ‖2 = O(1) must be relaxed to

at least an order of magnitude
√
p. The minimal distance

scaling for non-trivial classification in this case becomes

‖µ‖ ≥ O(p
1
4 ), or ‖∆C‖ ≥ O(1).

Remark 1 (Noise dominance when ∆C = 0). Interestingly
here, even when ∆C = 0 (a property not known in advance),
the minimal distance scaling of ‖µ‖ for non-trivial classi-
fication with QDA is still ‖µ‖ = O(p

1
4 ), due to the non-

discriminative, yet performed, estimation of C1, C2.

When it comes to the simpler linear discriminant approach
(LDA), meant to discriminate a Gaussian mixture with com-
mon covariances C1 = C2 ≡ C, a surprising phenomenon
occurs. There, whileC is still estimated by the sample covari-
ance, this estimator no longer degrades the minimal distance
rate ‖µ‖ = O(1). This result is due to the fact that, for LDA,
only the sign of (w− 1

2µ)TC−1µ = O(1) must be estimated.
Substituting (1− p

n )Ĉ−1 (with Ĉ the sample covariance of all
n data) for C provides an estimator with fluctuations of order
O(1). Both estimates and fluctuations being of the same or-
der, classification can be achieved at optimal order rate.

Even more surprisingly, the minimal discriminative dis-
tance ‖µ‖ = O(1) is also achieved when using LDA whileC1

andC2 are genuinely distinct (where LDA supposes equal). A
much unexpected practical consequence is that, at least in sce-
narios where ‖∆C‖ does not largely overtake ‖µ‖, it is often
more beneficial to use LDA rather than QDA classifiers even
though one knows that C1 6= C2.2

2This can be understood from a machine learning intuition as being re-
lated to the overfitting phenomenon by which, with too many unknown pa-
rameters to be estimated by a given algorithm, worse performance can be
achieved than if less parameters were estimated in the first place.

3.2.2. Supervised learning: LS-SVM and kernel regression

Support vector machines (SVM) are probably the most popu-
lar supervised classification method. It consists in construct-
ing a separating hyperplane between data issued from two
similarity classes [14]. The asymptotic classification perfor-
mance of SVM in the random matrix regime has been recently
performed but offers so far little conclusive insight [15]. SVM
is indeed the result of an optimization problem with no ex-
plicit solution, leading to non-trivial asymptotics. As an alter-
native, least square SVM (LS-SVM) [16] takes an explicit lin-
ear regression form by relaxing the SVM “hard” constraints.

In the Gaussian mixture setting, as in many classical ap-
plication cases, data may not be directly linearly separated
by an hyperplane and must then be “re-expressed” through
a non-linear map prior to hyperplane separation. This leads
to considering kernel methods [17] and in particular to use
an affinity metric between xi and xj of the type, say, Kij ≡
f( 1

p‖xi − xj‖
2), for some appropriately set function f . With

the same notations as previously, LS-SVM (or similarly ker-
nel regression) decides on the class of x ∈ Rp upon the test

S(x) =
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i=1

αif

(
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p
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)
+ b ≷ 0 (5)

where α = (α1, . . . , αn)T and b ∈ R are given, for some
hyperparameter γ > 0 and labels yi = (−1)1{i>n1} , by
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In [18], the asymptotic performance of LS-SVM is evalu-
ated. To this end, the authors rely on a concentration approach
allowing for a Taylor-expansion of the kernel matrixK [9], as
n, p → ∞. Precisely, under small enough rates for ‖µ‖ and
‖∆C‖, 1

p‖xi − xj‖2 ∼ 2
p tr (n1

n C1 + n2

n C2) ≡ τ so that
Kij = f(τ) + f ′(τ)( 1

p‖xi − xj‖
2 − τ) + . . . (i 6= j). De-

veloping carefully the expansion for K, it is proved that the
minimal distance rates follow the rules below:

• for f ′(τ) 6= 0, then either (i) ‖µ‖ ≥ O(1) and tr ∆C ≥
O(
√
p) or (ii) tr ([∆C]2) ≥ O(p);

• for f ′(τ) = 0 with µ = o(1) and tr ∆C = o(
√
p), then

tr ([∆C]2) ≥ O(p
1
2 ).

This result is first surprising in that, for f ′(τ) 6= 0, it has
a better minimal rate for ‖µ‖ than QDA, even though it is
not designed dedicatedly for Gaussian models as in the QDA
case. This gain is here due to the fact that no full covariance
matrix needs be estimated. As a trade-off though, only the
traces of ∆C and [∆C]2 are used for discriminating covari-
ances. Also, as ‖∆C‖ = O(p−

1
2 ) ⇒ tr ([∆C]2) = O(1),

optimal covariance discriminative rates are not achieved. Be-
sides, the best possible rate tr ([∆C]2) = O(p

1
2 ) is only



achieved under the stringent condition that ‖µ‖ = o(1) and
tr ∆C = o(

√
p) by selecting f such that f ′(τ) = 0.

The latter result is nonetheless quite interesting when it
comes in practice to differentiating data with mostly different
covariances but almost identical means. This is the case for
EEG time series as well as multi-antenna wireless commu-
nication channels as shown in [19]. A deeper investigation
of the scenario f ′(τ) = 0 is carried out in [20] with sur-
prising findings when compared to the f ′(τ) 6= 0 case. Be-
yond the case f ′(τ) = 0, improved kernel refinements [21]
have recently been proposed that ensure both the best rates
‖µ‖ ≥ O(1) and tr ([∆C]2) ≥ O(p

1
2 ). These rely on choos-

ing f ′(τ) = O(p−
1
2 ) rather than f ′(τ) = 0.

Remark 2 (Counter-intuitive behavior for large dimensional
data). Interestingly, well-performing kernels with f ′(τ) ' 0
have a counter-intuitive behavior to the classical machine
learning lore as a “good” affinity function f is thus not a
decreasing function of the distance between data vectors.

3.2.3. Supervised learning: Extreme learning machines

Extreme learning machines [22, 23] are practical single
hidden-layer networks with a random (not optimized) first
connection layer and a ridge-regression as the output layer.
That is, the input-to-output relation for input data x reads

S(x) = βTσ(Wx)

where β = 1
n ( 1

nσ(WX)σ(WX)T + γIm)−1σ(WX)y, for
training data X = [x1, . . . , xn] and y = [y1, . . . , yn] ∈
{−1, 1}n, W ∈ Rm×p a random matrix dimensioned by the
size-m neuron layer, σ(·) a non-linear activation function op-
erating entry-wise, and some regularization parameter γ ≥ 0.
For supervised classification, the resulting test consists again
here in deciding on the sign of S(x).

In [11], the asymptotic performance of extreme learning
machines is studied, as n,m, p → ∞ at the same rate. It is
shown that each triplet (W,σ, mn ) defines a kernel operator
(x, y) 7→ f(xTy) which makes the extreme learning machine
behave similar to LS-SVM. The family of kernels reached in
this manner is however somewhat restricted and does not al-
low for easily setting constraints on the derivatives of f as
previously. Yet the minimal discriminative rates for classifi-
cation are preserved and the same as for LS-SVM.

3.2.4. Semi-supervised learning

The LS-SVM method has a natural extension to semi-
supervised learning whereby a few samples are already
labelled (their classes are known). A classical approach
[24, 25], still relying on kernels, consists in computing
“scores” Y[u] ∈ Rnu×2 for nu unlabeled data as a func-
tion of scores Y[l] ∈ Rnl×2 for nl labelled data, set as

Datasets ‖µ‖2 1√
p tr (∆C2) Gauss Quad

MNIST (1, 7) 613 1990 98% 98%
MNIST (3, 6) 441 1120 98% 100%
MNIST (3, 8) 212 658 84% 95%
EEG (sets A,E) 2.4 109 69% 94%

Table 1. Clustering performance for MNIST (p = 784) [31]
and EEG (p = 100) [32] datasets, n = 1024, for f(t) =

exp(−t2/2) (Gauss) and for f(t) = (t−τ +αp−
1
2 )2 (Quad).

[Y[l]]ij = 1{xi∈Cj}. An optimization procedure leads to

Y[u] = (Inu
−K[uu]D

−1
[u] )
−1K[ul]D

−1
[l] Y[l]

where D = diag(K1n) and both K and D were divided into
matrix blocks as K =

[
K[uu] K[ul]

K[lu] K[ll]

]
, D = diag(D[uu], D[ll]),

with obvious notations. Here again, in the analysis performed
in [26], under the assumption that nu, nl = O(p), it is found
that the optimal classification rate of a non-trivial number of
the nu unlabeled data is the same as in Section 3.2.2.

3.2.5. Unsupervised spectral classification (or clustering)

Spectral clustering consists in classifying n purely unlabelled
data from the dominant eigenvectors of matrixK (upon which
k-means is performed) [27]. In our present scenario, similar
conclusions on optimal discriminable rates as in Section 3.2.2
still hold [10, 20]. The result is surprising as almost oracle
rates are achieved despite the complete absence of labelled
data. This suggests that the kernel spectral clustering method
is capable on its own to isolate alike data as well as if in pres-
ence of labelled information (at least in terms of rate orders).

Performance figures borrowed from [21] are provided in
Table 1, which confirm the large superiority of improved ver-
sus standard kernels, particularly for datasets only discrim-
inable through their covariance structure (EEG case). This
corroborates theoretical findings on practical datasets, so be-
yond the Gaussian assumption.

4. CONCLUSION

The article showed that, under a large p-dimensional binary
Gaussian mixture model setting (N (µa, Ca), a ∈ {1, 2}), el-
ementary machine learning methods achieve non-trivial clas-
sification under almost Neyman–Pearson optimal discrimina-
tive rates for ‖µ1−µ2‖ and ‖C2−C2‖ as a function of p. But
the picture is not that simple and many methods need properly
set hyperparameters to achieve optimal discriminative power.
The article summarizes some of these “proper choices”. More
importantly, the results presented here under a Gaussian set-
ting are often shown to be applicable to real world (non Gaus-
sian) data; as such, the article unveils a novel random matrix-
improved paradigm in the understanding and optimization of
machine learning methods for large dimensional data.
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