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Plateau de Moulon, 3 rue Joliot-Curie

91192 Gif sur Yvette, France
{romain.couillet,merouane.debbah}@supelec.fr

Jack W. Silverstein∗

Department of Mathematics
North Carolina State University

Raleigh, North Carolina 27695-8205
jack@math.ncsu.edu

ABSTRACT

In this paper, the rate region of large multi-antenna multiple
access channels and broadcast channels are investigated. The
propagation channels between transmitters and receivers are
modelled as independent Gaussian with separable variance
profiles. It is shown in particular that the large antenna rate
regions do not depend on the specific channel realization, but
only on the channel transmit and receive covariance matrices.
The theoretical results are corroborated by simulations.

1. INTRODUCTION

When multiple-input multiple-output (MIMO) theory arose,
the problem of transmission rate limitations seemed to have
been solved as large capacity gains were predicted [1]. How-
ever, recent applications of MIMO technologies prove more
challenging, since the promised rate increase only arises for
high signal-to-noise ratio (SNR) and low antenna correlation.
Moreover, it is still difficult understand the different effects
of antenna correlation on the channel capacity of a multi-
user MIMO system for channels other than parallel Gaussian
or uncorrelated Rayleigh. Among the main contributions to
the study of the effects of correlation to wireless communica-
tions, [2] derives the capacity of a single-user MIMO system
in Rayleigh fading with general variance profile, when both
numbers of transmit and receive antennas grow large. The ex-
tension of this work to single-user decoding in multi-cell net-
work with interference and separable channel variance pro-
files was explored in the case of large numbers of antennas in
[3], by applying the mathematically involved replica method.
In [5], the same problem is addressed using analytical random
matrix theory tools and especially Stieltjes transforms.

In the following, we derive the complete achievable rate
region of multi-user wireless communications, when the prop-
agation channels are modelled as independent Gaussian ma-
trices with separable variance profiles1. We shall therefore
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1this channel model is also known as the Kronecker model.

successively provide an expression for the rate region of mul-
tiple access channels (MAC) and their dual broadcast chan-
nels (BC), when either the transmitter performs uniform power
allocation, or when the eigenvectors of the transmit covari-
ance matrix are aligned to those of the transmit antenna cor-
relation matrix and the eigenvalues of the transmit covariance
matrix are obtained by convex optimization. This solution is
known to be optimal if there exist no correlation at the recep-
tion [4]. Additionally, we assume a large number of antennas
both at the transmit and at the receive sides. To derive the
BC rate region, we will use a new fundamental result of ran-
dom matrix theory, which provides a deterministic equivalent
to the Stieltjes transform of a certain type of matrices [5].

The rest of this paper unfolds as follows: in Section 2, we
introduce random matrix theory results needed in the follow-
ing. In Section 3, we present the uplink MAC and downlink
BC channel models. In Section 4, we derive the rate region
of the MAC channel which, by duality, leads to solve the rate
region of the BC channel. In Section 5, we provide simula-
tion results of the previously derived formulas. Finally, we
provide our conclusions in Section 6.

Notation: In the following, boldface lower-case symbols
represent vectors, capital boldface characters denote matrices
(IN is theN×N identity matrix).Xij denotes the(i, j) entry
of X. The Hermitian transpose is denoted(·)H. The opera-
tors trX, |X| and‖X‖ represent the trace, determinant and
spectral norm of matrixX, respectively. The symbolE[·] de-
notes expectation. The notationFY stands for the empirical
distribution of the eigenvalues of the Hermitian matrixY.

2. MATHEMATICAL PRELIMINARIES

Theorem 1 LetK, N ∈ N be some positive integers. Let
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is nk ×nk Hermitian nonnegative,nk ∈ N; T
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Hermitian nonnegative definite square root of some nonnega-
tiveTk; the sequences{FRk}nk≥1 and{FTk}N≥1 are tight,
i.e. for all ε > 0, there existsM0 > 0 such thatM > M0

impliesFRk([M,∞)) < ε and FTk([M,∞)) < ε for all
nk, N ; Xk is nk × N with i.i.d. complex Gaussian entries of
variance1/nk.

For k ∈ {1, . . . ,K}, let ck = nk/N . Also denote, for
z ∈ C \ R
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and the set of functions{ei(z)}, i ∈ {1, . . . ,K}, form the
unique solution to theK equations
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such thatsgn(ℑ[ei(z)]) = sgn(ℑ[z]).

The functionmN (z) is the Stieltjes transform [9] of the
random variable with cumulative distribution functionFBN .

Theorem 2 Let BN be a random Hermitian matrix as de-
fined in Theorem 1 with the additional assumption that there
existsM > 0, such that, for allN , nk, max(‖Tk‖, ‖Rk‖) <

M , and letx > 0. Then, for largeN , nk, V(x) − V
o(x)

a.s.
−→

0, where

V(x) = log

∣

∣

∣

∣

I +
1

x
BN

∣

∣

∣

∣

(5)

V
o(x) =

∫ +∞

x

(

1

w
− m

(0)
N (−w)

)

dw (6)

Both theorems above are thoroughly proven in [5].

3. SYSTEM MODEL

Consider a wireless multi-user channel withK ≥ 1 users in-
dexed from1 toK, controlled by a single base-station. Userk
is equipped withnk antennas while the base-station is equipped
with N antennas. We additionally denoteck = nk/N .

Even if we will mainly focus on the uplink MAC chan-
nel between theK users and the base-station, our objective
is to characterize the downlink BC channel between the base-
station and the users. For this, we denotes ∈ C

N , E[ssH] =
P, the signal transmitted by the base-station, with power con-
strainttr(P) ≤ P , for some sum-powerP > 0; yk ∈ C

nk

denotes the signal received by userk andnk ∼ CN(0, σ2Ink
)

the noise vector received by userk. The fading MIMO chan-
nel between the base-station and userk is denotedHk ∈
C

N×nk . Moreover, we assume thatHk has a separable vari-
ance profile, i.e. can be decomposed as

Hk = R
1
2

k XkT
1
2

k (7)

with Rk ∈ C
nk×nk the Hermitian correlation matrix at re-

ceiverk with respect to the channelHk, Tk ∈ C
N×N the cor-

relation matrix at the base-station for theHk link andXk ∈
C

nk×N a random matrix with Gaussian independent entries
of variance1/nk.

With the assumptions above, the downlink communica-
tion model unfolds

yk = Hks + n (8)

Denoting equivalentlysk the signal transmitted in the dual
uplink by userk, such thatE[sks

H

k ] = Pk, tr(Pk) ≤ Pk, for
some transmit powerPk ≥ 0, y andn the signal and noise
received by the base-station, we have the dual uplink model

y =
K
∑

k=1

HH

k sk + nk (9)

In the following, we will derive the BC rate region by
means of the MAC-BC duality [7]. We consider first the MAC
capacity region.

4. CAPACITY REGION

4.1. Multiple Access Channels

The capacityCMAC(P1, . . . , PK ;HH) of the MAC channel
HH under respective transmit power constraintsP1, . . . , PK

for users1, . . . ,K respectively and compound channelHH =
[HH

1 . . .HH

K ], is given in [6], and reads

CMAC(P1, . . . , PK ;HH)

=
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For any setS ⊂ {1, . . . ,K}, from 1 and 2, we have ap-
proximately, forN , nk large,
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where theei’s verify
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From these equations, the complete MAC capacity region

can be described. DenotingRk = UkΛkU
H

k the spectral
decomposition ofRk, we consider the power allocation strat-
egy which consists in aligning the signal covariance matrix
Pk to the eigenvectors ofRk, i.e. Pk = UkQkU

H

k for some
diagonal matrixQk. ThereforePi in Equation (10) can be re-
placed byUiQiU

H

i . The trace constraint in (10) is equivalent
to tr(Qi) ≤ Pi, i = 1, . . . ,K.

Remark 1 This power allocation strategy is only proven op-
timal if theRk ’s, k ∈ {1, . . . ,K}, are all equal [10].

DenotingQk = diag(qk) = diag(qk,1, . . . , qk,nk
) and

Λk = diag(λk,1, . . . , λk,nk
), the Stieltjes transform of Equa-

tion (12) can be rewritten
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To derive the MAC rate region polytope, for every set

S ⊂ {1, . . . ,K}, the sum rate (11) must be maximized, under
the |S| constraintstr(Qk) ≤ Pk and the

∑|S|
i=1 ni constraints

qk,i ≥ 0, for all k ∈ S. This can be solved by classical convex
optimization tools. Indeed, we have the following,

Proposition 3 The right-hand side of Equation(11) is a con-
vex function of theqkn’s, k ∈ S, n ∈ {1, . . . , nk}.

The proof and optimization details are developed in [5].

4.2. Broadcast Channels

The capacity region of the broadcast multi-antenna channel
has been recently shown [8] to be achieved by the dirty-paper
coding (DPC) algorithm. This regionCBC(P ;H), for a trans-
mit power constraintP over the compound channelH, is
shown by duality arguments to be the set [7]

CBC(P ;H) =
⋃

P

K
k=1 Pk≤P

CMAC(P1, . . . , PK ;HH) (15)

which is immediately obtained from Equation (10).

5. SIMULATION AND RESULTS

In this section, we provide simulation results in the context of
a two-user broadcast channel, withN = 8 transmit antennas
andn1 = n2 = 4 receive antennas, all placed in linear arrays.
The spacedT between consecutive transmit antennas is such
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Fig. 1. CBC for K = 2 users,N = 8, n1 = n2 = 4, SNR =
20 dB, random transmit-receive solid angle of apertureπ/2,
dT/λ = 10, dR/λ = 1/4. In thick line,E[ssH] = IN .

thatdT/λ = 10, with λ the transmit signal wavelength; be-
tween adjacent receive antennas, the distancedR is the same
for users1 and2 and such thatdR/λ = 1/4. The variance
profile is generated from Jakes’ model, with privileged di-
rections of signal departure and arrival (those directionsform
the solid angles under which the useful signals are transmit-
ted/received). For instance, the entry(a, b) of the transmit
correlation matrixT1 is

T1ab
=

∫ θ(T1)
max,

θ
(T1)

min

exp

(

2π · i · |a − b|
dT

λ
cos(θ)

)

dθ (16)

where, in our case, with obvious notations,θ
(R1)
min = 0, θ(R1)

max =

π/2, θ
(R2)
min = π/3, θ

(R2)
max = 5π/6, θ

(T1)
min = 2π/3, θ

(T1)
max, =

−5π/6, θ
(T2)
min = π, θ

(T2)
max = −π/2.

In Figure 1, we consider a20 dB SNR and compare the
rate region obtained from convex optimization to the equal
power allocation strategy. We observe that, in spite of the
strong correlation leading to very low eigenvalues inR1 and
R2, little is gained by power allocation. Quite to the con-
trary, in Figure 2, we consider a−5 dB SNR, and observe
a substantial gain in sum rate from our suboptimal scheme2

compared to the equal power allocation strategy.
Figures 1 and 2 confirm and quantify the result given in

[11], which mainly states that for low SNR the sum-rate ca-
pacity of broadcast channels is asymptotically equal to the
sum-rate capacity of the time-division multiple access (TDMA)
strategy; therefore, for low SNR, no significant sum-rate gain
is obtained by the computationally involved, yet optimal, dirty-
paper coding compared to the simpler TDMA method, which
merely consists in a time-division user scheduling.

2we remind that the optimality of this scheme is not proven to thisday.
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Fig. 2. CBC for K = 2 users,N = 8, n1 = n2 = 4, SNR =
−5 dB, random transmit-receive solid angle of apertureπ/2,
dT/λ = 10, dR/λ = 1/4. In thick line,E[ssH] = IN .

In Figure 3, a comparison is made between the theoretical
and simulated rate regions for a20 dB SNR. The latter is
obtained from1, 000 averaged Monte Carlo simulations for
every transmit power pair(P1, P2). We observe an almost
perfect fit, even for these lowN = 8, n1 = n2 = 4 numbers
of transmit and receive antennas.

6. CONCLUSION

In this paper, we provided a compact expression for the rate
region of multiple access and broadcast channels when the
propagation channels are modelled as Gaussian with separa-
ble variance profiles. This result allows us to derive asymp-
totic capacity expressions of large antenna transmissions, in-
dependently of the specific channel realization but only based
on the different transmit and receive correlation figures. While
our results are only true for large numbers of transmit and re-
ceive antennas, we observe that the capacity results are good
approximates even for small numbers of antennas.
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