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Abstract—We study the design of minimum variance portfolio
when asset returns follow a low rank factor model. Using results
from random matrix theory, an optimal shrinkage approach for
the isolated eigenvalues of the covariance matrix is developed.
The proposed portfolio optimization strategy is shown to have
good performance on synthetic data but not always on real data
sets. This leads us to refine the data model by considering time
correlation between samples. By updating the shrinkage of the
isolated eigenvalues accounting for the unknown time correlation,
our portfolio optimization method is shown to have improved
performance and achieves lower risk values than competing
methods on real financial data sets.

I. INTRODUCTION

The theory of portfolio optimization starts with the
pathbreaking work of Markowitz [1], who developed the
mean-variance optimization framework which requires perfect
knowledge of the mean and covariance of the (stationary) time
series of asset returns. But in practice, the estimation error of
the mean and covariance matrix of the asset returns degrades
the performance of the Markowitz model. It is argued in [2]
that estimates of the covariance matrix are more accurate than
those of the expected returns. Thus, many studies concentrate
on improving the performance of the global minimum variance
portfolio (GMVP), which provides the lowest possible portfo-
lio risk and involves only the covariance matrix estimate.

The most often used sample covariance matrix (SCM)
constructed on historical data shows good performance only
when the number of (supposedly independent) samples n is
much larger than the number of assets N . However, covariance
estimates for portfolio optimization commonly involve few
historical observations of sometimes up to a thousand assets,
which strongly degrades the risk performance of SCM.

Many works based on random matrix theory have con-
sidered covariance matrix estimation in the n ' N regime,
to get around the problem of the scarcity of samples. One
approach inspired by the Ledoit-Wolf technique [3] is the
shrinkage covariance estimation, a weighted average of two
matrices, such as in [4], where a shrinkage Tyler’s estimator is
proposed with the shrinkage parameter calibrated to minimize
the portfolio risk. Another approach is to impose some factor
structure on the covariance matrix estimator, which reduces the
number of parameters to be estimated, such as in [5] where,
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under various loss functions, optimal shrinkages of eigenvalues
are developed in a so-called spiked covariance model.

By observing the empirical spectrum in the financial data,
many studies [6] find indeed that while a majority of the
eigenvalues fall within a “bulk”, several eigenvalues leak out,
which are referred to as spikes. The real information is argued
to be contained in these spikes, while the “bulk” essentially
contains noise. To exploit the spiked structure of the financial
data, we assume the population covariance matrix CN of
stock returns follows the aforementioned spiked covariance
model, in which all eigenvalues are equal to one but for a few
outstanding ones.

Unlike recent works on the spiked covariance model [5],
which developed the covariance estimators under loss func-
tions such as the minimum expected Frobenius norm loss
‖ĈN −CN‖2F or expected Frobenius norm loss of precision
matrices ‖Ĉ−1N − C−1N ‖2F , this paper designs a novel covari-
ance estimation technique in the spiked model for GMVP
optimization. We first analyze the convergence of the realized
risk in the double limit regime, where N,n → ∞, with
cN = N/n → c ∈ (0, 1). Then we derive the optimal
shrinkage of the spikes to minimize the portfolio risk in
the limit. Finally, we construct our portfolio selection by the
estimators of the optimized spikes.

The performance of the proposed strategy is tested both on
synthetic and real data. While the strategy achieves superior
performance over all the competing methods in the synthetic
data simulation, it does not perform the best when the time
correlation is not considered in the real data test. By account-
ing for time correlation and updating the shrinkage of the
spikes, we update our method. The resulting performance gets
improved and our method achieves lower risk values than the
other spiked covariance estimation approaches.

II. GMVP IN THE SPIKED COVARIANCE MODEL

A. Data model and problem formulation
We consider a time series xt, t = 1, ..., n comprising

logarithmic returns of N financial assets. It is modeled as
xt

i.i.d.∼ N(µµµ,CN ) where µµµ is the mean vector and the matrix
CN is assumed to follow a spiked covariance model, that is,

CN = IN + t1v1v
T
1 + t2v2v

T
2 + ...+ trvrv

T
r .

In this model, the population eigenvalues are given by (t1 +
1, ..., tr + 1, 1, ...1) where the number of “spikes” r and their



amplitudes t1 ≥ ... ≥ tr ≥ 0 are fixed independently of N
and n. The vectors v1,...,vr are the top r eigenvectors.

The sample covariance matrix is defined as

SN =
1

n

n∑
t=1

x̃tx̃
T
t =

N∑
i=1

λiuiu
T
i

with x̃t = xt − 1
n

∑n
i=1 xi, the eigenvalues λ1 ≥ ... ≥ λN

and ui the eigenvector associated to λi.
Let h ∈ RN denote the portfolio selection, i.e., the vector

of asset holdings in units of currency normalized by the total
outstanding wealth, such that hT1N = 1. Then the portfolio
variance (or risk) over the investment period of interest is given
by σ2(h) = E[|hTxt|2] = hTCNh. Accordingly, the GMVP
selection problem can be formulated as the following quadratic
optimization problem with a linear constraint:

min
h

σ2(h) s.t. hT1N = 1. (1)

The solution to (1) is hGMVP =
C−1

N 1N

1T
NC−1

N 1N
, and the corre-

sponding portfolio risk is

σ2(hGMVP) =
1

1TNC−1N 1N
. (2)

Here, (2) represents the theoretical minimum portfolio risk
bound, attained upon knowing the true precision matrix C−1N
exactly. In practice, C−1N is unknown, and instead we form an
estimate, denoted by Ĉ−1N . Thus, the GMVP selection based
on Ĉ−1N is given by

ĥGMVP =
Ĉ−1N 1N

1TN Ĉ−1N 1N
.

Similar to hGMVP, the quality of ĥGMVP, implemented
based on the in-sample precision matrix prediction Ĉ−1N , can
be measured by its achieved out-of-sample or realized portfolio
risk as

σ2(ĥGMVP) =
1TN Ĉ−1N CN Ĉ−1N 1N

(1TN Ĉ−1N 1N )2
. (3)

The goal is to construct a good estimator Ĉ−1N , and conse-
quently ĥGMVP, which minimizes this quantity.

B. Optimal spike shrinkage under the GMVP framework

We consider the precision matrix estimator Ĉ−1N to be of
the following structure:

Ĉ−1N = IN + w1u1u
T
1 + w2u2u

T
2 + ...+ wruru

T
r (4)

where u1, ...,ur are the top r sample eigenvectors of SN and
w1, ..., wr ∈ R are the shrinkage parameters to be optimized
over.

By plugging the spiked structures of CN and Ĉ−1N in
(3), the realized risk is σ2(w), a function of w, where
w = [w1, ..., wr]

T . Our goal is to find the optimal w that
minimizes σ2(w). However, this cannot be done directly since
it involves CN , which is unobservable. Also note that the
naı̈ve approach of simply replacing C−1N with Ĉ−1N in (3)

would yield the so-called “in-sample risk”, which is known
to underestimate the realized portfolio risk, leading to overly-
optimistic investment decisions.

To tackle this problem, we first derive a deterministic
asymptotic approximation of (3) as N,n→∞ and obtain the
optimal non-random w∗ depending on CN . Then we provide
a consistent estimator ŵ∗ based on sample eigenvalues and
the corresponding eigenvectors, which constructs the optimal
preicison matrix Ĉ−1risk and the portfolio selection ĥ∗.

1) Asymptotic deterministic equivalence σ̄2(w) of the re-
alized portfolio risk σ2(w): For our asymptotic analysis, we
assume the following:

Assumption 1.
a. As N,n→∞, N/n = cN → c ∈ (0, 1).
b. t1 ≥ ... ≥ tr >

√
c.

Observe that σ2(w) consists of quadratic terms,
such as 1

N 1TNuiu
T
i 1N , 1

N 1TNuiu
T
i viv

T
i 1N and

1
N 1TNuiu

T
i viv

T
i uiu

T
i 1N , i = 1, ..., r. Their asymptotic

equivalents when N,n → ∞ can be derived based on the
following lemma.

Lemma 1. [7, Proof of Theorem 9.5] Let Assumption 1 hold.
Then, for aN ,bN ∈ RN two vectors of bounded spectral
norm,1

aTNuiu
T
i bN − siaTNviv

T
i bN

a.s.−→ 0

where si =
1− c/(ti)2

1 + c/ti
, i = 1, ..., r.

In addition, under Assumption 1, |uTi vj |
a.s.−→ 0 when i 6= j.

Applying Lemma 1, we obtain the deterministic equivalent of
the risk σ̄2(w) in Theorem 1,

Theorem 1. Let Assumption 1 hold. Denoting ki =
1
N 1TNviv

T
i 1N , i = 1, ..., r, we have,∣∣Nσ2(w)−Nσ̄2(w)

∣∣ a.s.−→ 0

where σ̄2(w) = p/q, with

p = 1 +

r∑
i=1

(tis
2
i ki + siki)w

2
i + 2

r∑
i=1

(siki + tisiki)wi,

q =
( r∑
i=1

sikiwi + 1
)2
.

2) Optimal w∗ that minimizes σ̄2(w): The optimal w∗

is provided in the following proposition. It is a non-random
function of ti, si, and ki, i = 1, ..., r.

Proposition 1. Under the settings of Theorem 1,

w∗ , arg min
w

σ̄2(w)

is given by w∗j =
bjf

ajd
− tj + 1

tjsj + 1
, j = 1, ..., r, with

aj = tjs
2
jkj + sjkj , bj = sjkj , d = 1−

r∑
i=1

tisiki + siki
tisi + 1

,

1 a.s.−→ denotes almost sure convergence.



f = 1 +

r∑
i=1

tiki −
r∑
i=1

(siki + tisiki)
2

tis2i ki + siki
.

3) Consistent estimator ŵ∗ of w∗: Since w∗ depends on
the unobservable CN , for practical purposes, we need to
estimate all necessary values to construct an estimator of it.
Random matrix results on the spiked model provide us with
the estimators of ti, si, and ki, which in turn help to construct
a consistent estimator ŵ∗ of the optimal deterministic w∗.

Proposition 2. Under the settings of Theorem 1, for j =
1, ..., r, ∣∣ŵ∗j − w∗j ∣∣ a.s.−→ 0

where ŵ∗j is obtained by plugging (t̂i, ŝi, k̂i), the respective
estimators of (ti, si, ki), i = 1, ..., r, in the expression of w∗j ,
with

t̂i =
λi + 1− c+

√
(λi + 1− c)2 − 4λi

2
− 1,

ŝi =
1− c/(t̂i)2

1 + c/t̂i
, k̂i =

1

ŝi

1

N
1TNuiu

T
i 1N .

4) Optimized Ĉ−1risk and ĥ∗: The optimized Ĉ−1risk under the
GMVP framework is now constructed by plugging ŵ∗ in (4).
We finally obtain ĥ∗ as Ĉ−1

risk1N

1T
N Ĉ−1

risk1N
.

C. Simulations

We use both synthetic data and real market data to show the
performance of Ĉ−1risk compared to other competing methods.
The benchmarks are Ĉclip, an eigenvalue clipping method [6],
which keeps the spiked eigenvalues (and corresponding eigen-
vectors) while replacing the rest with a scaled identity matrix,
and two estimators ĈFro and ĈFroinv from [5] designed to
minimize the expected Frobenius norm error ‖ĈN − CN‖2F
and the precision matrix Frobenius norm error ‖Ĉ−1N −C

−1
N ‖2F

respectively. These estimators are all constructed assuming a
spiked model.

In the synthetic data simulation, the data are generated
i.i.d. by a normal distribution N(µµµ,CN ), where CN = IN +
14v1v

T
1 + 9v2v

T
2 + 4v3v

T
3 , v1 =

√
3/N [1N/3;02N/3], v2 =√

3/N [1N/3;0N/3;1N/3] and v3 =
√

3/N [02N/3;1N/3].
The mean vector µµµ can be set arbitrarily since it is subtracted
with the empirical mean, having no impact on the covariance
estimates.

Fig. 1 shows the performance of the different estimation
approaches in terms of the realized risk, averaged over 200
Monte Carlo simulations. As expected from our theoretical
development, Ĉ−1risk outperforms other methods for all large n
(with cN = 1/2).

We now investigate the out-of-sample portfolio performance
of the different estimators with the real market data. We
select 95 stocks comprising the S&P100. In particular, we
use the dividend-adjusted daily closing prices downloaded
from the Yahoo Finance database to obtain the continuously
compounded (logarithmic) returns for the 95 constituents of
the S&P100 over L = 1005 working days, from Jan. 3, 2011
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Fig. 1. The average realized portfolio risks of different methods in the GMVP
framework using synthetic data.

to Dec. 31, 2014 (excluding weekends and public holidays).
The out-of-sample evaluation is defined in terms of a rolling
window method [4] and the performances of the methods are
tested under different assumptions of the number of spikes r.

Fig. 2 shows that, unlike the synthetic data test, Ĉ−1risk does
not perform the best. There are several factors that may
degrade the performance of our proposed approach Ĉ−1risk.
Firstly, the time series of asset returns are known to have
time correlation which is not considered in our data model.
Secondly, the distribution of the data may not conform with
normal distribution (the data may be heavy-tailed distributed
and outlier-contaminated). Thirdly, there may exist large esti-
mation errors in the computation of the shrinkage parameters,
which needs to be more finely taken care of. To improve the
performance of our method, we here take into consideration
the time correlation in our data model. The details are given
in the next section.

III. EXTENSION TO TIME CORRELATED DATA

A. Data model

We consider the N × n asset returns matrix to be YN =
XNT1/2, where XN = [x1, ...,xn] and xi, i = 1, ..., n are
based on the data model described in Section II-A. The matrix
T is Hermitian nonnegative and is required to follow the mild
Assumption 3 in [8].2 The new data model is still a spiked
random matrix model, which has been less investigated in the
literature, but in e.g. [8]. In this case, the parameter estimation
of the spikes is still possible and allows us to obtain the
following result.

Proposition 3. Denote λ1 ≥ ... ≥ λN the sample eigen-
values of the SCM of YN and ui, i = 1, ..., r the top r
sample eigenvectors. Define m̂(x) = 1

N−r
∑N
j=r+1

1
λj−x ,

2This assumption ensures that, when CN = IN , i.e., r = 0, the spectrum
of SN does not contain spikes induced by T itself.
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Fig. 2. Realized portofio risks achieved out-of-sample over 1005 days of
S&P100 real market data (from 2011 to 2014) under different number of
assumed spikes.

ĝ(x) = m̂(x)(xcm̂(x) + c− 1). Under the (updated) settings
of Theorem 1, for j = 1, ..., r,∣∣ŵ∗j − w∗j ∣∣ a.s.−→ 0

where ŵ∗j is obtained by plugging (t̂i, ŝi, k̂i), the respective
estimators of (ti, si, ki), i = 1, ..., r, in the expression of w∗j
with

t̂i = (ĝ(λi)
1

n
tr[

1

N
YT
NYN ])−1, ŝi =

m̂(λi)ĝ(λi)

ĝ′(λi)
,

k̂i =
1

ŝi

1

N
1TNuiu

T
i 1N .

Note fundamentally that the only required information about
the unknown T is in the linear eigenvalue statistics m̂(x) (thus
T itself needs not be estimated). By Proposition 3, we then
construct Ĉ−1risk with the updated ŵ∗, and obtain the updated
optimized minimum risk portfolio selection ĥ∗.

B. Simulations

Under the same setting of Section II-C, we test the per-
formance of the different spiked covariance estimators or
precision matrix estimator with the same S&P100 data set.
Fig. 3 shows that our proposed method Ĉ−1risk has a large
improvement, achieving the lowest risk when the supposed
number of spike is r ≥ 5.

IV. CONCLUSIONS

Exploiting a factor covariance structure for the financial
asset returns, we have proposed a novel minimum-variance
portfolio optimization strategy based on a random matrix
spiked covariance estimation framework. In the strategy, the
“spikes” are calibrated to minimize the realized portfolio risk.
In addition, taking into consideration the time correlation in
the data improves the performance of our proposed portfolio
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Fig. 3. Realized portofio risks achieved out-of-sample over 1005 days of
S&P100 real market data (from 2011 to 2014) under different number of
assumed spikes (time correlation considered).

optimization strategy. It has been demonstrated that our ap-
proach outperforms more standard techniques in terms of the
realized portfolio risk for synthetic data. For real historical
stock returns from S&P100, by considering time correlation in
the data model, our strategy with the updated precision matrix
estimator Ĉ−1risk also shows best performance compared with
other existing spiked covariance estimators.

It should be noted that our derivation technique is flexible
and can be adopted other metrics, such as Sharpe ratio
maximization.

The way to determine the number of spikes (assumed here
known) in the real data is however an open question still under
investigation. It would be also of interest to combine robust
estimation methods with the present spiked model, making
the portfolio both adapted to the factor model and robust to
outliers and impulsiveness of the data. These considerations
are left to future work.
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