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Abstract—This article introduces a distributed convex opti-
mization algorithm in a constrained multi-agent system composed
by a large number of nodes. We focus on the case where
each agent seeks to optimize its own local parameter under
few coupling equality and inequality constraints. The objective
function is of the power flow type and can be decoupled as a sum
of elementary functions, each of which assumed (imperfectly)
known by only one node. Under these assumptions, a cost-
efficient decentralized iterative solution based on Lagrangian
duality is derived, which is provably converging. This new
approach alleviates several limitations of algorithms proposed in
the stochastic optimization literature. Applications are proposed
to decentralized power flow optimization in smart grids.

I. INTRODUCTION

In many fields of network engineering, networks tend to
grow extremely large and complex. As a telling example, we
will focus in this article on smart grid networks, our interest
being on power flow optimization. Such networks integrate
millions of energy generators and consumers (wind turbines,
electrical vehicles etc.) connected to a common electricity
grid. To optimize operability and ensure stability, it is often
assumed that a central entity controls the system as a whole,
which supposes that this entity is knowledgeable about all
system parameters and is capable of solving large dimensional
problems, sometimes in real-time. This clearly comes along
with several issues: computational burden, heavy information
feedback from the network, as well as security issues.

These problems led research in the direction of decentral-
ized algorithms, initiated by Tsitsiklis [2] on parallel com-
puting, to distribute the computational effort into multiple
communicating processors. In the framework of multi-agent
systems, a central issue is to determine distributed algorithm
allowing to search for minimizers of a global objective func-
tion, equal to the sum of local utility functions of the agents.
The network communication structure is usually based on
incremental [9] or gossip-based [8] data exchanges. Notice
however that in the case where the network has to cope with
possible link failures, more robust approaches should be used
[11], [5]. In the incremental approach, a message travels across
the network, updating at each time instant the status of a single
receiver. In this paper, we focus on gossip-based approach such
as [8]: agents iteratively update their own local estimates of the
minimizer, and simultaneously merge their estimates in order
to eventually reach a consensus on the value of the minimizer.
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Consider a network composed of N agents, and assume
that each agent i = 1, . . . , N seeks to optimize a local scalar
value xi. We consider the following optimization problem:

min
(x1,...,xN )∈D

N∑
i=1

fi(xi) , (1)

where fi is a real convex function and D is a convex domain of
RN determined by a set of equality and inequality constraints.
The set D is assumed perfectly known by all agents. Each
agent i = 1, . . . , N ignores the utility functions fj of other
agents j 6= i. In addition, agent i observes its utility function fi
only up to a possible random perturbation1: we thus investigate
stochastic approximation methods.

The above problem could be naively solved using a tra-
ditional “primal” gossip-based optimization approach: This
method would require that each agent has its own estimate of
a global minimizer (x∗1, . . . , x

∗
N ) in RN , and that connected

agents exchange their estimates in order to achieve a consensus
(see for instance Section V in [3] for an illustration). However,
in terms of both communication burden and convergence
speed, it is often unreasonable to assume that any agent
i = 1, . . . , N maintains an estimate of the parameters xj of
all other agents j 6= i, especially if N is large. In order to
circumvent this problem, we consider a system in which only
few (equality and inequality) constraints relate the decision
variables. In the power flow application, equality constraints
represent demand-response energy satisfaction while inequal-
ity constraints are used to model some critical power line
outage constraints. Using convex duality, we solve the joint
optimization problem from its dual, the data exchanged now
being Lagrangian multipliers. This follows closely the ideas
from [6]. However, in [6], the proposed data exchange method
is not gossip-based, the considered gradient updating method
is deterministic, and only equality constraints are considered.
The tools required for these various generalizations are based
on the recent results from [3] on constrained decentralized
optimization methods.

Gossip-based schemes use matrices Wn = ([Wn]ij) ∈
CN×N to weight networks exchanges, with [Wn]ij measuring
the importance given by node i to the data received from
node j at time n. In [8], matrices Wn are assumed doubly-
stochastic. However, double stochasticity is often difficult to
ensure in practice, because it implicitely requires additional

1In the smart grid context, the production cost at a renewable source may
be imperfectly known due to the real-time evolving environment.
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communication overhead in the network. For instance, it
prevents from using some natural message passing schemes
such as the broadcast method, which consists for a given
node to asynchronously spread its data towards its neighbors.
Instead, [7], [3] weaken the double-stochasticity assumption
and analyze the broadcast method.

The remainder of this article is organized as follows: in
Section II, we introduce the system model under study;
in Section III, we introduce the decentralized optimization
method; in Section IV, we provide application and simulation
results; finally, in Section V, we conclude this article.

Notations: Uppercase boldface characters denote matrices.
Lowercase boldface characters denote (column) vectors, with
1 the vector filled with ones. The notation (·)T stands for
vector transpose. We note [x]+ = max(x, 0). The notation
ΠG[x] for x ∈ CN and G ⊂ CN is the projection of x onto
the convex G for the classical Euclidean norm ‖x‖. We denote
⊗ the Kronecker matrix product. The symbol ∇ denotes the
gradient operator. The symbol E[·] denotes expectation. The
function δ(A) is the Kronecker delta function.

II. GENERAL CONVEX OPTIMIZATION MODEL

We start by considering the following optimal DC power
flow example, motivated by alternative decentralized power
flow approaches such as [1], [4]. The overall system is
composed of N energy sources connected by a given net-
work. Source k produces a quantity 0 ≤ xk ≤ xk,max of
energy at a cost per unit fk(xk) for a given cost function
fk defined on [0, xk,max] and assumed strictly convex, and
xk,max source k-production capacity. The total energy demand
is denoted D and must satisfy

∑N
k=1 xk = D. We denote

x = (x1, . . . , xN )T ∈ RN
+ the vector of all powers produced

and xmax = (x1,max, . . . , xN,max)T ∈ RN
+ the plant capac-

ities. Furthermore, we assume a scenario where local power
line constraints are inactive, i.e. the maximum power flowing
in a given line does not reach its allowable maximum, but we
must ensure that some inter-regional critical energy transfers
are achieved. This is a usual assumption which already allows
for a reduction of complexity of centralized power flow
calculus [10]. The number K of power line constraints is
therefore assumed small compared to N . These constraints are
expressed as a (point-wise) vector inequality Ax ≤ b for a
given matrix A ∈ CK×N and a vector b ∈ CK . This problem
enters the general framework of the following optimization
problem, which we will refer to as the primal problem:

min
x∈I

gj(x)=0, j∈{1,...,J}
hk(x)≤0, k∈{1,...,K}

N∑
i=1

fi(xi) (2)

for which we take the following assumptions:
A1 1) I = I1 × · · · × IN ⊂ RN is a compact rectangle.
2) (fi)i are strictly convex and continuously differentiable.
3) For any x, gj(x) =

∑N
i=1 gj,i(xi) for affine functions gj,i

4) For any x, hk(x) =
∑N

i=1 hk,i(xi) for some convex
continuously differentiable functions hk,i.
5) The following Weak Slater condition is satisfied:

∃x0 ∈ I, ∀j ∈ {1, . . . , J}, gj(x0) < 0,
∀k ∈ {1, . . . ,K}, hk(x0) = 0 .

We first proceed to a Lagrangian relaxation of (2). Denote
λ = (λ1, . . . , λJ)T ∈ RJ , ν = (ν1, . . . , νK)T ∈ RK

+ and

Li(xi;λ,ν) , fi(xi) +

J∑
j=1

λjgj,i(xi) +

K∑
k=1

νkhk,i(xi).

The Lagrangian of (2) writes L(x;λ,ν) ,
∑

i Li(xi;λ,ν).
Also define

Fi(λ,ν) , inf
xi∈Ii

Li(xi;λ,ν),

x?i (λ,ν) the argument of the minimum, and F =
∑

i Fi.
From standard convex analysis, Assumption A1 implies strong
duality. Hence, using separability, denoting by x? the unique
solution of (2), and (λ?,ν?) = arg maxλ∈RJ ,ν∈RK

+
F (λ,ν),

one has:
N∑
i=1

fi(x
?
i ) =

N∑
i=1

Fi(λ
?,ν?).

Example 1: (Convex optimization under quadratic costs
and affine constraints). Consider the scenario where fi(x) =
fai
x2 + fbix, gj,i(x) = gaj,i

x+ gbj,i , and hk,i(x) = hak,i
x+

hbk,i
; for fai

> 0, and Ii = [0, xmax] for some large xmax.
Then, after simple algebraic manipulations, we obtain

xi,?(λ,ν) =

[
−
fbi +

∑J
j=1 λjgaj,i

+
∑K

k=1 νkhak,i

2fai

]+
if the right-hand side is smaller than xmax and xi,?(λ,ν) =
xmax otherwise. We also have

Fi(λ,ν) = −fai
xi,?(λ,ν)2 +

J∑
j=1

λjgbj,i +

K∑
k=1

νkhbk,i
.

The objective of this article is to propose a decentralized
programming method to solve the dual convex optimization

max
λ∈RJ
ν∈RK

+

N∑
i=1

Fi(λ,ν) (3)

based on recent techniques from stochastic optimization and
gossiping methods. This is the target of the subsequent section.

III. DECENTRALIZED STOCHASTIC OPTIMIZATION

From the decoupled formulation of the dual problem (3)
and the fact that J + K � N , it is reasonable to consider
the following decentralized iterative optimization method. We
suppose that each agent i ∈ {1, . . . , N} in the system only
knows the function Fi, possibly up to some noise. We now as-
sume that at time n, agent i possesses an estimate (λi,n,νi,n)
of (λ?,ν?), from which an estimate xi,?(λi,n,νi,n) of x?i
can be evaluated. First, from its (possibly noisy) knowledge
of Fi, agent i may improve the received (λi,n,νi,n) into
(λ̃i,n+1, ν̃i,n+1), using a gradient ascent. In a second step,
agent i may then receive updated information from M neigh-
boring agents j1, . . . , jM , so to further update his evaluation as
a weighted average (λi,n+1,νi,n+1) of (λ̃i,n+1, ν̃i,n+1) and
(λ̃j1,n+1, ν̃j1,n+1), . . . , (λ̃jM ,n+1, ν̃jM ,n+1). If performed ad-
equately, such algorithms can be shown to converge to
(λ?,ν?) as n→∞ for each i.
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The idea behind this article is to use the recent results of
[3] to provide a practical algorithm for decentralized resolution
of (2) under few constraints on the information exchanges be-
tween neighboring agents, and under the realistic assumption
that agent i may not know perfectly its own cost function
fi(x). In the power flow context, this statement translates the
fact that production costs of renewable energy systems are
environment-dependent and may be difficult to appreciate at
any time instant. Define the following compact set of RJ+K :

G = {(λ,ν) : ∀(k, j), |λj | ≤ λmax, , 0 ≤ νk ≤ νmax}

where (λmax, νmax) are arbitrarily large constants. For each i,
consider the series λi,0,λi,1, . . . ∈ RJ , νi,0,νi,1, . . . ∈ RK

+ ,
and denote θi,n = (λi,nT

,νi,nT
)T. We assume λi,0,νi,0

given and, for n ≥ 1, define the series:

θ̃i,n+1 = ΠG

[
θi,n + γn+1yi,n+1

]
(4)

θi,n+1 =
N∑
j=1

[Wn+1]ij θ̃
j,n+1 (5)

where γ1, γ2, . . . are positive, yi,1,yi,2, . . . ∈ CJ+K are ran-
dom vectors and W1,W2, . . . ∈ RN×N form a series of ran-
dom matrices. Random variable yi,n+1 should be interpreted
as a noisy version of ∇Fi(θ

i,n) as made clear by Assumption
A3 below. This means that (4) can be viewed as a local
stochastic gradient step, locally performed by each agent. On
the opposite, (5) represents the gossip step where connected
nodes merge their temporary estimates. In the sequel, we note
θn = ([θ1,n]T, . . . , [θN,n]T)T and yn = (yT

1,n, . . . ,y
T
N,n)T.

Denote by 1 the N ×1 vector whose elements are all equal to
one. We take the following assumptions on matrices (Wn)n:

A2 1) (Wn)n is a sequence of iid matrices.
2) Wn1 = 1 and 1TE[Wn] = 1T.
3) the spectral radius of E[WT

n(IN − 1
N 11T)Wn] is < 1.

Assumption A2-2) is extremely useful and one of the main
applicative interests of this article, as it loosens the classical
assumption 1TWn = 1T found e.g. in [8]. With double-
stochasticity only in expectation, it is possible to consider
broadcast schemes, where nodes send data to arbitrarily
many neighbors, e.g. [Wn]i,j = 1/2, [Wn]j,j = 1/2
for all neighbors j of a randomly selected node i and
[Wn]kl = 0 otherwise, which is an asymmetrical updating
method corresponding to node i sending its data to all its
neighbors node, but not being fed back by updated data
from its neighbors. We now make some assumption on the
probabilistic model.

A3 Denote Fn the σ-field generated by
(θ0,y1, . . . ,yn,W1, . . . ,Wn) and assume that there exists a
measure µθn

indexed by θn s.t. P(yn+1 ∈ A|Fn) = µθn
(A)

for any Borel set A. Then:
1) Eθn

[y] = (∇F1(θ1,n)T, . . . ,∇FN (θN,n)T)T

2) supθ∈GN Eθ[yTy] <∞
3) (µθ)θ∈GN is tight.
Of importance are A3-1) and A3-2) which state that the

updating scheme follows a gradient ascent up to a zero mean
random noise with bounded variations. The noise term can be

understood as an estimation error of the gradient. In practice,
this suggests that agent i only knows approximately ∇Fi.
Finally, we need some classical assumptions regarding the
sequence γ1, γ2, . . .:
A4 The following holds:

∑
n γn =∞ and

∑
n γ

2
n <∞.

In [3], it is proved that, under the above conditions, the itera-
tions (4)-(5) converge to a point in the set of KKT points of the
function F . Since F is strictly concave, θi,n converges to the
global maximizer of θ? of F . Define θ? = ((λ?)T, (ν?)T)T.

Theorem 1 (Theorem 1 of [3]): Assume A2-A4 and that
θ? ∈ G. For every i ∈ {1, . . . , N}, the following holds w.p.1.:

‖θi,n − θ?‖ → 0 .

Theorem 1 states precisely that, not only will the agents
reach a consensus on their values of θi,n as n grows large,
but also the achieved value is optimal for the dual problem
(3). A necessary condition is of course that constants λmax
and νmax are chosen large enough s.t. θ? ∈ G. As a con-
sequence, from the fact that primal and dual problems have
zero duality gap, we obtain the following corollary. Denote
xi,n = xi,?(λi,n,νi,n).

Corollary 1: Under the stated assumptions, xi,n − x?i → 0
for each i ∈ {1, . . . , N}, almost surely, as n→∞.

In the following section, we provide simulation examples
in a particular applicative case, which is made simple for the
sake of understanding and simple reproducibility.

IV. APPLICATION

We consider a network of N = 20 power production units,
with total production constrained to equal D energy units. We
take D = 1. The network is divided in two areas of N/2 units
each, with area 1 being constrained not to produce more than
1/4 energy unit in total, and therefore with area 2 constrained
to produce at least 3/4 energy units in total. This situation may
arise when the total energy demand in area 1 equals 1/4−ε, for
some 0 < ε < 1/4, and that the capacity for carrying power
from area 1 to area 2 equals ε. On the opposite, area 2 can
transport as much power as required into area 1. Denoting xi
the production of unit i, we consider the optimization problem
of Example 1 where gaj,i

= 1, gbj,i = −D/N , for all (i, j),
and hak,i

= δ(k ≤ N/2), hbk,i
= −D/(4N) for all (i, k).

The functions fi are determined by choosing uniform random
realizations for fai

∈ [0, 1] and fbi ∈ [−1/2, 1/2]. As such,
there is one equality and one inequality constraints. Only
two sets of Lagrangian multipliers λi,n ∈ R and νi,n > 0,
i ∈ {1, . . . , N} and n ∈ N need then be exchanged. We will
denote θi,n = (λi,n, νi,n)T.

We first simulate the iterative sequence θn for 50 000
iterations with θi,0 = 0 and γn = 0.5n−0.8 for the updating
phase. For the gossiping phase, we consider two strategies. The
first strategy, referred to as the broadcast scheme, consists at
time n in selecting uniformly a random unit i ∈ {1, . . . , N}
and in communicating the value θ̃i,n+1 to units i−1 and i+1.
Upon reception, unit j ∈ {i − 1, i + 1} evaluates θj,n+1 =
1
2 (θ̃i,n+1 + θ̃j,n+1), while other units k /∈ {i− 1, i+ 1} take
θk,n+1 = θ̃k,n+1. The second strategy, the joint averaging
strategy consists for the three units i − 1, . . . , i + 1 in a
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Fig. 1. Normalize cost function against optimal, for the broadcast and
broadcast-feedback schemes, N = 20, gossip with 4 closest neighbors.

simple averaging of their transmitted values. That is, for each
j ∈ {i − 1, i, i + 1}, θj,n+1 = 1

3

∑i+1
k=i−1 θ̃

k,n+1. It is clear
that A2 is met under these conditions: for the joint averaging
scheme, the associated transfer matrix Wn is even doubly
stochastic, i.e. 1TWn = 1T.

In Figure 1, we depict the evolution of the cost∑N
i=1 fi(x

i,n) normalized by the optimal cost
∑N

i=1 fi(x
?
i ).

We observe that, although both schemes converge to the
optimal cost, the joint averaging scheme converges much
faster. In Figure 2, we depict the distance to consensus in
the variables θi,n, which corresponds to the evolution of∑

i ‖θi,n − 1
N 1Tθi,n1‖. Here also, the distance to consensus

decreases faster to zero for the joint averaging scheme. We
then consider in Figure 3 a scenario where a randomly selected
value (fai , fbi) changes every 12 500 iterations. Upon cost
changes, we run a new instance of the decentralized algorithm.
We reinitialize γn = 0.5n−0.8 to 1 at each change. It is
observed that the iterative algorithm follows accurately the
changes in the optimal x? solution. This way, we simulate
adequately a tracking version of the iterative algorithm.

V. CONCLUSION

In this article, we derived an iterative decentralized scheme
to solve a certain type of convex optimization problems in
large networks under few coupling equality and inequality
constraints. This method, which solves the dual problem of
a convex optimization, relies on stochastic optimization and
gossiping, and is proved to converge asymptotically to the
desired solution. This scheme is in particular applicable to
power flow optimization for smart grid networks.
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