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Abstract—This article proposes a new spectral method for
community detection in large dense networks following the
degree-corrected stochastic block model. We theoretically support
and analyze an approach based on a novel “α-regularization” of
the modularity matrix. We provide a consistent estimator for the
choice of α inducing the most favorable community detection in
worst case scenarios. We further prove that spectral clustering
ought to be performed on a 1−α regularization of the dominant
eigenvectors (rather than on the eigenvectors themselves) to com-
pensate for biases due to degree heterogeneity. Although focused
on dense graph models, our clustering method is shown to be very
promising on real world networks with competitive performances
versus state-of-the-art spectral techniques developed for sparse
homogeneous networks.

I. INTRODUCTION

One of the prominent features of real world networks
is their community structure which subdivides the network
graphs in disjoint clusters: nodes are densely connected inside
each cluster and sparsely connected across clusters. Extracting
these clusters from the observation of the graph and mapping
the nodes to their respective clusters allows for a better
understanding and analysis of large complex networks and
is one of the challenging tasks in modern network mining.
There are two major methods in the literature to perform
this task: statistical inference methods which rely on some
knowledge of the parameters of an underlying graph generative
model and spectral algorithms which classify vertices using the
eigenvectors corresponding to outlying eigenvalues of some
matrix representation of the network [1].

Large real world networks are usually sparse in the sense
that the average degree of the nodes remains constant with
respect to the network size n as n → ∞ and have hetero-
geneous degree distributions, often modelled as power laws
[1]. Standard spectral algorithms based on variants of the
adjacency matrix have been proved suboptimal in sparse net-
work community detection where they are supplanted by more
powerful operators arising from statistical physics, notably
the recently proposed non-backtracking [2] or Bethe Hessian
(BH) matrix approaches [3]. The latter have however been
developed under a stochastic block model (SBM) assumption
which does not allow for degree heterogeneity inside clusters
and tend to fail in the presence of highly varying node degrees
in the network. To allow for degree heterogeneity modeling, in
this article we instead consider the so-called degree-corrected
stochastic block model (DCSBM), initially proposed in [4].
Denoting G a K-class graph of n vertices with communities
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C1, . . . , CK and qi, 1 ≤ i ≤ n, an intrinsic probability for node
i to connect to any other network node, the DCSBM assumes
an adjacency matrix A ∈ {0, 1}n×n with Aij independent
Bernoulli random variables with parameter Pij = qiqjCab,
for i ∈ Ca and j ∈ Cb, where Cab is a community-related
correction factor (in general Caa > Cab for all a 6= b).

To illustrate the aforementioned limitations of spectral
methods under the DCSBM model, the top two graphs of
Figure 1 provide 2D representations of dominant eigenvec-
tor 1 versus eigenvector 2 for the standard modularity matrix
and the sparsity-improved BH matrix, when half the nodes
connect with low probability q1 and half the nodes with high
probability q2. For both methods, this erroneously induces
the detection of extra communities and even a confusion of
genuine communities in the BH approach. The bottom graphs
of Figure 1 are the results of the “α-regularized” modularity
approach proposed in this article, for an arbitrary and an
optimized values of the parameter α, which both restore (with
different levels of accuracy) the genuine community structure.

In addition to studying realistic degree corrected graph mod-
els, our investigation is motivated by the lack of unification of
the spectral methods for community detection in the literature,
based on various normalizations of the adjacency matrix: the
adjacency matrix itself A (Aij = 1 if nodes i and j are



connected, else 0), the modularity matrix B = A− ddT

dT1n
, with

d = A1n the vector of degrees, the unnormalized Laplacian
L = D − A, with D = diag(d), the normalized Laplacian
Lnorm = In − D−1/2AD−1/2, the random walk matrix
D−1A, etc. [1]. In this article, we theoretically support the
importance to study a generalized version Lα ∝ D−αBD−α,
with α ∈ [0, 1]. In particular, L0 ∝ B and L1/2 ∝ In−Lnorm.
Our key objective is thus to understand the eigenstructure of
Lα and its consequence to community detection.

Our first main result is to show that Lα is asymptotically
well approximated by a spiked random matrix L̃α, more
amenable to analysis than Lα itself. Spiked random matrices
[5] are low rank perturbations of standard random matrices and
their spectrum is generally composed of one or many “bulks”
of eigenvalues and, whenever a phase transition is met, of
additional eigenvalues which isolate from these bulks. In this
case, the eigenvectors associated with the isolated eigenvalues
are correlated to the low rank matrix eigenvectors. In our
context, the approximation L̃α of Lα tells us that: (i) the phase
transition, which corresponds to the community detectability
threshold, depends heavily on α and (ii) the dominant eigen-
vectors of Lα are biased by the degree distribution (unless
α = 0) and thus need to be properly normalized. A deeper
analysis reveals the existence of an optimal choice αopt of α
for which the detectability threshold is smallest, thus allowing
for the weakest detectable community structure. We finally
provide a consistent estimator α̂opt of αopt.

Due to space limitations, the proofs of the main non-
standard results are only sketched in the present manuscript
but are available in full in an extended version.

Notations: Vectors (matrices) are denoted by lowercase
(uppercase) boldface letters. {va}na=1 is the column vector
v with (scalar or vector) entries va and {Vab}na,b=1 is the
matrix V with (scalar or matrix) entries Vab. The operator
D(v) = D ({va}na=1) is the diagonal matrix having (scalar
or vector) v1, . . . ,vn down its diagonal. The vector 1n ∈ Rn
stands for the column vector filled with ones. The Dirac mea-
sure at x is δx. The vector ja is the canonical vector of class Ca
defined by (ja)i = δi∈Ca and J = [j1, . . . , jK ] ∈ {0, 1}n×K .
The set C+ is {z ∈ C, =[z] > 0}.

II. MAIN RESULTS

A. Model and assumptions

We consider an n-node graph with K classes C1, . . . , CK
of sizes |Ck| = nk. To enforce a variation of the node degrees
inside classes, we define a probability qi for node i to connect
to any node in the graph. We define C ∈ RK×K a matrix
of class weights Cab, independent of the qi’s, affecting the
connection probability between nodes in Ca and nodes in Cb.
The adjacency matrix A of the graph has then independent
entries (up to symmetry) which are Bernoulli random variables
with probability Pij = qiqjCab ∈ (0, 1) when i ∈ Ca and
j ∈ Cb and we set Aii = 0 for all i. In the dense regime under
consideration, Pij = O(1). For convenience of exposition and

without loss of generality, we assume that nodes indices are
sorted by clusters and discard the nodes having no neighbor.

We shall perform spectral clustering on the family of
matrices

Lα ≡ n2α−
1
2 D−α

[
A− ddT

dT1n

]
D−α (1)

where D = D(d) with d = A1n.
Clustering is asymptotically trivial when the weights Cab

differ by O(1), as a vanishing error classification rate is easily
guaranteed [6]. We shall instead consider the regime where
the clustering performance is not asymptotically perfect. This
regime is ensured by the following growth rate conditions.

Assumption 1. As n → ∞, for all a,b ∈ {1, . . . ,K} and
i ∈ {1, . . . , n}:

1) Cab = 1 + Mab√
n

, where Mab = O(1); we shall denote
M = {Mab}Ka,b=1.

2) qi are i.i.d. random variables with probability measure
µ having compact support in (0, 1). We shall denote
mµ =

∫
tµ(dt).

3) ni
n → ci > 0 and we will denote c = {ck}Kk=1.

B. Preliminary results

First note that, under Assumption 1, since Cab → 1 as
n→∞, di√

dT1n
is a uniformly consistent estimator of qi for

1 ≤ i ≤ n, i.e.,

max
1≤i≤n

∣∣∣∣∣qi − di√
dT1n

∣∣∣∣∣ a.s.−→ 0. (2)

Also observe that we can write
1√
n

A =
1√
n

qqT︸ ︷︷ ︸
Ad,
√
n

+
1

n

{
q(a)q

T
(b)Mab

}K
a,b=1︸ ︷︷ ︸

Ad,1

+
1√
n

X︸ ︷︷ ︸
Ar,1

where q(i) = [qn1+...+ni−1+1, . . . , qn1+...+ni ]
T ∈ Rni (n0 =

0) and X = {Xij}ni,j=1 has independent (up to symmetry)
entries of zero mean and variances σ2

ij = qiqj(1 − qiqj) +

O(n−
1
2 ).

To study Lα, which is not a standard random matrix model
due to the dependency between D, ddT, and A, we shall
perform a Taylor expansion of these matrices to retrieve an
approximation L̃α of Lα which is asymptotically consistent
in operator norm. To this end, note that Ad,

√
n, Ad,1, and

Ar,1 have spectral norms respectively of order O(
√
n), O(1),

and O(1),1 so that 1√
n

(
A− ddT

dT1n

)
has all terms in O(1).

Denoting Dq = D(q), we next find

D =
(
qT1n

)
Dq

[
In +

√
n

D−1q
qT1n

(D {Ad,11n}+D {Aa,11n})

]
and the first order Taylor expansion of D−α is easily obtained
as the last two terms in bracket are O(n−

1
2 ). Putting all things

together, we get the following approximation of Lα.

1The notation O(·) is with respect to the operator norm.



Theorem 1. Let Assumption 1 hold and let Lα be given by
(1). Then, as n → ∞, ‖Lα − L̃α‖ → 0 in operator norm,
almost surely, where

L̃α =
1

m2α
µ

[
1√
n

D−αq XD−αq + UΛUT

]
U =

[
D1−α
q J
√
n

D−αq X1n
qT1n

]
Λ =

[(
IK − 1KcT

)
M
(
IK − c1TK

)
−1K

−1TK 0

]
.

Since m2α
µ L̃α is a perturbation of 1√

n
D−αq XD−αq (full

rank having zero mean and variance O(1) entries) by UΛUT

(of maximum rank K), it follows a spiked random matrix
model [7]. As illustrated in Figure 2, the spectrum of m2α

µ L̃α
(or equivalently of m2α

µ Lα) is asymptotically given by a
compact spectrum with a density (red curve in Figure 2)
and (sometimes) by additional isolated eigenvalues, hereafter
called spikes.

Because of the (asymptotic) spiked model nature of Lα,
these spikes are only present beyond a phase transition thresh-
old which depends on the norm of UΛUT (and thus indirectly
of M) and on the spread of the compact component of the
spectrum of Lα (which essentially depends on α). In the
following, we shall first study the conditions for this phase
transition phenomenon and shall find a resulting “best choice”
for α, which ensures the most favorable phase transition for
worst case matrices M.

Beyond the phase transition, the dominant eigenvectors ui
of Lα shall correlate to the space spanned by the columns of
U, so in particular to the D1−α

q ja, 1 ≤ a ≤ K, and not, as
one would expect, to the canonical vectors ja (determining the
classes) themselves. The dominant eigenvectors of Lα are then
biased by the degrees carried in Dq and we thus propose to
perform spectral clustering on the normalized vectors Dα−1ui
rather than on the vectors ui themselves (recall that, up to a
constant, D is a consistent estimator for Dq).

These intuitive discussions are made rigorous in the subse-
quent section.

C. Eigenstructure of Lα

We first aim at defining the aforementioned transition point
beyond which eigenvalues isolate from the main spectrum of
Lα and thus non-trivial clustering ought to be achievable.
To this end, we first identify the support Sα of the limiting
spectral distribution of m2α

µ Lα. The latter is defined through
its Stieltjes transform z → eα2 (z) as follows.2

Lemma 1 (Limiting spectral distribution). For z ∈ C+, the
system

eα1 (z) =

∫
q1−2α

−z − eα1 (z)q1−2α + eα2 (z)q2(1−α)
µ(dq) (3)

eα2 (z) =

∫
q2(1−α)

−z − eα1 (z)q1−2α + eα2 (z)q2(1−α)
µ(dq) (4)

2Recall that the Stieltjes transform of a measure ν is defined, for z ∈
C \ supp(ν), as

∫
(t− z)−1ν(dt).
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Fig. 2. Eigenvalues of m2
µL1, K = 3, n = 2000, c1 = 0.3, c2 = 0.3, c3 =

0.4, µ = 1
2
δq1 + 1

2
δq2 , q1 = 0.4, q2 = 0.9, M defined by Mii = 12,

Mij = −4, i 6= j.

admits a unique solution (eα1 (z), eα2 (z)) ∈ (C+)2. The map
z 7→ eα2 (z) is the Stieljies transform of the limiting spectral
distribution of m2α

µ Lα with compact support Sα = [−Sα, Sα].

Our next objective is to determine the existence and, if so,
position of the isolated eigenvalues of m2α

µ Lα. Following now
popular spiked model tools, this entails the following result.

Theorem 2. Let Assumption 1 hold and let λi(M̄) be a non
zero eigenvalue of M̄ ≡

(
D(c)− ccT

)
M. Then, for α ∈

[0, 1], there exists a corresponding isolated eigenvalue λi(Lα)
if and only if 3∣∣λi(M̄)

∣∣ > τα ≡ − lim
x↓Sα

1

eα2 (x)

with eα2 defined in Lemma 1. In this case,

λi(Lα) = − 1

m2α
µ eα2 (λi(M̄))

.

The value τα defined in Theorem 2 corresponds to a
community detectability threshold beyond which sufficiently
large eigenvalues λi(M̄) induce isolated eigenvalues in the
spectrum of Lα.

When separability is guaranteed, we subsequently show
that the properly normalized dominant eigenvectors of Lα
tend to be close to linear combinations of the ja’s (and
thus are essentially noisy step functions), the closeness to ja
being ensured by the amplitude of the λi(M̄). This result,
which again follows from classical spiked random matrix
considerations (see e.g., [5], [7]), is given precisely as follows.

Theorem 3. Under Assumption 1, let λi(M̄) and λi(Lα) be
an eigenvalue pair as defined in Theorem 2. We further assume
λi(M̄) of unit multiplicity and denote ui the eigenvector

3The limit limx↓Sα e
α
2 (x) is well defined in [−∞, 0] as x→ eα2 (x) is a

growing negative function on the right side of Sα.



associated to λi(Lα). Then, letting ūi = Dα−1ui
‖Dα−1ui‖ and

Π =
∑K
a=1

jaj
T
a

na
, as n→∞, almost surely,

• If
∣∣λi(M̄)

∣∣ ≤ τα, ūT
i Πūi → 0.

• If
∣∣λi(M̄)

∣∣ > τα, lim infn ūT
i Πūi > 0.

• For all ε > 0, there exists Tα > 0 such that, if
∣∣λi(M̄)

∣∣ >
Tα, then lim infn ūT

i Πūi > 1− ε.

From Theorems 2–3, it is clear that the smaller τα the more
likely the condition λi(M̄) > τα is met. Spectral clustering
with Lαopt

where

αopt = argminα∈[0,1] {τα}

is thus “optimal” in the sense that it allows for non-trivial
clustering when λi(M̄) is only slightly larger than ταopt .

However, knowing αopt means being capable of estimating
eα2 (x) for all α ∈ [0, 1], as per Lemma 2. This is in fact doable
thanks to Equation (2) which ensures that all qi, and thus µ,
can be consistently estimated from the degrees di. We thus
have the following result.

Lemma 2. Define µ̂ = 1
n

∑n
i=1 δq̂i with q̂i = di√

dT1n
and

êαi (z), i ∈ {1, 2}, Ŝα as in Lemma 1 but for µ replaced by
µ̂. Then, as n→∞,

α̂opt → αopt

almost surely, where α̂opt = argminα∈[0,1]{τ̂α} with

τ̂α ≡ −
1

limx↓Ŝα ê
α
2 (x)

.

While all these results provide strong hints on the expected
performance of spectral clustering from Lα, it still remains that
the actual content of the dominant eigenvectors ui is unknown
for generic settings. In the longer version of this article, we
explicitly retrieve the “noisy plateaus” structure of the Dα−1ui
and establish the consequences to clustering.

III. NUMERICAL RESULTS

This section illustrates the performances of our proposed
method as compared to state-of-the-art spectral clustering
methods, such as the BH approach (appropriate for sparse
networks generated from the SBM). We provide simulations
both for synthetic data generated from the DCSBM and for
real world benchmarks commonly considered in the literature.
The performance evaluation is the overlap to ground truth
communities, defined in [2] as

Overlap ≡
1
n

∑n
i=1 δ(gig̃i)−

1
K

1− 1
K

where gi and g̃i are the true and estimated label of node i,
respectively. As the last step of all the spectral algorithms,
we have performed 100 trials of the k-means algorithm on the
K−1 leading eigenvectors (or Dα−1-normalized eigenvectors)
u1, . . . ,uK−1 starting from K points in RK−1 randomly
extracted from rows of the matrix [u1, . . . ,uK−1]. The se-
lected k-means is chosen as the one with maximal modularity

1
dT1n

n∑
i=1

n∑
j=1

(
Aij − didj

dT1n

)
δ(g̃i, g̃j) [8].
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A. Synthetic graphs

In this section, we consider graphs generated from the
DCSBM. We first consider a rather realistic graph scenario
(quite sparse with power law degree distribution). Figure 3
presents the theoretical (asymptotic) ratio between the largest
eigenvalue λ of m2α

µ Lα and the right edge Sα of the main
eigenvalue spectrum support, which one expects large to
achieve good clustering performance, versus the amplitude of
the elements of M. As predicted by our theoretical analysis, in
the worst case scenario for M, this ratio is greater than 1 (and
thus an eigenvalue escapes Sα) only when α = αopt. Besides,
for fixed amplitude of the eigenvalues of M, the ratio obtained
with αopt is seen to be the largest as compared to other values
of α in the range [0, 1]; this suggests (without any theoretical
support) that better clustering is achieved using Lαopt even in
non-worst case scenarios.

Figure 4 subsequently shows the overlap performance under
the setting of Figure 3. Although we consider in that example a
quite sparse regime which, for n = 2000, is not very consistent
with our assumptions, our proposed method outperforms the
BH approach, especially around the worst case values for M.
It is worth mentioning that the empirically observed phase
transitions closely match the theoretical ones (drawn in circles
and the same as in Figure 3) but for the case α = 1. This
mismatch is due to C taking values too far from 1, especially
for large ∆, thereby no longer conforming Assumption 1.

We finally present in Figure 5 an example where the BH
algorithm fails due to strongly heterogeneous node degrees.
Assuming nodes connect with either low q1 = 0.1 or high
q2 > q1 intrinsic probability, we observe a sudden drop of the
BH overlap once q2 − q1 is too large. This phenomenon is
consistent with the fact, observed earlier in Figure 1, that BH
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creates artificial communities out of nodes with the same qi
parameter. This is a practical demonstration of the need for a
proper eigenvector normalization to avoid degree biases.

B. Real world benchmarks

We finally confront the overlap performance on real world
benchmarks in Table I. The best overlap score for each
benchmark is set in boldface and quasi-equal scores in italic.
Our approach largely outperforms the BH method on some
benchmarks and has competitive performances on others.
However note that, for so small network sizes, the performance
achieved by Lα̂opt may be quite unsatisfactory.

IV. CONCLUSION

We have introduced a new approach to community detection
in large dense heterogeneous graphs using tools from random

Graph α = 0 α = 1
2

α = 1 α̂opt BH
Polbooks[9] 0 .743 0.757 0.214 0 .743 0.757
Adjnoun[9] 0.571 0.714 0.000 0.571 0.661
Karate[10] 0.176 0 .941 0.353 0.176 1.000
Dolphins[11] 0.968 0.968 0.387 0.968 0 .935
Polblogs[12] 0.897 0.035 0.040 0.897 0.304
Football[9] 0.858 0 .905 0 .905 0 .905 0.924

TABLE I
OVERLAP PERFORMANCE ON BENCHMARK GRAPHS.

matrix theory. A salient feature of the approach lies in its auto-
matically choosing the regularization of the modularity matrix
which offers optimal performances. This work complements
the recent breakthroughs in community detection, currently
focusing on sparse but homogeneous graphs. A natural next
step is to confront both approaches on a common ground,
which is a challenging task due to the inadequacy (down to the
mathematical tools) between sparse and dense network consid-
erations. Studying the BH matrix in the dense heterogeneous
regime is a natural first step into this investigation.
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