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Abstract

This paper studies the fluctuations of the mutual information of a class of multiple-input multiple-output (MIMO)

channels with arbitrary correlated noise in the large system limit. Under the assumption that the channel dimensions

grow infinitely large at the same rate, we find a deterministic approximation of the ergodic mutual information and

study its fluctuations around this value in form of a central limit theorem (CLT). This result can be used to predict

the outage probability for slow fading channels. The channel model considered in this contribution has a particular

application in the context of distributed antenna or network MIMO systems where the path loss between any pair of

transmit and receive antennas has a different value. As shown by simulations, the asymptotic approximations translate

well into systems of small dimensions.

I. INTRODUCTION

Consider a wireless communication channel from n single antenna transmitters to a receiver equipped with N

antennas. Let H ∈ CN×n be the channel matrix representing the complex channel gains from the transmitters to

the receiving antennas. The receive vector y ∈ CN at a given time instant reads

y = Hx + z (1)

where x ∈ Cn is the vector of the transmitted signals and z ∈ CN is a vector of complex Gaussian noise with

covariance matrix EzzH = ρIN + AAH. The elements (hij , 1 ≤ i ≤ N, 1 ≤ j ≤ n) of the channel matrix H are

modeled as

hij =
σijwij√

n
(2)

where
(
σ2
ij

)
is a sequence of positive real numbers called a variance profile and the wij are independent complex

Gaussian random variables with zero mean and unit variance. For a complex Gaussian channel input vector x with

covariance matrix ExxH = In and full channel knowledge at the receiver, the normalized ergodic capacity of the
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channel is given by I(ρ) = EI(ρ), where

I(ρ) =
1
N

log det
(
IN +

(
ρI + AAH

)−1
HHH

)
. (3)

The aim of this paper is to derive a deterministic approximation V (ρ) of I(ρ) and to study the fluctuations of

the random variable N(I(ρ)− V (ρ)) in the large system limit when n→∞ while N/n→ c > 0. A well known

result of random matrix theory states that the empirical eigenvalue distribution of the Gram matrix HHH converges

weakly to a limit distribution function when the elements of H are independent and identically distributed (i.i.d)

[1]. This fact leads also to the convergence of I(ρ) to a deterministic limit which can be given in closed form [2].

Similar results could be established for more complicated models such as the Kronecker model H = ΦRWΦT

[3], [4], where W is a N ×n standard Gaussian matrix and ΦR and ΦT are N ×N and n×n matrices capturing

the effects of transmit and receive antenna correlation, sums of matrices Hk each having a Kronecker variance

structure [5] and also non-centered channel matrices with a variance profile [6]. These works provide deterministic

approximations V (ρ) of I(ρ), only depending on N,n and the distribution of H, in the sense that I(ρ)−V (ρ)→ 0

for n → ∞ while N/n → c > 0. Apart from some special cases, the function V (ρ) is rarely available in closed-

form and requires the solution of a set of implicit equations. However, their computation is in general less complex

than the capacity evaluation by Monte Carlo simulations. Moreover, the deterministic approximations have been

shown by simulations to yield very accurate results for small channel dimensions with as little as two transmit and

receive antennas. Recently, also the fluctuations of the mutual information have been studied in terms of central

limit theorems (CLTs). One is generally interested in obtaining results of the form:

Nα

Θn
(I(ρ)− V (ρ))→ N (0, 1) (4)

in distribution, where α is a measure of the convergence speed and Θ2
n determines the variance. In a slow fading

scenario, these results allow to approximate the outage probability, i.e., Pr (NI(ρ) ≤ R), for a given desired target

rate R. A CLT for channel matrices with left-sided correlation was established in [7] and the more general case

of a variance profile addressed in [8]. Also the fluctuations of the mutual information in the presence of correlated

interference under the Kronecker model were studied in [4] relying on the replica method.

The novelty of the results derived in this paper in contrast to [8] and [4] is the consideration of arbitrary

correlated Gaussian noise whose covariance matrix can be written in the form ρIN + AAH. Typically, ρIN

represents an uncorrelated thermal noise component with power ρ while AAH accounts for a source of corre-

lated interference whose covariance matrix has the non-negative square root A ∈ CN×m. This model is more

general than the particular case where the interference term can be written in the form HIxI , where HI is a

random matrix which follows the same statistical model as the channel matrix H and xI is a standard complex

Gaussian vector [4]. Here, the mutual information can be decomposed into two terms without interference, i.e.,

I(ρ) = 1
N log det

(
ρIN + HIHH

I + HHH
)
− 1

N log det
(
ρIN + HIHH

I

)
, where the first can be seen as the mutual

information of the compound channel [HHI ] and the second as the mutual information of the interference channel

HI . Note that both matrices H and HI are considered random while A in our model is assumed to be deterministic.
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The channel model considered in this work has a particular application in the context of distributed antenna or

network MIMO systems where the signals received at several spatially separated antennas are jointly processed to

provide macro diversity. For more details on this topic we refer the reader to the comprehensive surveys [9], [10].

More precisely, the channel in (1) can be seen as a multiple access channel (MAC) with macro diversity where the

value of a particular σ2
ij represents the inverse path loss between the jth transmitter and the ith receiving antenna.

For example, assuming a log-distance path loss model, we have σ2
ij =

(
1
dij

)β
, where dij is the distance between

transmitter j and receive antenna i and β is the path loss exponent whose value lies usually in the range from 2

to 5 dependent on the radio environment. The application of random matrix theory to this field of research is not

new. The sum-capacity scaling of large cooperative cellular networks has been studied in [11] and the downlink of

large multi-cell systems with optimal power allocation and user scheduling was considered in [12]. However, both

works build upon the assumption that the inter-cell interference is of the form HIxI as discussed above.

The remaining part of the paper is structured as follows. A first order result in form of a deterministic equivalent

of the normalized mutual information is derived in Section II. That is, we find a deterministic function V (ρ) such

that I(ρ)− V (ρ)→ 0 for n→∞ while N/n→ c > 0. The fluctuations of the random variable N(I(ρ)− V (ρ))

are studied in Section III where we establish a CLT of the form (4) and provide an explicit expression for the

variance Θ2. Numerical results are presented in Section IV which corroborate the analysis and demonstrate their

applicability to channels with even small system dimensions. Section V concludes the paper.

II. DETERMINISTIC APPROXIMATION OF I(ρ)

Recall that H is a N × n matrix, A is N ×m. The aim of this section is to propose a deterministic equivalent

to the normalized ergodic mutual information

I(ρ) =
1
N

E log det
(
ρIN + AAH + HHH

)
− log det

(
ρIN + AAH

)
,

as N and n grow to infinity at the same pace:

0 ≤ lim inf
n→∞

N

n
≤ lim sup

n→∞

N

n
< ∞ . (5)

The requirement related to dimension m is:

0 ≤ lim sup
n→∞

m

n
< ∞ . (6)

In the sequel, the notation N,n→∞ will refer to (5) and (6). Consider the following technical assumptions:

A 1: Consider a family of non-negative real numbers (σ(n)
ij ; 1 ≤ i ≤ N ; 1 ≤ j ≤ n). Then there exists a

non-negative real number σmax such that:

sup
i≤N,j≤n,n≥1

σ
(n)
ij ≤ σmax < ∞.

A 2: Consider a family (AN,m;N ≥ 1, m ≥ 1) of N ×m matrices and denote by ‖An,m‖ the spectral norm

of matrix AN,m, then there exists a non-negative real number amax such that:

sup
N,m
‖AN,m‖ ≤ amax < ∞ .



4

A 3: Consider a family of non-negative real numbers (σ(n)
ij ; 1 ≤ i ≤ N ; 1 ≤ j ≤ n). Then there exists a

non-negative real number σmin such that:

lim inf
n≥1

min
1≤j≤n

1
n

N∑
i=1

σ2
ij ≥ σ2

min.

In the sequel, we will drop the dependencies in N,n and m and simply write σij and A instead of σ(n)
ij and

AN,m.

Consider the following diagonal N ×N matrices:

Dj = diag
(
σ2

1j , . . . , σ
2
Nj

)
, 1 ≤ j ≤ n . (7)

Denote by C+ = {z ∈ C : Im(z) > 0}, and by S the class of functions f analytic over C+, such that f : C+ → C+

and limy→∞−iyf(iy) = 1 1. We are now in position to state the first result of the paper:

Theorem 1 (Deterministic Equivalent): Assume that Assumptions (A1) and (A2) hold true, then:

(i) The following equation:

T(z) =

−zIN + AAH +
1
n

n∑
j=1

Dj

1 + 1
n trDjT(z)

−1

(8)

admits a unique solution T(z) among the N × N matrices such that there exists a N × N matrix-valued

measure2 µ such that:

T(z) =
∫

R+

µ(dλ)
λ− z

where µ(R+) = IN . (9)

In particular, 1
N tr T(z) ∈ S.

(ii) Let ρ > 0, denote Tρ = T(−ρ) and consider the quantity:

V (ρ) = − 1
N

log det
(
Tρ

(
ρIN + AAH

))
+

1
N

n∑
j=1

log
(

1 +
1
n

trDjTρ

)
− 1
Nn

∑
i=1,...,N
j=1,...,n

σ2
ijTii(−ρ)

1 + 1
n trDjTρ

.

Then, the following limit holds true:

I(ρ)− V (ρ) −−−−−→
N,n→∞

0.

Theorem 1 is essentially a consequence of Theorems 2.4 and 4.1 in [6]. Details are provided below.

Proof: The main idea is to cast the model HHH +AAH into an extended model which fits into the framework

of [6]. Consider the N × (n + m) matrices Z = [H 0N×m] and Γ = [0N×n A]; then (Z + Γ)(Z + Γ)H =

HHH + AAH, which is precisely the model under investigation. Introduce the following notations, for 1 ≤ i ≤ N

and 1 ≤ j ≤ n+m:

ρij =


√

n+m
n × σij if j ≤ n

0 if j ≥ n+ 1
, ∆̃i = diag(ρ2

ij ; 1 ≤ j ≤ n+m) , ∆j = diag(ρ2
ij ; 1 ≤ i ≤ N) .

1Such functions are known to be Stieltjes transforms of probability measures over R - see for instance [6, Proposition 2.2].
2For details, see for instance [6, Theorem 2.4].
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Note that ∆j = 0 if j ≥ n+ 1. We can now write down the equations associated to the model (Z + Γ)(Z + Γ)H

as given in [6, Theorem 2.4]. Let Ψ = diag(Ψi, 1 ≤ i ≤ N) and Ψ̃ = diag(Ψ̃j , 1 ≤ j ≤ n+m) where:

Ψi = − 1

z
(

1 + 1
n+m tr∆̃iT̃

) , Ψ̃j = − 1

z
(

1 + 1
n+m tr∆jT

) (10)

and

T =
(
Ψ−1 − zΓΨ̃ΓH

)−1

, T̃ =
(
Ψ̃
−1 − zΓHΨΓ

)−1

. (11)

Then this system admits a unique solution (Ψi, Ψ̃j) ∈ SN+n+m. In particular, T satisfies (9).

Taking advantage of the particular forms of ρij and ∆j , one can prove that T as defined in the previous equation

satisfies the following equation

T(z) =

−zIN + AAH +
1
n

n∑
j=1

Dj

1 + 1
n trDjT(z)

−1

.

Hence, the existence of a solution T to (8) is established; moreover T admits representation (9).

To complete the proof of (i), it remains to check that such a T is unique. Assume that there exists T satisfying

(8) with representation (9). Define Ψ̃ with the help of the second part of (10), Ψ with the help of the first part of

(11) and T̃ with the help of the second part of (11). It is then a matter of routine to check that Ψ and Ψ̃ satisfy the

system (10)-(11) (it remains basically to check that the first part of (10) is satisfied). As T admits representation

(9), Ψi and Ψ̃j belong to S. Hence Ψ and Ψ̃ are uniquely defined and so is T.

Part (ii) of the theorem is a direct application of [6, Theorem4.1]; details are therefore omitted.

III. FLUCTUATIONS OF I(ρ): A CENTRAL LIMIT THEOREM

A number of studies has been devoted to the fluctuations of the mutual information, with various statistical

assumptions for the channel H. Let us cite [4], [13], and in a more mathematical flavour [14] (separable variance

profile) [8] (general variance profile) and [15] (Rician channel with separable variance profile). A common feature

of these works, although perhaps not much known, is the nice and concise closed-form expression of the variance

which always writes

Θ2 = − log det (I− J) ,

where J is a Jacobian matrix associated to the set of fundamental equations of the matrix model under study. The

fluctuations of the model HHH +AAH have not been studied yet, but relying on the previous observation, it is easy

to infer the formula for the variance. Let δj = 1
n tr DjTρ. Multiplying Tρ in (8) by Dj and taking the normalized

trace yields the following system of n equations:

δj =
1
n

tr Dj

ρIN + AAH +
1
n

n∑
j=1

Dj

1 + δj

−1

4
= Γj(δ1, . . . , δn) .
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The computation of the Jacobian matrix Jn of function Γ = (Γ1, · · · ,Γn) is then straightforward:

[Jn]k` =
∂Γk
∂δ`

=
1
n

1
n tr DkTρD`Tρ

(1 + δ`)
2 .

Based on the previous remarks, we are now in position to state the claim related to the fluctuations of the mutual

information for the channel model under investigation.

Claim 1 (The CLT): Assume that Assumptions (A1), (A2) and (A3) hold true. Recall the definition of Tρ =

T(−ρ) and consider the following n× n matrix Jn defined by:

[Jn]k,` =
1
n

1
n tr DkTρD`Tρ(
1 + 1

n tr D`Tρ

)2 . (12)

Then:

(i) The real number Θ2
n = − log det (In − Jn) is well-defined and satisfies

0 < lim inf
N,n→∞

Θ2
n ≤ lim sup

N,n→∞
Θ2
n < ∞.

(ii) The following convergence holds true

N

Θn
(I(ρ)− V (ρ)) D−−−−−→

N,n→∞
N (0, 1) ,

where D stands for the convergence in distribution.

Proof of part (i) closely follows [8, Theorem 3.1] and is therefore omitted. Due to the term AAH in the model

HHH + AAH, the proof of the fluctuations (ii) is not a simple consequence of Theorems 3.2 and 3.3 in [8] and

necessitates special mathematical developments. We however provide the proof of the fluctuations in two specific

cases, namely:

1) The case where AAH = Λ is a N ×N diagonal matrix.

2) The case where the variance profile is separable, i.e. wij =
√
did̃j .

Beyond the proof of the fluctuations for these cases, simulations are provided that validate the variance formula in

the general case.

Proof of Claim 1 in case 1): Let AAH = Λ = diag(λ2
i ; 1 ≤ i ≤ N). Denote ∆ = (Λ + ρIN )−1, then:

log det(HHH + Λ + ρIN ) = − log det ∆ + log det
(
∆1/2HHH∆1/2 + IN

)
.

Consider H̃ = ∆1/2H, then H̃ is a centered matrix with a variance profile given by: κij = σij√
λ2

i +ρ
. Hence,

the fluctuations of log det
(
H̃H̃H + IN

)
fall into the framework of Theorems 3.2 and 3.3 in [8]. In particular,

N(I(ρ)− V (ρ))→ 0 as N,n→∞ and Θ̃−1
n N(I(ρ)− I(ρ))→ N (0, 1) in distribution, where:

Θ̃n = − log det(In − J̃n) , [J̃n]k,` =
1
n

1
n tr DkΥD`Υ(
1 + 1

n tr D`Υ
)2 .

and where Υ satisfies the following equation:

Υ =

IN +
1
n

n∑
j=1

∆j

1 + 1
n tr ∆jΥ

−1

with ∆j = Dj∆ . (13)
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In order to establish Claim 1 in this case, it remains to prove that Θ̃n as just defined is equal to Θn. From (13),

it is straightforward to prove that ∆Υ satisfies (8) with z = −ρ, and thus is equal to T due to the uniqueness of

the solution of (8). It readily follows that Jn = J̃n, which implies Θn = Θ̃n. Claim 1 is proved in the case where

AAH = Λ.

Proof of Claim 1 in case 2): In the case where the variance profile is separable, i.e., wij =
√
did̃j , H

writes H = n−1/2D1/2WD̃1/2, where D = diag(di, 1 ≤ i ≤ N) and D̃ = diag(d̃j , 1 ≤ j ≤ n) and where

W has i.i.d. circular Gaussian entries. Consider the following extended model: W̃ = [W W1], where W1 is a

N × m matrix with i.i.d. circular Gaussian entries; ∆ = αD, where α =
√

n+m
n ; Γ = [0N×n A]; and finally

∆̃ = α diag(D̃,0m×m).

Then HHH + AAH writes(
∆1/2 W̃√

n+m
∆̃

1/2
+ Γ

)(
∆1/2 W̃√

n+m
∆̃

1/2
+ Γ

)∗
.

The CLT of the mutual information associated to this model has recently been established in [15]:

N

Θ̃n

(I(ρ)− I(ρ)) D−−−−−→
N,n→∞

N (0, 1) .

Moreover, it has been proved in [16, Theorem 2] that N(I(ρ) − V (ρ)) → 0. Let us first provide the equations

associated to this model in order to describe the variance Θ̃2
n. The following system in (δ, δ̃) admits a unique pair

of nonnegative solutions (δ > 0, δ̃ > 0) (see for instance [16, Theorem 1]):

δ =
1

n+m
tr ∆

(
ρ(IN + δ̃∆) + Γ(In+m + δ∆̃)−1ΓH

)−1

δ̃ =
1

n+m
tr ∆̃

(
ρ(In+m + δ∆̃) + ΓH(IN + δ̃∆)−1Γ

)−1

.

Introduce the matrices

Υ =
(
ρ(IN + δ̃∆) + Γ(In+m + δ∆̃)−1ΓH

)−1

and Υ̃ =
(
ρ(In+m + δ∆̃) + ΓH(IN + δ̃∆)−1Γ

)−1

,

and the quantities γ = (n+m)−1tr ∆2Υ2 and γ̃ = (n+m)−1tr ∆̃
2
Υ̃2. These quantities enable us to express the

variance associated to the CLT:

Θ̃2
n = − log

((
1− 1

m+ n
tr ∆1/2ΥΓ(I + δ∆̃)−1∆̃(I + δ∆̃)−1ΓHΥ∆1/2

)2

− ρ2γγ̃

)
.

Due to the particular form of the matrices associated to the extended model, one can readily prove that the variance

takes the simpler form Θ̃2
n = − log(1− ρ2γγ̃).

It remains now to prove that Θ̃n = Θn.

Easy matrix computations yield to the fact that

Υ =
[
ρ
(
I + δ̃∆

)
+ AA∗

]−1

and Υ̃ =

 ρ
(
I + αδD̃

)
0

0 ρI + A∗
(
I + αδ̃D

)
A

−1

. (14)
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Hence, considering Υ̃ as a block-diagonal matrix of inverses, we get:

δ̃ =
α

ρ(n+m)
tr D̃

[
I + αδD̃

]−1

and γ̃ =
1

n+m
tr ∆̃

2
Υ̃2 =

1
ρ2n

tr D̃2
[
I + δD̃α

]−2

. (15)

Consider Eq. (8), which defines T, for z = −ρ; note that Dj = d̃jD and introduce κ = 1
n tr DTρ so that Tρ

satisfies the equation:

Tρ =

ρI + AA∗ +
1
n

n∑
j=1

d̃jD

1 + κd̃j

−1

=
[
ρI + AA∗ +

(
1
n

tr D̃(I + κD̃)−1

)
D
]−1

Considering the definitions of Υ and δ̃ as given in Eq. (14) and (15), one can prove that Tρ and Υ satisfy the

same equation and hence are equal. In particular, κ = αδ and Θ̃2
n writes:

Θ̃2
n = − log

(
1− 1

n
tr D2T2

ρ ×
1
n

tr D2
[
I + κD̃

]−2
)
.

We now rewrite Θ2
n as given in Claim 1.

Jk` =
1
n

1
n d̃kd̃`tr D2T2

ρ

(1 + d̃`)2
.

Hence,

J =
(

1
n2

tr D2T2
ρ

)
uHv ,

where u = [d̃1, . . . , d̃n] and v = [d̃1(1 + κd̃1)−2, . . . , d̃n(1 + κd̃n)−2]. Now,

− log det
(

I−
(

1
n2

tr D2T2
ρ

)
uHv

)
= − log

(
1−

(
1
n2

tr D2T2
ρ

)
vuH

)
= − log

(
1− 1

n
tr D2T2

ρ ×
1
n

tr D2
[
I + κD̃

]−2
)
,

which is exactly the expression of Θ̃2
n and the proof is completed.

IV. NUMERICAL RESULTS

In order to verify the accuracy of the analysis in the preceding sections, we provide now some simulation

results. We consider a variance profile where each σ2
ij is drawn randomly from the interval [0, 10]. The interference

covariance matrix AAH is also generated in a random fashion by letting A = 1√
N

X, where X is a standard

complex Gaussian N ×m matrix. Both the variance profile (σ2
ij) and A are chosen at random at the beginning of

the simulations and then kept constant. We define the signal-to-noise-ratio as SNR = 1
ρ and let m = 3. Figure 1

shows the normalized ergodic mutual information I(ρ) versus SNR for several different values of N and n. Solid

lines represent the deterministic equivalent approximation V (ρ) as given by Theorem 1. Markers are obtained by

Monte Carlo simulations for 10000 different realizations of H. We observe a very good fit between both results

which demonstrates that the asymptotic analysis yields accurate approximations for small channel dimensions.

Figure 2 depicts the histogram of the random variable N
Θn

(I(ρ)−V (ρ)) in comparison with the normal distribution

for two different pairs of parameters N ,n. While we observe some mismatch for the case N = 2 receive antennas

and n = 1 transmitter, the overlap is almost perfect for a slightly larger system with N = 16 and n = 8. These

plots further validate the CLT as stated in Claim 1.
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Fig. 1: Normalized ergodic mutual information I(ρ) versus SNR for different channel dimensions N , n. Solid lines

correspond to the deterministic equivalent approximation V (ρ). Markers are obtained by Monte Carlo simulations.
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Fig. 2: Histogram of N
Θn

(I(ρ)− V (ρ)) in comparison with the normal distribution N (0, 1).
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V. CONCLUSIONS

We have studied the fluctuations of the mutual information of a class of large-dimensional MIMO channels with

arbitrary colored noise. First, we have provided a deterministic approximation of the mutual information in the

asymptotic limit. Second, we have established the fluctuations of the mutual information around this approximation

in form of a CLT. Both analytical results have then been confirmed by simulations and it was shown that the

asymptotic results yield accurate approximations for even small channel dimensions.
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