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Abstract—Recently, much interest has been directed towards
software defined radios and embedded intelligence in telecommu-
nication devices. However, no theoretical framework for cognitive
radios has ever been proposed. In this paper, we introduce
an information theoretic point of view on cognitive radios.
Specifically, our motivation in this work is to embed human-
like intelligence in mobile wireless devices, following the three
century-old work on Bayesian probability theory, the maximum
entropy principle and minimal probability update. This allows
us to partially answer such questions as “what are the signal
detection capabilities of a wireless device?” or “when facing a
situation in which most parameters are missing, how to react?”.
As an introduction, we will present two examples from the same
authors using the cognitive framework namely multi-antenna
channel modelling and signal sensing.

I. INTRODUCTION

In 1948, Claude Shannon introduced a mathematical theory
of communications [1], allowing two to three generations of
researchers to design increasingly sophisticated telecommu-
nication systems, whose purpose was to constantly increase
the achievable transmission rate over various communication
channels. One of the outcomes of Shannon’s work showed
that a linear increase in the transmission bandwidths provides
a linear growth in the channel transmission capacity, while a
linear transmit power increase provide logarithmic capacity
growth. As a consequence, the last decades of research in
telecommunications led to a situation in which the available
transmission bandwidth became dramatically scarce and could
only be acquired by service providers at an extraordinarily
high price. In the end of the nineties, the work of Foschini [2]
and Telatar [3] on multiple antenna (MIMO) systems came
as a salvation: when increasing the number of embedded
antennas in both transmit and receive devices, a potential
linear growth (with the number of antennas) in capacity can
be expected. Since the exploitation of the space dimension
can come virtually at a zero cost compared to the exploitation
of the frequency dimension, these stunning results provided a
new research field in the early years of the twenty-first century.
However, practical applications of multiple antenna systems
is still questionnable, as the predicted multiplexing gain can
appear at very strong signal to noise ratio (SNR) and for low
correlated channels; for instance, line of sight components
in a transmission almost completely annihilates the gain of
multiple antenna systems. Still, with these new dimensions,
the classical Shannon Theory was still the landmark theory to

analyze these systems.
Within the MIMO delusion, Joseph Mitola [4] realized that

a new virtual dimension could be exploited to increase the
achievable transmission rate: making the radio smarter. The
basic insight of Mitola was to observe that dedicated allocated
bandwidth is not efficiently used in the sense that, most of the
time, large pieces of bandwidth are left unoccupied. Enabling
the wireless devices to sense the frequency spectrum in a
decentralized manner1 allows for a potentially high increase
of spectral efficiency, which we define here as the actual
transmission rate averaged over the theoretical capacity. The
ideas of Mitola recently motivated a wide range of research
with a common denominator: the introduction of intelligence
in wireless devices. For instance, Haykin [5] introduced the
concept of interference temperature, which allows to control
the level of interference allowed in a network, i.e. if a given
user has a rate constraint largely inferior to the effective chan-
nel capacity, the excess unused rate could be used by another
device, as long as this device does not request more than the
available excess rate. This interference temperature brought
the new idea of primary and secondary users in a wireless
network: primary users are those subscribers who are charged
a high price to communicate with a high quality of service,
while secondary users pay a lower price to communicate over
opportunistic excess rates left unused by the primary users,
e.g. [29], [30].

However, all these ideas, revolutionary as they may seem,
only scratch the surface of a larger entity known as cognitive
radio. Indeed, if the cognitive radio is defined, as was sup-
posedly the prior idea of Mitola or even more certainly the
basic view of Haykin2, as a radio in which all entities are
capable of cognition, then the limitations in the capabilities of
these radios is still unknown and not really explored. Note the
idea of smart devices date back to Shannon’s work as well.
He was already interested in ideas such as a robot capable
of playing chess [6]; providing already in 1953 an original
viewpoint of the cognitive abilities of future computers and
even constructing a mind-reading machine, the circuitry of
which is depicted in [8].

In this work, we propose to introduce an information
theoretic viewpoint for cognitive radios, to enable human-

1In order limit useless overhead signaling.
2Remember that the title of his main contribution on cognitive radios [5]

refers to “brain-empowered” radios.



like intelligence in wireless devices. This work does not rely
on Shannon’s work but tries to extend it through the use
of additional mathematical such as the theory of Bayesian
probabilities, the maximum entropy principle [9] and the
minimal cross-entropy principle [13], [14], among others.

The remainder of this paper unfolds as follows: in Section II,
we present the key philosophical ideas which lead from Shan-
non’s classical information theory to Jaynes’ more general
probability theory. In Section III, we provide two examples
applying Jaynes’ maximum entropy principle to the problems
of channel modelling and signal sensing. Then in Section IV,
we discuss the present advantages and limitations of cognitive
radios, and provide our conclusions in Section V.

Notation: In the following, boldface lower-case symbols
represent vectors, capital boldface characters denote matrices
(IN is the N×N identity matrix). Xij denotes the (i, j) entry
of X. The Hermitian transpose is denoted (·)H. The operators
trX and |X| represent the trace and determinant, respectively.
The symbol E[·] denotes expectation. The operator vec(·) turns
a matrix X into a vector of the concatenated columns of X.
Finally, the notation Px(y) denotes the probability density
function of the variable x in position x = y.

II. FROM SHANNON TO JAYNES

Let us first present a simple example to show the inherent
limitations of Shannon’s information theory.

A. Channel Capacity Revisited

Let us consider the simplest communication scheme, mod-
elled as

y = x+ n (1)

for some transmit signal x, additive background noise n and
receive signal y. The Shannon capacity C of such a system
can be computed as:

C = sup
px

I(x; y) (2)

with px the probability distribution of the variable x taken
in the set of single-variable probability distributions, and I
denotes the mutual information [1]. The equality (2) can only
be computed if the distribution of n is known. In practice,
n is often taken as Gaussian, both for simplicity reasons and
because this is somehow often close to the reality. However,
there is no actual way to predict the distribution of the noise
before transmitting data, and in reality the expression (2)
is impossible to compute. This leads to the conclusion that
all capacity computations are in fact only approximations of
equation (2).

Moreover, it is important to observe that what we call
noise is in fact, in addition to the thermal noise, the sum
contribution of interfering waves with different properties. If
part of this noise can be analyzed by the cognitive device3,
then the capacity will increase. All these primary observations
lead to realize that the channel capacity is largely dependent

3There is no reason why a cognitive device would not be able to infer on
what the noise is made of.

on the prior information available at the receiver. In particular,
two identical receivers, facing the same channel, may have
different actual capacities depending on the individual channel
state information.

Assuming the noise is known to be Gaussian with zero
mean, the receiver is left to estimate the noise variance. In
general, only approximative values of the SNR are available.
Therefore, the channel capacity might be better seen as a rate
vector, with entries indexed by every possible values of the
SNR and taking different degrees of probability. These degrees
of probability differ for each receiver, making the capacity
again information-dependent and user-dependent. As a matter
of fact, what one would call “real capacity’ is capacity if the
receiver knows exactly the noise variance which does not carry
in itself any actual significance: as recalled by Jaynes [9] (see
pp. 634), ”the channel capacity is not an intrinsic value of the
channel but an intrinsic value of the level of knowledge of the
system designer”4.

B. Limitations of Information Theory

Already in 1963, Leon Brillouin [22] realized the fun-
damental limitation of Shannon’s information theory. In his
own words, ‘The methods of [information] theory can be
successfully applied to all technical problems concerning in-
formation: coding, telecommunication, mechanical computers,
etc. In all of these problems we are actually processing
information or transmitting it from one place to another, and
the present theory is extremely useful in setting up rules and
stating exact limits for what can and cannot be done. But
we are in no position to investigate the process of thought,
and we cannot, for the moment, introduce into our theory
any element involving the human value of the information.
This elimination of the human element is a very serious
limitation, but this is the price we have so far had to pay
for being able to set up this body of scientific knowledge.
The restrictions that we have introduced enable us to give a
quantitative definition of information and to treat information
as a physically measurable quantity. This definition cannot
distinguish between information of great importance and a
piece of news of no great value for the person who receives
it.” - Leon Brillouin, 1963.

Within the realm of cognitive devices, this situation in
which information carries relevance, which depends on whom
receives it, typically arises. Let us go back to the channel
capacity example above. If the receiver is provided with some
additional information concerning the transmission medium,
like the typical channel delay spread, the channel Doppler
spread, the number of reflections, the presence of buildings
in the neighborhood, how this knowledge affects the channel
capacity is an open issue, which cannot be solved within
Shannon’s framework. And if the receiver experiences a poor
decoding rate, what kind of information should it request to the
transmitter in order to increase its performance is also an open

4The system designer can be seen as a virtual entity sharing the knowledge
of both transmitter and receiver.



question, e.g. should the receiver request more pilot symbols
at the risk of a huge waste in spectral efficiency, should the
receiver request some deterministic information regarding a
given parameter of the channel? All these problems do not
have deterministic channel-dependent answers but depend on
the specific knowledge of the transmitter/receiver pair to which
some piece of additional information might or might not be
valuable.

To partially answer those questions, we propose in the
following to introduce first the notion of degrees of belief,
which turns every deterministic measurable entity, e.g. the
value of the channel capacity, the value of the SNR or the
value of the channel fading, into a random variable with an
assigned probability distribution: this probability distribution
will translate the confidence of the cognitive devices regarding
the estimation of the measurable entity in question. Then,
we will introduce the notion of relevance which enables to
estimate the relative importance of information. Finally, we
will discuss our general view of the capabilities of a cognitive
radio.

C. The Bayesian Approach

As briefly stated in the previous section, we aim at extending
the classical Shannon’s information theory to enable cognitive
devices with the ability of plausible reasoning. That is, a
cognitive radio should not rely on empirical (often erroneous)
decisions, but rather should be able to express doubt and to
reason honestly when provided with limited knowledge. A first
step in this approach is to turn empirical decisions into degrees
of belief.

1) Degrees of Belief and the Maximum Entropy Principle:
In the Bayesian philosophy, contrary to the orthodox proba-
bility philosophy, deterministic parameters of a system, e.g. a
weight, a height, the channel delay spread, which a cognitive
entity needs to evaluate, must be characterized by the degrees
of belief attached to all possible values for this parameter.
As a consequence, assuming a cognitive telecommunication
device is not aware of the signal to noise radio related to
the background noise, instead of expressing the achievable
transmission rate as the scalar C = log(1 + σ2), which is
therefore irrelevant to the communication device, it would be
more adequate to consider the “vector” C(x) = log(1 + x),
x ≥ 0, attached to a degrees of belief function, i.e. a
probability density function, p(x) for each potential signal to
noise ratio x. Two fundamental questions arise at this point: (i)
how to use the vector C(x)?, and (ii) how to compute p(x)?

Answering (i) is a matter of decision theory, in the sense
that different requirements might come into play to decide on
the actual transmission rate to use: if reliability is needed, one
will decide to transmit at a rate log(1+x) such that

∫ x
0
p(t)dt

is less than a given (small) value, while if performance with
low reliability is sought for, then x will take a larger value.
This part of the cognitive radio spectrum will not be covered
in this contribution.

Question (ii), on the contrary, is the point of interest in the
present paper. Given the total amount of prior information

at the cognitive device, how to assign degrees of belief
in a systematic way? The answer to this question partially
appears in the work of Shannon [1] but is better explained
and developed by Jaynes [12] thanks to the introduction of
the maximum entropy principle (MaxEnt) [11]. The key idea
behind MaxEnt is to find a density function p, which fulfills
the constraints imposed by the prior information I while
introducing no additional (unwanted) information. In other
words, this density function should maximize the ignorance
about unknown parameters of the cognitive device, while
satisfying the constraints given in I . In Jaynes’ terms, this
density function is maximally non-committal regarding miss-
ing information. This function translating ignorance is proven
by Jaynes and more accurately later by Shore and Johnson
[23] to be the entropy function H ,

H(p) = −
∫

log(p(t))p(t)dt (3)

When the information contained in I is of statistical nature,
such as first or second order statistics, the function p which
maximizes the entropy while satisfying the constraints in I is
unique and can be computed with Lagrangian multipliers. An
example will be given in Section III-A.

2) Relevance: The problem of relevance of information is a
second topic in the establishment of foundations for cognitive
radios. If cognitive devices were to act like human beings, they
should be able to request additional information when they do
not have enough evidence to take decisions. For instance, to
obtain a more accurate estimate of the noise variance σ2 in
order to have more confidence on the achievable transmission
rates, an intelligent device could require the transmitter to stop
transmitting so that it can estimate σ2. But this would be an
expensive waste in spectral efficiency, so it could alternatively
request deterministic information on a dedicated channel from
the transmitter. How accurate this information must be is then
another problem. To be able to decide on what question to
ask to the transmitter, the cognitive device needs to be able to
judge the relevance of every possible question.

This notion of questions, or inquiries, is a philosophical
topic upon which little literature and very few concrete results
exist. In 1978, Cox [26], who also made important contri-
butions on Bayesian probability theory [10], mathematically
defined a question as the set of possible answers to this
question. Therefore, a question will be relevant if its answers
carry valuable information. Assuming the set of questions
is seen as an ordered set, with the largest questions being
the most relevant (since their answers carry potentially more
cogent information), a cognitive device can decide which
appropriate request to formulate to the transmitter. The work
on relevance and questions is however still in its infancy, but
we insist that those are fundamental needs to the cognitive
radio field; for instance, interesting contributions are found in
the works of Knuth [27], who uses lattice theory to create
partial orders of finite sets of questions, which is seen as the
dual (in the lattice theory terminology) of the set of answers
to those questions.



3) What is a Cognitive Radio?: In our viewpoint, a cogni-
tive radio must ideally be able to adapt to its environment,
by gathering all cogent information about the propagation
channel, the transmitted signal etc. while never producing
undesirable empirical information. This would therefore re-
lieve the telecommunication field from all ad-hoc methods,
based on empirical decisions concerning unknown parameters.
This does not mean that a cognitive device is not prone
to making errors; however, these potential errors will never
originate from erroneous system assumptions, but rather from
lack of information, which would generate broad maximum
entropy distributions5. If more cogent information is provided
to a cognitive device, it will integrate it and increase its
decision capabilities. In a way, the more signals a cognitive
communication device is fed with, the more efficient it is; this
would mean for instance that cognitive devices age wiselly:
the older the cognitive device, the more efficient.

Regarding for instance signal sensing, the first steps of
which will be detailed in Section III, we expect a cognitive
device to process the received signals as follows,

1) initialization: integrate all cogent information about the
communication channel, the properties of the supposedly
received informative signal etc. and compute the degrees
of belief associated to all relevant variables.

2) update loop: when the cognitive device is fed with
incoming signals, it shall update its degrees of belief
regarding all the previous variables and provide the
overall probability that the received signal originates
from a coherent data source.

3) decision: using some criterion from decision theory, e.g.
the evidence for the presence/absence of a coherent data
source is more than a given threshold, the cognitive
device declares whether data originating from a coherent
source have been received.

This protocol does not necessarily provide the most efficient
sensing strategy in specific situations (sometimes it might
provide a quick response, sometimes traditional algorithms
might provide faster responses), but it provides the most honest
way to treat the signal sensing problem. Indeed, through the
maximum entropy framework, one only uses the available
information and does not take the risk to introduce unwanted
assumptions, such as empirical values or imprecise estimates
of unknown parameters. It is important to note that no signal
detection strategy can be proven superior to any other as long
as too much information on the communication environment
is missing. If a given algorithm could be proven better than
the Bayesian strategy, this would mean this algorithm has
an information advantage; honesty would then require that
the Bayesian strategy be aware of this additional piece of
information. The significant advantage of the Bayesian phi-
losophy and the maximum entropy principle over classical

5When little is known on a given parameter, the maximum entropy
distribution attached to this parameter will be broad in the sense that no
specific value is preferred to any other, while when more information is
available on this parameter, the maximum entropy distribution will be very
peaky around the exact value of the parameter.

methods is that they do not take any empirical guess to solve
a problem. Therefore, instead of being either luckily very
good, or unluckily very bad depending on the accuracy of
this “guess”, they perform as best as their prior information
allows them to.

Also, a cognitive device ought to be capable of requesting
information when it faces a situation where it crucially lacks
cogent information; for instance, a cognitive mobile phone in
a low network coverage situation, should be able to request
information (or even help) to the neighboring cell phones
which enjoy better coverage. The interest of this request
would be measured by its relevance. Adding the possibilities
of formulating inquiries might eventually lead to enabling
cognitive devices with the ability of discussing, instead of just
transmitting and receiving. Bidirectional communications used
to be a point of deep interest when it was realized that Shan-
non’s theory of communication is in fact precisely a theory of
transmission, in which past transmitted information is assumed
uncorrelated with subsequent transmitted information. In 1973,
Marko proposed a generalization of Shannon’s information
theory framework to encompass bidirectional communications
[24], in the objective to accurately model the social interac-
tions among animals and especially human beings. The lead
was then followed by Massey [25] who extended information
theory to include feedback in the expression of Shannon’s
mutual information.

III. EXAMPLES OF APPLICATION

The most elementary requirement of a cognitive radio lies
in its sensing capabilities. When a waveform is received at the
cognitive device, it must be capable of deciding whether this
waveform originates from a coherent source of information
or if this waveform is pure background noise. When little
is known by the receiver concerning the surrounding envi-
ronment, this problem is very intricate and has led to many
different ad-hoc techniques. Our purpose in the following is to
provide a unique way of deciding on the presence of a coherent
data source given a specific amount of prior information at the
receiver. First, we will discuss channel modelling, which is a
necessary step to properly handle the Bayesian signal detection
method.

A. MaxEnt Channel Modelling

1) Introduction: Channel modelling is an entire field of
research in telecommunications, which produces every year
lots of new contributions. However, this huge amount of
previous work on channel models leads to the following
paradoxical conclusion: for a given total information gathered
by a cognitive device, there exist many different channel
models proposed in the literature. In such a situation, which
of those channel models is the cognitive device supposed
to trust? In reality, the fundamental difference between all
those models lies in the additional hypothesis each of them,
explicitly or implicitly, carries; some models might implicitly
suggest that channels usually have a short delay spread for
a given communication technology, or might suggest that



it is very likely to have a strong line of sight component
etc. However, if the receiver is not aware of that implicit
information, this specific information should honestly not be
taken into account. What we will provide in the following
is a systematic way to model channels, given some cogent
information I , which fulfill the constraints imposed by I while
being non-committal regarding unknown parameters. In brief,
we will provide the most elementary models compliant with
I , without introducing unwanted hypothesis.

2) Gaussian i.i.d. Channels: Surprisingly enough, we will
realize that most of the classical channels in the basic literature
fall into the maximum entropy channel modelling methodol-
ogy. This is the case of Gaussian i.i.d. channels. Indeed, let us
assume that the information I known to the cognitive device
gathers the following,

1) the transmitter is equipped with nT transmit antennas
2) the receiver is equipped with nR receive antennas
3) the channel carries an energy E.

The transmission model is

y =
√

ρ

nT
Hx + n (4)

where x ∈ CnT is the transmitted symbol vector, n ∈ CnR the
thermal or interfering noise, ρ the signal to noise ratio (SNR)
and H ∈ CnT×nR the channel we want to model.

In mathematical terms, based on the fact that∫
dH

nR∑
i=1

nT∑
j=1

|hij |2PH(H) = nTnRE (Finite energy) (5)∫
dPH(H) = 1 (PH(H) is a probability distribution) (6)

what distribution PH
6 should the cognitive device assign

to the channel? The cognitive device would like to derive
the most general model complying with those constraints, in
other words the one which maximizes uncertainty while being
consistent with the energy constraint. This statement is math-
ematically expressed by the maximization of the following
expression involving Lagrange multipliers with respect to PH

L(PH) = −
∫
dHPH(H)logPH(H)

+ γ

nR∑
i=1

nT∑
j=1

[E −
∫
dH|hij |2PH(H)]

+ β

[
1−

∫
dHPH(H)

]
(7)

If we derive L(PH) with respect to PH, we get

dL(PH)
dPH

= −1− logPH(H)− γ
nr∑
i=1

nt∑
j=1

|hij |2 − β = 0 (8)

6It is important to note that we are concerned with PH|I where I represents
the general background knowledge (here the energy) used to formulate the
problem. However, for the sake of readability, PH|I will be denoted PH.

which yields

PH(H) = e−(β+γ
PnR
i=1

PnT
j=1|hij |

2

= e−(β)
nR∏
i=1

nT∏
j=1

exp−(γ | hij |2)

=
nR∏
i=1

nT∏
j=1

Phij (hij)

with
Phij (x) = e

−(γ|x|2+ β+1
nRnT

) (9)

One of the most important conclusions of the maximum
entropy principle is that, while we have only assumed the
knowledge about the energy, this assumption naturally implies
independent entries since the joint probability distribution
PH simplifies into products of Phij . Therefore, based on
the previous state of knowledge, the only solution to the
maximization of the entropy is the Gaussian i.i.d. channel.
This does not mean that the cognitive device has supposed
independence of the channel fades in the model, nor does
it mean that real channels ought to be i.i.d. if those are
known to be of energy E. However, in the generalized L(PP)
expression, there exists no constraint on the dependence of
the channel entries and this leads to natural independence
as an honest guess on the behavior of the channel entries.
Another surprising result is that the distribution achieved is
Gaussian. Once again, Gaussianity is not an assumption but a
consequence of the fact that the channel has finite energy.

3) Other Channel Models: In [16], a more complete survey
on MaxEnt channel models is proposed. We will gather in the
following the main results.

If the information I at the receiver is the same as previously
but the receiver is not aware of the exact value of the channel
energy E but knows that it is contained in the interval
[0, Emax], then

PH(H) =
∫
PH,E(H, E)dE (10)

=
∫
PH|E(H)PE(E)dE (11)

If PE is assigned a uniform prior on the set [0, Emax], then
we obtain7

PH(H) =
1

EmaxπnRnT

∫ ∞
1

Emax

unRnT−2e−
PnR
i=1

PnT
j=1 |hij |

2udu

(12)
Note that the distribution is invariant to unitary transfor-

mations, is not Gaussian and moreover the entries are not
independent when the modeler has no knowledge on the
amount of energy carried by the channel. This point is critical
and shows the effect of the lack of information on the exact
energy.

7The assignment of uniform priors on variables defined on a continuous
space is a very controversial point of the maximum entropy theory, which
is lenghtly discussed in [9]. Another classically used prior, which solves
the problem of invariance to variable change is the so-called Jeffreys’
uninformative prior [15].



If the channel covariance matrix Q = E(vec(H)vec(H)H)
is known to the receiver, and therefore is part of the side
information I , then, denoting Q = VΛVH the spectral
decomposition of Q, with V = [v1, ...,vnRnT

] and Λ =
diag(λ1, ..., λnRnT

),

PH(H) =
1∏nRnT

i=1 πλi
exp

{
nRnT∑
i=1

| vH
i vec(H) |2

λi

}
(13)

If Q is unknown, which would often be the case, one needs
to integrate out the nuisance parameter Q. As a result of this
integration (the detailed proof is provided in [16]), we show
that the distribution of H only depends on the norm x =
vec(H)Hvec(H), and that

Px(x) = (−1)−N
2−1

N∑
n=1

fn(x)
(−γ)N+n−1

[(n− 1)!]2(N − n)!
(14)

where

fi(x) = 2
(
x

γ

)(i+N−2)/2

Ki+N−2(2(γx)1/2) (15)

with −γ = E/N2, Kj the Bessel-K function of order j.

B. Signal Detection

Now that once channel modelling has been investigated, the
multiple antenna signal sensing problem can be completely
handled.

1) Channel State Information: Let us first state the infor-
mation available at the cognitive receiver:
S-i) the receiver has nR antennas.

S-ii) the receiver samples as many as L times the input from
the RF interface.

S-iii) the signal sent by the transmitter has a constant unit
mean power. It is quite important to note that this hy-
pothesis is very weak and should be made more accurate
for communications schemes that are known only to
use either QPSK, 16-QAM, 64-QAM modulations for
instance.

S-iv) the MIMO channel has a constant mean power.
We similarly define additional information the receiver may

be aware of
V-i) the transmitter possesses (and uses) nT antennas.

V-ii) the noise variance σ2 is known.
2) Signal Model: Given a certain amount of sampled sig-

nals, the objective of the signal detection methods is to be able
to optimally infer on the following hypothesis:
• H0. Only background noise is received.
• H1. Informative data added to background noise is re-

ceived.
Given hypothesis S-iii), the only information on the trans-

mitted signal (under H1) is its unit variance. The maximum
entropy principle claims that, under this limited state of
knowledge, the transmitted data must be modelled as i.i.d.
Gaussian [9]. The data vector, at time l ∈ {1, . . . , L}, is

denoted s(l) = (s(l)1 , . . . , s
(l)
nT)T ∈ CnT . The data vectors are

stacked into the receive matrix S = [s(1), . . . , s(L)].
If the noise level σ2 is known, then either under H0 or

H1, the background noise must be represented, due to the
same maximum entropy argument as before, by a complex
standard Gaussian matrix Θ ∈ CnR×L (i.e. a matrix with
i.i.d. standard complex Gaussian entries θij) [28]. Under H1,
the channel matrix is denoted H ∈ CnR×nT with entry hij
being the link between the jth transmitting antenna and the
ith receiving antenna. The model for H follows the MaxEnt
channel modelling rules. In the present situation, only the
constant mean power (or equivalently, the energy) of the
channel is known. Therefore H will be modelled as i.i.d.
Gaussian, following the reasoning in the previous section. The
received data at sampling time l are given by the nT×1 vector
y(l) that we stack, over the L sampling periods, into the matrix
Y = [y(1), . . . ,y(L)] ∈ CnR×L.

This leads for H0 to the model,

Y = σΘ (16)

And for H1 to

Y = [H , σIN ]
[

S
Θ

]
(17)

We also denote by Σ the covariance matrix

Σ = E[YYH] (18)

= L
(
HHH + σ2InR

)
(19)

= U (LΛ) UH (20)

where Λ = diag
(
ν1 + σ2, . . . , νnR

+ σ2
)
, with

{νi, i ∈ {1, . . . , nR}} the eigenvalues of HHH and U a
certain unitary matrix.

Our intention is to make a decision on whether, given the
received data matrix Y, the probability for H1 is greater than
the probability for H0. This problem is usually referred to as
hypothesis testing [9]. The decision criterion is based on the
ratio

C(Y) =
PH1|Y(Y)
PH0|Y(Y)

(21)

which we need to decide is whether lesser or greater than 1.
3) Results and Experiments: At this point in the derivation,

computing C resorts to mere mathematical integration. The
details of the calculus are given in [17]. We only provide here
the results. First, assume σ2 and nT are known, then, denoting
x1, . . . , xnR

the eigenvalues of YYH,

PY|H0(Y) =
1

(πσ2)nRL
e−

1
σ2 trYYH

(22)

=
1

(πσ2)nRL
e−

1
σ2

PnR
i=1 xi (23)



and

PY|H1(Y)

=
∫

Σ

PY|ΣH1(Y,Σ)PΣ(Σ)dΣ (24)

=
∫

U(nR)×(R+)nR

PY|Σ,H1(Y,UΛUH)PΛ(Λ)dUdΛ (25)

which, after complete derivation, using in particular the
Harish-Chandra identity [18], gives

PY|H1(Y) = α
∑

a⊂[1,nR]

e

PnT
i=1 xai
σ2∏

ai

∏
j 6=a1
...
j 6=ai

(xai − xj)

×
∑

b∈P(nT)

(−1)sgn(b)+1
nT∏
l=1

JnR−L−2+bl(nTσ
2, nTxai) (26)

with P(k) the ensemble of permutations of k, sgn(b) the sign
of the permutation b,

Jk(x, y) =
∫ +∞

x

tke−t−
y
t dt (27)

and

α =
(nR − nT)!nT

(2L−nT+1)nT/2enT
2σ2−

PnR
i=1 xi
σ2

nR!πnRLσ2(nR−nT)(L−nT)
∏nT−1
j=1 j!

(28)

These expressions are rather complex but show that the
Bayesian signal detection, within the state of knowledge I ,
only depends on the eigenvalues x1, . . . , xnR

of the Gram
matrix YYH of the received data Y.

A comparison with the classical power detector, e.g. [19],
[20], [21], which consists in summing all individual powers
received on the antenna array is provided in Figure 1. In
the latter, nT = 1 and the comparison is made between
the difference “correct detection rate minus false alarm rate”
computed from Monte Carlo simulations for both Bayesian
and classical signal detectors.

We observe a slight gain in performance due to the novel
Bayesian detector. Especially, for a low false alarm rate (which
is often demanded in practice), we observe a large gain in
correct detection rate provided by the Bayesian detector. This
statement is however only valid for nT = 1. When nT is
larger, then the channel hardening effect reduces the gain of
the Bayesian detector. This is shown in Figure 2 in which
nT = 2.

Now, if the noise power σ2 is not perfectly known (this is
classically the situation since knowledge of the noise power
implies prior identification of the background noise), the
probability distribution must be updated by marginalizing over
σ2, from the lower bound σ2

− to the upper bound σ2
+ on σ2.

Therefore,

PY|I =
1

σ2
+ − σ2

−

∫ σ2
+

σ2
−

PY|σ2,I(Y, σ2)dσ2 (29)
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Fig. 1. Detection amplitude comparison in SIMO - M = 1, N = 8, L = 20,
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which is too involved to compute, but can be numerically
estimated. An example is provided in Figure 3 in which the
intervals [σ2

−, σ
2
+] are taken increasingly large. In the latter,

correct detection rate against false alarm rate is depicted
for different values of σ2

− and σ2
+. It is observed that the

range of ensured correct detection gets increasingly narrower
when [σ2

−, σ
2
+] is large. Note that this situation cannot be

compared against classical power detection methods which do
not provide solutions when σ2 is not perfectly known.

IV. DISCUSSION

In addition to these first two studies on maximum entropy
considerations for cognitive radios, the authors proposed more
practical studies on maximum entropy OFDM channel estima-
tion [32], maximum entropy carrier frequency offset estimation
[33], minimal update channel estimation [34] etc. From all
those studies, we draw the following conclusions,
• quite often, classical techniques, in particular in the

channel estimation field, are rediscovered using MaxEnt.
However, it is important to note that, even if the final
formulas are the same in the classical and Bayesian
MaxEnt approach, the philosophical conclusions are very
different. Usually classical methods derive from empirical
parameter settings, which could have been chosen differ-
ently, while Bayesian approaches give unique determin-
istic solutions, which stem from honesty in the treatment
of prior information.

• the MaxEnt principle allows one to marginalize over all
parameters when those are not perfectly known. As a
consequence, while classical solutions are found new,
those methods can usually be extended to cope with
the lack of information on some key variables. For
instance, in the signal sensing proposed in Section III
and completed in [17], the situations where noise variance
and number of transmit antennas are not perfectly known

can be easily handled, whereas classical methods stumble
on these problems and solve them by empirical (possibly
largely erroneous) parametrizations.

On the other hand, MaxEnt calculus and final solutions
can turn very rapidly extremely mathematically involved, as
exemplified by the final signal sensing formula in Section III.
This is a major problem, and the subject of most criticism
towards Bayesian approaches. A missing part in these MaxEnt
approach would be a systematic method which, from the
general (very involved) solution, would provide approximate
solutions. Quite remarkably, Caticha provides a vision of the
maximum entropy principle, or more precisely the minimum
cross entropy principle, which might help decide on the opti-
mal approximation taken from a set of possible approximations
[31]. These considerations might lead to such systematic
approximation methods.

Another point of concern in the MaxEnt framework lies in
the many integrals that may need to be computed when little
is known on the surrounding environment. With the increasing
capabilities of modern computers, numerical approximations
might help to compute those integrals, but these approxi-
mations would only be valid if not so many integrals are
considered; two reasons explain this fact: first, the complexity
increase due to additional integrals is exponential in the
number of integrals and second, small errors in inner integrals
tend to lead to large errors when integrated many times (this
is often referred to as the curse of dimensionality).

Also, as exemplified in the previous sections, MaxEnt can
treat problems where prior information is of statistical nature,
e.g. knowledge of certain moments. However, when it comes
to deterministic knowledge, e.g. the position of two buildings
facing the signal transmitter/receiver, the determination of the
maximum entropy distribution under this type of constraints
is difficult to formulate mathematically; for the time being,
no systematic method, in the same trend as the Lagrangian
multipliers, is known to determine these MaxEnt distributions.

As a consequence, while the first MaxEnt results provided
by the authors show significant performance increase, many
problems remain to be solved for cognitive radios to be fully
intelligent, both on fundamental philosophical considerations
(many questions raised in the introduction of the present paper
are left unanswered) and on practical applications.

V. CONCLUSION

In this paper, we introduced a theoretical framework for
cognitive radios. These fundamentals notions are based on the
extension of Shannon’s information theory to the Bayesian
probability theory and the maximum entropy principle, which
enable the cognitive devices with plausible (human-like) rea-
soning. These preliminary results (maximum entropy channel
modelling and signal detection) are the first steps towards a
general mathematical framework for cognitive radios [35].
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