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Abstract
This article studies the robust covariance matrix estimation of a data collection X = (x1, . . . , xn)
with xi =

√
τ izi + m, where zi ∈ Rp is a concentrated vector (e.g., an elliptical random vector),

m ∈ Rp a deterministic signal and τi ∈ R a scalar perturbation of possibly large amplitude, under
the assumption where both n and p are large. This estimator is defined as the fixed point of a
function which we show is contracting for a so-called stable semi-metric. We exploit this semi-
metric along with concentration of measure arguments to prove the existence and uniqueness of the
robust estimator as well as evaluate its limiting spectral distribution.
Keywords: Robust Estimation – Concentration of Measure – Random Matrix Theory.

1. Introduction

Robust estimators of covariance (or scatter) are necessary ersatz for he classical sample covariance
when the datasetX = (x1, . . . , xn) present some diverging statistical properties, such as unbounded
second moments of the xi’s. We study here the M-estimator of scatter Ĉ initially introduced in
(Huber, 1964) defined as the solution (if it exists) to the following fixed point equation:

Ĉ =
1

n

n∑
i=1

u

(
1

n
xTi (Ĉ + γIp)

−1xi

)
xix

T
i , (1)

where γ > 0 is a regularization parameter and u : R+ → R+ a mapping that tends to zero at +∞,
and whose object is to control outlying data. The literature in this domain has so far divided the
study of Ĉ into (i) a first exploration of conditions for its existence and uniqueness as a deterministic
solution to (1) (e.g., (Huber, 1964; Maronna, 1976; Tyler, 1987)) and (ii) an independent analysis
of its statistical properties when seen as a random object (in the large n regime (Chitour and Pascal,
2008) or in the large n, p regime (Couillet and McKay, 2014; Zhang et al., 2014)).

In the present article, we study the large dimensional (n, p large) spectral properties of Ĉ in
an original joint framework based on concentration of measure theory and on a new stable semi-
metric argument. This joint framework has the multiple advantages of (i) relaxing the assumptions
of independence in the entries of xi made in (Couillet and McKay, 2014; Zhang et al., 2014), (ii)
consistently articulating the “Lipschitz and stable semi-metric” properties of the model to propagate
concentration. The major tool allowing this articulation is provided in the paper by Theorem 19.
In passing, we further relax some of the assumptions made in the above articles, particularly on
the constraints on the mapping u. Specifically, we require here that u be 1-Lipschitz for the stable
semi-metric, to be introduced next. This semi-metric naturally arises when studying the so-called
resolvent (Ĉ + γIp)

−1 of Ĉ, which is at the core of our large p, n random matrix analysis of Ĉ.
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In detail, the data model under study decomposes as xi =
√
τizi + m where the z1, . . . , zn

are independent random vectors satisfying a concentration of measure hypothesis (in particular, the
zi’s could arise from a very generic generative model, such as zi = h(z̃i) for z̃i ∼ N (0, Ip) and
h : Rp → Rp 1-Lipschitz), m is a deterministic vector (a signal) and τi are arbitrary (possibly
large) deterministic values.1 This setting naturally arises in many engineering applications, such as
in antenna array processing where the τi’s model noise impulsiveness and m is a sought-for signal
(Ovarlez et al., 2011) or in statistical finance where xi’s model asset returns with high volatility and
m is the market leading direction (Yang et al., 2014).

2. Preliminaries for the study of the resolvent

Let us note R+ = {x ∈ R, x > 0}; Mp,n, the set of real matrices of size p × n, endowed
with the spectral norm ‖M‖ = sup{|Mu| , u ∈ Rn, ‖u‖ ≤ 1}, for M ∈ Mn and the Frobenius
norm ‖M‖F =

√∑
1≤i≤p
1≤j≤n

Mi,j . We further note Dn = {∆ ∈ Mn | i 6= j ⇔ ∆i,j = 0},
the set of diagonal matrices endowed with the spectral norm of Mn. Given ∆ ∈ Dn, we let
∆1, . . . ,∆n ∈ R, be its diagonal elements, ∆ = Diag(∆i)1≤i≤n so that ‖∆‖ = sup{|∆i| , i ∈ [n]}
(where [n] = {1, . . . , n}). We let Sp be the set of symmetric matrices of size p and S+

p the set of
symmetric nonnegative matrices. Given S, T ∈ Sp, we denote S ≤ T iif T − S ∈ S+

p . We will
extensively work with the set (Sp)n that we will note for simplicity Snp . Given S ∈ Snp , we finally
denote S1, . . . , Sn ∈ Sp its components.

Given two sequences (us)s∈N and (vs)s∈N, we will write us ≤ O(vs) to signify that there exists
a constant K > 0 such that for all s ∈ N, us ≤ Kvs. We will also use the notations:

us ≥ O(vs)⇔ ∃K > 0,∀s ∈ N, us ≤ vs; us ∼ O(vs)⇔ O(vs) ≤ us ≤ O(vs).

We extend those characterizations to diagonal matrices: given ∆ ∈ D+
n , ∆ ≤ O(1) indicates that

‖∆‖ ≤ O(1) while ∆ ≥ O(1) means that ‖ 1
∆‖ ≤ O(1) and ∆ ∼ O(1) means that O(1) ≤ ∆ ≤

O(1).
The different assumptions leading to our major results are presented progressively throughout

the paper so that the reader easily understands easily their importance and direct implications. A
full recollection of all these assumptions is given at the beginning of the appendix.

2.1. The resolvent behind robust statistics and its contracting properties

Given γ > 0 and S ∈ Snp , we introduce the resolvent function at the core of our study :

Qγ : Snp ×D+
n −→ Mp

(S,∆) 7−→

(
1

n

n∑
i=1

∆iSi + γIp

)−1

.

Given a dataset X = (x1, . . . , xn) ∈ Mp,n, if we note X · XT = (xix
T
i )1≤i≤n ∈ Snp , the robust

estimation of the scatter matrix then reads (if well defined):

Ĉ = γIp +
1

n
Xu(∆̂)XT with ∆̂ = Diag

(
1

n
xiQγ(X ·XT , u(∆̂))xi)x

T
i

)
1≤i≤n

. (2)

1. We may alternatively assume the τi random independent of Z = (z1, . . . , zn)
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In the following, we will denote for simplicity QXγ ≡ Qγ(X · XT , u(∆̂)). To understand the
behavior (structural, spectral, statistical) of Ĉ, one needs first to try and understand the resolvent
Qγ(S,∆) for general S ∈ Snp and ∆ ∈ D+

n . Specifically, we list in this subsection its contracting
properties.

We will sometimes allow ourselves to omit the index γ since this parameter will rarely change.

Lemma 1 Given γ > 0, S ∈ Snp , M ∈Mp,n and ∆ ∈ D+
n :

‖Qγ(S,∆)‖ ≤ 1

γ
;

∥∥∥∥ 1√
n
Qγ(M ·MT ,∆)M∆

1
2

∥∥∥∥ ≤ 1
√
γ

;

∥∥∥∥∥ 1

n
Qγ(S,∆)

k∑
l=1

∆lSl

∥∥∥∥∥ ≤ 1

Given M ∈ Mp,n, and S ∈ Snp , let us introduce the mapping Iγ : Snp × D+
n → D+

n

satisfying for all S ∈ Snp and ∆ ∈ D+
n :

I(S,∆) = Diag

(
1

n
Tr (SiQγ(S,∆))

)
1≤i≤n

With the notation IXγ (∆) ≡ I(X · XT ,∆) the fixed point ∆̂ defined in (2) satisfies ∆̂ =

IXγ (u(∆̂)).

Lemma 2 Given S ∈ Snp and ∆,∆′ ∈ D+
n , we can bound (we omitted the index γ):∥∥∥∥∥I(S,∆)− I(S,∆′)√

I(S,∆)I(S,∆′)

∥∥∥∥∥ < sup
{
‖1− γQγ(S,∆)‖ ,∆ ∈ D+

n ,
}∥∥∥∥∆−∆′√

∆∆′

∥∥∥∥ .
The proof of this lemma is left to the appendix: it is a simple application of the Cauchy-Schwartz
inequality. If one sees the term

∥∥∥∆−∆′√
∆∆′

∥∥∥ as a distance between ∆ and ∆′, then Lemma 2 sets the 1-
Lipschitz character of I(S, ·) : ∆ 7→ I(S,∆), which is a fundamental property in what follows. We
present in next subsection a precise description of such functions that will be called stable mappings.

2.2. The stable semi-metric

The stable semi-metric which we define here is a convenient object that allows us to set Piquard-like
fixed point theorems. It has a capital importance to set the existence and uniqueness of Ĉ but also to
demonstrate rapidly some random matrix results, such as the estimation of the spectral distribution
of sample covariance matrices with a variance profile (provided in the appendix).

Definition 3 We call the stable semi-metric on D+
n = {D ∈ Dn, ∀i ∈ [n], Di > 0} the function:

∀∆,∆′ ∈ D+
n : ds(∆,∆

′) ≡
∥∥∥∥∆−∆′√

∆∆′

∥∥∥∥ . (3)

In particular, this semi-metric can be defined on R+, identifying R+ with D+
1 . The function ds

is not a metric because it does not verify the triangular inequality: a counter-example is given in the
appendix. The semi-metric ds has some very interesting stability results.
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Property 1 Given ∆,∆′ ∈ D+
n and Λ ∈ D+

n :

ds
(
Λ∆,Λ∆′

)
= ds

(
∆,∆′

)
and ds

(
∆−1,∆′−1

)
= ds

(
∆,∆′

)
.

Definition 4 The set of 1-Lipschitz functions for the stable semi-metric is called the stable class.
We denote it:

S
(
D+
n

)
≡
{
f : D+

n → D+
n | ∀∆,∆′ ∈ D+

n , ∆ 6= ∆′ : ds(f(∆), f(∆′)) ≤ ds(∆,∆′)
}
.

The elements of S (D+
n ) are called the stable mappings.

This class has a very simple interpretation when n = 1. Given a function f : R+ → R+ we
introduce two functions f/, f· : R+ → R+ that will help us to characterize the stable class:

f/ : x 7→ f(x)

x
and f· : x 7→ xf(x).

Property 2 A function f : R+ → R+ is a stable mapping if and only if f/ is nonincreasing and f·
is nondecreasing.

We leave the proof to the appendix: it directly unfolds from the definition (3). Finally, we provide
the properties which justify why we call S (D+

n ) a stable class: this class indeed satisfies far more
stability properties than the usual Lipschitz mappings (for a given norm).

Property 3 Given Λ ∈ D+
n and f, g ∈ S(D+

n ):

Λf ∈ S(D+
n )

1

f
∈ S(D+

n ) f ◦ g ∈ S(D+
n ) f + g ∈ S(D+

n ).

2.3. Fixed Point theorem for stable mappings

The Picard fixed point theorem states that a contracting function on a complete space admits a
unique fixed point. The extension of this result to contracting mappings on D+

n , for the semi-metric
ds, is not obvious: first because ds does not verify the triangular inequality and second because the
completeness needs be proven. Most of the proofs here are left to the appendix.

Property 4 The semi-metric space (D+
n , ds) is complete.

Theorem 5 Given a mapping f : D+
n → D+

n , contracting for the stable semi-metric ds and
bounded from below and above, there exists a unique fixed point ∆∗ ∈ D+

n satisfying ∆∗ = f(∆∗).

Let us now state our fixed point results for Iγ(S, ·) = Diag(Tr(SiQ(S, ·)))1≤i≤n for S ∈ Mk
p .

We need for that a preliminary lemma.

Lemma 6 Given S ∈ Snp and a function f : D+
n → D+

n bounded by f0 ∈ D+
k ,

∀∆ ∈ D+
n :

1

f0 ‖S‖+ γ
≤ ‖Q(S, f(∆))‖ ≤ 1

γ
where ‖S‖ ≡ 1

n

∥∥∥∥∥
n∑
i=1

Sa

∥∥∥∥∥ .
4
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Combined with Lemma 2, this result allows us to build a family of contracting stable mappings
with the composition Ĩ(S, ·) ◦ f when f ∈ S(D+

n ) is bounded from below. We thus obtain the
following corollary to Theorem 5.

Corollary 7 Given f, g ∈ S(D+
n ) with f bounded, and a family of positive definite symmetric

matrices S = (S1, . . . , Sk) ∈ Snp , the fixed point equation

∆ = g
(
IS(f(∆))

)
admits a unique solution in D+

n .

We will thus suppose from here on that u is a stable function to be able to use Corollary 7 and set
the existence and uniqueness of ∆̂ and Ĉ as defined in (2).

Assumption 1 u ∈ S(R+), and there exists u∞ > 0 such that ∀t ∈ R+, u(t) ≤ u∞.

Proposition 8 For X ∈Mp,n, there exists a unique diagonal matrix ∆̂ ∈ D+
n such that

∆̂ = IX
(
u(∆̂)

)
.

2.4. The concentration of measure framework

Having proved the existence and uniqueness of Ĉ, we now introduce statistical conditions on X to
study Ĉ in the large dimensional n, p → ∞ limit. We first define n p-dimensional random vectors
(z1, . . . , zn) ∈ Rp.

Assumption 2 The random vectors z1, . . . , zn are all independent.

We denote their means µi ≡ E[zi] ∈ Rp and their covariance matrices Σi = E[ziz
T
i ]−µiµTi ∈Mp.

In the following, the number of data n and their size p must be thought of as large integers of the
same order of magnitude. To place ourselves under this setting we suppose that all studied objects
depend on an underlying asymptotic quantity s tending to∞ and that n = n(s) and p = p(s) tend to
∞ as s→∞. Unless stated otherwise, we implicitly assume a large s limit; for instance, C ≤ O(s)
means that ∀s > 0 : |C| = |C(s)| ≤ Ks for a constantK > 0 (recall the notations at the beginning
of Section 2). All quantities diverging to +∞ or converging to 0 will be call “asymptotic quantities”
and should be distinguished from the “constants” that stay unmodified when s increases.

Assumption 3 p ∼ O(n).

The matrix Z = [z1, . . . , zn] ∈ Mp,n depends on s under our formalism but we do not further
specify this dependence to simplify the notations.

Let us now introduce the fundamental definition of a so-called concentrated random vector that
will allow us to set our estimations and concentration rates. The global idea is that a concentrated
vectorZ ∈ E is not “concentrated” around any point (visualize for instance Gaussian vectors which,
while concentrated vectors, rather lie close to a sphere) but has concentrated “observations”, that is
random outputs f(Z) for any 1-Lipschitz map f : E → R.

5
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Definition 9 Given a sequence of normed vector spaces (Es, ‖ · ‖s)s≥0, a sequence of random
vectors (Zs)s≥0 ∈

∏
s≥0Es, a sequence of positive reals (σs)s≥0 ∈ RN

+ and a parameter q > 0,
we say that Zs is q-exponentially concentrated with an observable diameter of order O(σs) iff, for
any sequence of 1-Lipschitz functions fs : Es → R, one of the following two equivalent assertions
is verified (for the norms ‖ · ‖s) :

• there exist cs ≤ O(σs) and C > 0, such that, for all s ∈ N, and for all t > 0,

P
(∣∣fs(Zs)− fs(Z ′s)∣∣ ≥ t) ≤ Ce(t/cs)q

• there exist cs ≤ O(σs) and C > 0 such that, for all s ∈ N and for all t > 0,

P (|fs(Zs)− E[fs(Zs)]| ≥ t) ≤ Ce(t/cs)q

where Z ′s is an independent copy of Zs. We denote in that case Zs ∝ Eq(σs) (or more simply
Z ∝ Eq(σ)). If σ ≤ O(1), one can further write Zs ∝ Eq.

The essential result that gives motivation to the definition is the concentration of Gaussian vectors.

Theorem 10 (Ledoux (2005)) Given a deterministic vector µ ∈ Rp, if Z ∼ N (µ, Ip) then Z ∝ E2

Now that we have a concentrated vector, let us give four important properties to keep in mind when
dealing with them. First, the class of random vectors is stable through Lipschitz maps:

Proposition 11 Given two normed vector spaces (E1, ‖ · ‖1) and (E2, ‖ · ‖2), a random vector
Z ∈ E1, two sequences σ, λ ∈ RN

+ and a O(λ)-Lipschitz function φ : E1 → E2:2

Z ∝ Eq(σ) =⇒ Φ(Z) ∝ Eq(λσ).

The concentration of a random vector can be alternatively understood through a controlled de-
creasing rate of the moments of its observations.

Proposition 12 Let Z ∈ E. Then Z ∝ Eq(σ) iff there exists a constant C > 0 such that, for any
1-Lipschitz mapping f : E → R,

∀r > q : E [|f(Z)− E[f(Z)]|r] ≤ C
(
r

q

) r
q

σr.

Standard operations (addition, product) on concentrated random variables can be easily expressed
through an intuitive “distributive rule” between concentration rates and expectations. We will mostly
focus here on the case of scalar concentrated random vectors for which we introduce more telling
notations: when Z ∈ R is a random scalar and satisfies Z ∝ Eq(σ), we will use the notation
Z ∈ Z̃ ± Eq(σ) if |Z̃ − EZ| ≤ O(σ) (of course, in particular Z ∈ EZ ± Eq(σ)).

Proposition 13 Let Z1, Z2 ∈ R be two random variables, σ1, σ2 ∈ RN
+ two sequences of positive

reals and Z̃1, Z̃2 ∈ RN two sequences of scalars. Then, if Z1 ∈ Z̃1±Eq(σ1) and Z2 ∈ Z̃2±Eq(σ2),

Z1 + Z2 ∈ Z̃1 + Z̃2 ± Eq(σ1 + σ2); Z1Z2 ∈ Z̃1Z̃2 ± Eq(σ1|Z̃2|+ σ2|Z̃1|) + Eq/2(σ1σ2),

More over, ∀f : R→ R, 1-Lipschitz: f(Z1) ∝ f(Z̃1)± Eq(σ1)

2. The statement “φ is O(λ)-Lipschitz” means here that there exists K ≤ O(1) such that, for all s ∈ N, φs is (Kλs)-
Lipschitz.

6
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Concentration inequalities for operations on concentrated vectors express similarly but will not be
needed in this work (more information is available in (Louart and Couillet, 2019)). We complete
this short probabilistic introduction of concentration of measure theory with four results on the
concentration of the norm; these results will be used continuously in the following to track the size
of the various objects under study. We provide them here in the case q = 2, but similar inequalities
exists in the general setting.

Lemma 14 Let Y ∈ Rp. Then, if Y ∝ E2 in (Rp, ‖ · ‖),

• ‖Y − EY ‖ ∝ E2

(
p

1
2

)
and E [‖Y − EY ‖] ≤ O

(√
p
)

• ‖Y − EY ‖∞ ∝ E2

(√
log p

)
and E [‖Y − EY ‖∞] ≤ O

(√
log p

)
and, conversely, if ‖Y − EY ‖ ∝ E2, then Y ∝ E2. Let Z ∈ Mp,n be a random matrix. Then, if
Z ∝ E2 in (Rp, ‖ · ‖F ),

• ‖Y − EY ‖F ∝ E2

(√
pn
)

and E [‖Y − EY ‖∞] ≤ O
(√
pn
)

• ‖Y − EY ‖ ∝ E2 (
√
p+ n) and E [‖Y − EY ‖] ≤ O (

√
p+ n).

In the following, we will thus assume that Z = (z1, . . . , zn) is concentrated.

Assumption 4 Z ∝ E2.

We know from Assumption 4 that for all i ∈ [n], ‖Σi‖ ≤ O(1) since ∀u ∈ Rp such that ‖u‖ ≤ 1,
uTΣiu = E[uT ziz

T
i u− E[uT zi]E[zTi u]] ≤ O(1) (from Propositions 12 and 13). But we also need

to bound µi to avoid unbounded norms on E[ziz
T
i ] = Σi + µiµ

T
i .

Assumption 5 For all i ∈ {1, . . . , n}, ‖µi‖ ≤ O(
√
n).

2.5. Deterministic equivalent of the resolvent

The resolvent QZγ (In) = Q(Z · ZT , In) is a random matrix which exhibits interesting properties
to understand the statistics of Z and more precisely its spectral behavior. In particular, the singular
values of Z strongly relate to the well-known Stieltjes transform mZ(z) = 1

p Tr(QZ−z(In). The
functionmZ(z) has been extensively studied in (Louart and Couillet, 2019) when Z is concentrated
with identically distributed columns. As shown next, no major change occurs when the columns of
Z have different distributions. We will study QZ−z(In) in the specific case where z > 0 and will
denote Q = QZz (In) for simplicity.

It can be shown that Q is a 2
z3/2
√
n

-Lipschitz transformation of Z and, therefore, assuming that
1
z ≤ O(1), we can deduce Q ∝ E2

(
1√
n

)
. There exists an easily computed deterministic matrix Q̃,

called the deterministic equivalent of Q such that ‖E[Q]− Q̃‖ ≤ O(1/
√
n). Matrix Q̃ thus verifies

that, for any deterministic matrix A ∈ Mp, such that ‖A‖1 ≡ Tr(
√
AAT ) ≤ O(1) (‖ · ‖1 is the

dual norm of ‖ · ‖ for the canonical scalar product onMp, 〈·, ·〉 : A,B 7→ Tr(ABT )),

Tr(AQ) ∈ Tr(AQ̃)± Eq
(

1√
n

)
,

with the notation of concentrated random variables introduced before Proposition 13.
The deterministic equivalent of QZ is defined thanks to a diagonal matrix Λ ∈ D+

n .

7
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Proposition 15 (Louart and Couillet (2019)) For any S ∈ Snp , the mapping ∆ 7→ Ǐ(S,∆) satis-
fying

Ǐ(S,∆) =
1

n
Diag(Tr(SiQ(S−i,∆))1≤i≤n, for S−i = (S1, . . . , Si−1, 0, Si+1, . . . , Sn) (4)

is stable and for any ∆ ∈ D+
n , the equation Λ = Ǐ(C, In

In+Λ) admits a unique solution ΛC ∈ D+
n .

Proof The stability of Ǐ(S, ·) is proven the same way as the stability of I(S, ·) in the proof of
Lemma 2. Then we apply an analog result to Corollary 7 (replacing I by Ǐ) with the mapping
f : Λ 7→ In

In+Λ which is stable and bounded from above by In ∈ D+
n , and for Si = 1

nCi (for i ∈ [n])
to obtain the existence and uniqueness of Λ ∈ D+

n satisfying Λ = Ǐz(C, f(Λ)).

The fixed point equation Λ = Ǐ(C, In
In+Λ) allows us to compute Λ iteratively. The deterministic

equivalent Q̃ of QZ is then easily computed and is defined as follows.

Theorem 16 (Louart and Couillet (2019)) Let A ∈ Mp be deterministic and such that ‖A‖1 ≤
O(1). Then,

Tr(AQZz ) ∈ Tr

(
AQz

(
C,

In
In + ΛC

))
± E2

(
1√
n

)
This theorem allows us to estimate the Stieltjes transform of the spectral distribution of Ĉ given at
the end of the paper, but we need first the next corollary to predict the asymptotic behavior of ∆̂.

Corollary 17 For all ∆ ∈ D+
n with ‖∆‖ ≤ O(1), we have

∥∥∥E[IZ(∆)]− ΛC(∆)
In+∆ΛC(∆)

∥∥∥ ≤ O(√ logn
n

)
,

where:

ΛC(∆) = Ǐ

(
C,

∆

In + ∆ΛC(∆)

)
(see (4) for the definition of Ǐ) (5)

(ΛC(∆)/∆ plays the same role as the diagonal matrix ΛC defined in Proposition 15 to define the
deterministic equivalent of QZ instead of QZ∆1/2

z ; we have indeed IZ(∆) = IZ∆1/2
/∆).

Proposition 18 For any S ∈ Snp , the mapping ΛS defined in (5) is stable and satisfies the bounds

Diag( 1
n TrSi)1≤i≤n

z + 1
n‖
∑
Si∆i‖

≤ ΛS(∆) ≤ 1

z
Diag

(
1

n
TrSi

)
1≤i≤n

.

3. Robust estimation of the scatter matrix

3.1. Setting and strategy of the proof

Having set up the necessary tools and preliminary results, we now concentrate on our target ob-
jective. Let xi =

√
τizi + m, 1 ≤ i ≤ n, where τi is a deterministic positive variable, m ∈ Rp

is a deterministic vector, and z1, . . . , zn are the random vectors presented in the previous section.
For X = (x1, . . . , xn) ∈ Mp,n, we write X = Zτ

1
2 + m1T where τ ≡ Diag(τi)1≤i≤n ∈ D+

n

and 1 ≡ (1, . . . , 1) ∈ Rn. The basic idea to estimate ∆̂, as a solution to the fixed point equation
∆̂ = IX(u(∆̂)), consists in retrieving a deterministic equivalent also solution to a (now determin-
istic) fixed point equation. For this, we use the following central perturbation result.

8
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Theorem 19 Let f, f ′ be two stable functions of D+
n , each admitting a fixed point ∆,∆′ ∈ D+

n as

∆ = f(∆) and ∆′ = f ′(∆′).

Further assume that ∆′ ∼ O(1), that f is contracting for the stable semi-metric around ∆′ with a
Lipschitz parameter λ < 1 satisfying 1

1−λ ≤ O(1), and that ‖f(∆′) − f ′(∆′)‖ = o(1) (‖f(∆′) −
f ′(∆′)‖ ≤ O (as) with as →

s→∞
0). Then, there exists a constant K ≤ O(1) such that∥∥∆−∆′

∥∥ ≤ K‖f(∆′)− f ′(∆′)‖.

Theorem 19 can be employed when ∆ is random and ∆′ is a deterministic equivalent (yet to be
defined). If we let f = IX ◦ u (and thus ∆ = ∆̂), it is not possible find a deterministic stable
function f ′ close to f such that its fixed point ∆′ would satisfy the core hypothesis ∆′ ∼ O(1).
This is partly due to the fact that IX ◦ u = Diag( 1

nx
T
i R

X ◦ uxi)1≤i≤n scales with τ which might

be unbounded. For this reason, we will consider D ≡ ∆̂
τ rather than ∆̂ itself.

3.2. Definition of D̃, the deterministic equivalent of D

The matrix D ≡ ∆̂
τ satisfies the fixed point equation

D = IZ̊(uτ (D)) where z̊i ≡ zi +
m
√
τi

and uτ : ∆ 7→ τu(τ∆).

Though, in order to apply Corollary 17 that relies on Assumption 5, we will need a bound on the
energy of the signal and a “loose” control on the τi’s.

Assumption 6 ‖m‖ ≤ O(1).

Assumption 7 ‖τ‖1, ‖ 1
τi
‖1 ≤ O(n).

We have then indeed for i ∈ [n] E[̊zi] ≤ ‖µi‖+ τ
1/2
i ‖m‖ ≤ O(

√
n) (later to bound D from below,

we will need the bound on 1
n‖τ‖1 and 1

n‖1/τ‖1, that is why we adopted such a general assumption).
We can still not apply Corollary 17 since ‖uτ (D)‖ is possibly unbounded. Still, let us assume for

the moment that ‖uτ (D)‖ is indeed bounded: then, following our strategy, we are led to introducing
a deterministic diagonal matrix D̃ ideally approaching D and satisfying

D̃ =
ΛC̊(uτ (D̃))

In + uτ (D̃)ΛC̊(uτ (D̃))
, where we recall ΛC̊(uτ (D̃)) = Ǐ

(
C̊,

uτ (D̃)

In + uτ (D̃)ΛC̊(uτ (D̃))

)
.

(6)

Before proving the validity of this estimate D̃ of D, let us justify the validity of its definition (i.e.,
the existence and uniqueness of D̃).

Proposition 20 Let x ∈ R+. Then the equation

η =
1

1
x + u(η)

, η ∈ R+.

admits a unique solution that we denote η(x). The mapping η : R→ R is stable.

9
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Proof We already know from Proposition 18 that D 7→ ΛC̊(uτ (D)) is stable and bounded from
above and below (since uτ ≤ ‖τ‖u∞). The same is true for ητ (ΛC̊(uτ (D̃))) since η is stable and,
for all x ∈ R+, 1

u∞+ 1
x

≤ η(x) ≤ x (here x should be replaced by ΛC̊(uτ (xIn)) which is bounded

from above and below). The existence and uniqueness of D̃ thus unfold from Theorem 5.

The first equation of (6) can be rewritten D̃ = ητ (ΛC̊(uτ (D̃))), with ητ : x 7→ η(τx)
τ , we are thus

now allowed to define:

Proposition 21 There exists a unique diagonal matrix D̃ ∈ D+
n satisfying (6).

3.3. Concentration of D around D̃

Once D̃ defined, we can follow our strategy to bound ‖D − D̃‖.The first step is to verify the core
hypothesis of Theorem 19, namely D̃ ∼ O(1). We will here need a supplementary assumption on
η, which can be expressed through a condition on u, justified by the following lemma.

Lemma 22 The mapping η/ is bounded from below iff, for all t ∈ R+, u·(t) = tu(t) < 1.

Assumption 8 There exists u∞· > 0 such that 1− u∞· ≥ O(1) and, for all t ∈ R+, u·(t) ≤ u∞· .

Assumption 9 For all i ∈ [n], TrCi ≥ O(n).

With these assumptions, we then have:

Lemma 23 D̃ ∼ O(1).

Proof We already know from our assumptions that O(1) ≤ 1
n Tr(Ci) + 1

n
mTm
τ = 1

n Tr C̊i ≤ O(1)

and from Proposition 18 that, for any ∆ ∈ D+
n , O(1)

n(γ+ 1
n
‖
∑
Ciτiu(τi∆)‖) ≤ ΛC̊(uτ (∆)) ≤ O(1). Thus

ΛC̊(uτ (D̃)) ∼ O(1), since ‖
∑
Ciτiu(τiD̃)‖ ≤ u∞‖Ci‖‖τ‖1 ≤ O(n). As such, we can bound

‖D̃‖ ≤ ‖ΛC̊(uτ (D̃))‖ ≤ O(1) and D̃ = ητ (ΛC̊(uτ (D̃))) ≥ η∞/ ΛC̊(uτ (D̃)) ≥ O(1).

Proposition 24 There exist two constants C, c > 0 (C, c ∼ O(1)) such that, for any ε ∈ (0, 1],

P
(∥∥∥D − D̃∥∥∥ ≥ ε) ≤ Ce−cnε2/ log(n).

Proof Let us check the hypotheses of Theorem 19. We already know that D̃ ∼ O(1) from
Lemma 23. Let us now bound the Lipschitz parameter λ of ǏZ̊ ◦ uτ around D̃ defined as:

∀∆ ∈ D+
n :

∥∥∥∥∥∥ Ǐ
Z̊(uτ (∆))− ǏZ̊(uτ (D̃))√
ǏZ̊(uτ (∆))ǏZ̊(uτ (D̃))

∥∥∥∥∥∥ < λ

∥∥∥∥∥∆− D̃√
∆D′

∥∥∥∥∥ .
An inequality similar as in Lemma 2 gives us λ ≤

√
‖1− γQZ̊(D̃)‖ ≤ 1

1+ γ

u∞‖Z̊·Z̊T ‖
< 1 (thanks

to Lemma 6). Now, since ‖Z̊ · Z̊T ‖ = 1
n‖Z̊Z̊

T ‖ ≤ (‖Z̊‖/
√
n)2, we know from Lemma 14 that,

10
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with probability bigger than 1 − Cecn, (for some C, c > 0), ‖Z̊‖ ≤ K
√
n. Thus under this

highly probable event 1
1−λ ≤ O(1). Eventually, we know from Assumption 4 that Z̊uτ (D̃) ∝

E2 (since uτ (D̃) ≤ u∞· ‖ 1
D‖ ≤ O(1)). We may thus employ Lemma ?? (in the appendix) to

get ǏZ̊(uτ (D̃))i = 1
nziQ

Z̊
−i(u

τ (D̃))zi ∝ E2(1/
√
n) + E1(1/n) and Corollary 17 to state that

‖E[ǏZ̊(uτ (D̃))]− D̃‖ ≤ O(
√

log(n)/n). Thus there exist two constants C, c > 0 such that

∀t > 0 : P
(∥∥∥ǏZ̊(uτ (D̃))− D̃

∥∥∥ ≥ t) ≤ C ′e−c′nt2/ logn.

From the proof of Theorem 19, we see that it is sufficient to have with high probability ǏZ̊(uτ (D̃))−
D̃ ≤ K for any K ≥ O(1) (K ≤ 1

‖∆‖(
1−λ

2 )2 ≥ O(1)). This clearly holds with probability larger

than C ′e−c
′nK2/ logn. Choosing C and c appropriately, we obtain the result of the proposition.

It is even possible to simplify the formulation of the deterministic equivalent D̃ under the supple-
mentary assumption:

Assumption 10 For all i ∈ [n], τi ≥ O(1/
√
n).

Proposition 25 The fixed point equation D = ητ ◦ΛC ◦ uτ (D) admits a unique solution, denoted
D̃−m ∈ D+

n , and which satisfies ‖D̃ − D̃−m‖ ≤ O
(

1√
n

)
.

Proof The existence and uniqueness of D̃−m are justified for the same reasons as for D̃ (just take
m = 0). In order to use again Theorem 19, we know that D̃ ∼ O(1) (as for D̃−m) and we just
need to bound

∥∥∥ητ ◦ ΛC ◦ uτ (D̃)− ητ ◦ ΛC̊ ◦ uτ (D̃)
∥∥∥. Note that η is 1-Lipschitz because, since it

is stable, so that, for any x, y ∈ R+:

|η(x)− η(y)|
|x− y|

≤

√
η(x)η(y)

xy
=

√
1

(1 + xu(η(x)) (1 + yu(η(y)))
≤ 1.

Thus ητ is also 1-Lipschitz. We are then left to bounding the distance between ΛC ◦ uτ (D̃) and
ΛC̊ ◦ uτ (D̃), and we are naturally led to employing a second time Theorem 19 since those two
values are both fixed points of stable mappings:

ΛC(uτ (D̃)) = ĨC
uτ (D̃)

(ΛC(uτ (D̃))) and ΛC̊(uτ (D̃)) = ĨC̊
uτ (D̃)

(ΛC̊(uτ (D̃)))

where, for any S ∈ Snp and ∆ ∈ D+
n , ĨS∆ : Λ 7→ Ǐ

(
S, ∆

In+∆Λ

)
. Once again, the first hypotheses

are satisfied, ΛC(uτ (D̃)) ∼ O(1) and noting for simplicity ∆ ≡ uτ (D̃), Λ ≡ ΛC(∆) and Q̃S =
Q̃S(S, ∆

In+∆Λ) (for S = C̊ or S = C), and we are left to bounding, for any i ∈ [n],∣∣∣ĨC∆(Λ)i − ĨC̊∆(Λ)i

∣∣∣ ≤ 1

nτi
mT Q̃m+

∣∣∣∣∣ 1n Tr

(
CiQ̃

C

(
1

n

n∑
i=1

1

τi
mmT

)
Q̃

)∣∣∣∣∣
≤ O

(
1

τin

)
+O

(
1

n2

n∑
i=1

1

τi

)
mT Q̃CiQ̃

Cm ≤ O
(

1√
n

)
.

Applying twice Theorem 19, we retrieve the result of the proposition.

11
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3.4. Spectral distribution of Ĉ

As an immediate corollary of the previous results, a deterministic equivalent for the spectral dis-
tribution of Ĉ = 1

n Z̊u
τ (D)Z̊T can be computed, through an estimation of the Stieltjes transform

m(z) = 1
p Tr((Ĉ − zIp)−1) for z < 0.

Theorem 26 For any z ≥ O(1), there exist two constants C, c > 0 (C, c ∼ O(1)) such that, for
any ε > 0, ε ≤ 1,

P

∣∣∣∣∣∣m(−z)− 1

p
Tr

(
1

n

n∑
i=1

uτ (D̃−m)iCi

1 + ΛC(uτ (D̃−m))iuτ (D̃−m)i
+ zIp

)−1
∣∣∣∣∣∣ ≥ ε

 ≤ Ce−cnε2/ log(n).

As a consequence, the implicit random matrix Ĉ actually has the same deterministic equivalent
for its spectral distribution as the explicit random matrix 1

nZu
τ (D̃−m)ZT . Figure 1 depicts the

eigenvalue distribution of the sample covariance of the data matrix X (i) deprived of the influence
of τ (i.e. for τ = In), (ii) corrected with the robust estimator of the scatter matrix (it is the sample
covariance matrix of Xu(∆̂)1/2) and (iii) without any modification on X . For the two first spectral
distributions, we displayed their estimation with the Stieltjes transform as per Theorem 26.

Figure 1: Spectral distributions of the matrices 1
n(Z+m1T )(Z+m1T )T , Ĉ and 1

nXX
T with their

prediction (when possible); p = 400, n = 1200, the variables τ1, . . . , τn are taken from
a Student distribution with 1 degree of freedom, m ∼ N (0, Ip); Z = sin(AW ) where
A ∈ Mp is a fixed orthogonal matrix, W ∈ Mp,n is a matrix with zero-mean and unit
variance Gaussian entries (Z ∝ E2 by construction). The population covariance of Z is
computed with a set of 100p drawings (the mean is 0 by construction).

4. Conclusion

In this article, we have developed an original framework to study the large dimensional behavior of
the matrix solution to a fixed point equation, under a quite generic probabilistic data model (which
notably does not enforce independence in the data entries). Recalling that most state-of-the-art sta-
tistical (machine) learning algorithms are optimization problems, having implicit solution, which
are then applied to complex data models, our present work opens the path to a more systematic ex-
ploitation of concentration of measure theory for the large dimensional analysis of possibly complex
machine learning algorithms and data models.

12
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Appendix A. Assumptions

Assumption 1 u ∈ S(R+), ∃u∞ > 0 such that ∀t ∈ R+, u(t) ≤ u∞.

Assumption 2 The random vectors z1, . . . , zn are all independents.

Assumption 3 p ∼ O(n)

Assumption 4 Z ∝ E2

Assumption 5 ∀i ∈ {1, . . . , n} : ‖µi‖ ≤ O(1).

Assumption 6 ‖m‖ ≤ O(1)

Assumption 7 ‖τ‖1, ‖ 1
τi
‖1 ≤ O(n).

Assumption 8 ∃u∞· > 0 such that 1− u∞· ≥ O(1) and ∀t ∈ R+, u·(t) = tu(t) ≤ u∞· .

Assumption 9 ∀i ∈ [n] : TrCi ≥ O(n).

Assumption 10 ∀i ∈ [n], τi ≥ O(1/
√
n).

Appendix B. The stable semi-metric

B.1. Stability of I

Proof [Proof of Lemma 2] Given a ∈ {1, . . . , k}, we can bound thanks to Cauchy Shwarz inequal-
ity: ∣∣∣Ĩ(S,∆)a − Ĩ(S,∆′)a

∣∣∣ =

∣∣∣∣ 1n Tr
(
Sa
(
Qγ(S,∆′)−Qγ(S,∆)

))∣∣∣∣
=

∣∣∣∣∣ 1n
k∑
b=1

Tr
(
SaQγ(S,∆′)Sb

(
∆′b −∆b

)
Qγ(S,∆)

)∣∣∣∣∣
≤ 1

n

√√√√ k∑
b=1

Tr

(
SaQγ(S,∆)

Sb
∣∣∆′b −∆b

∣∣√
∆b∆

′
b

∆bQγ(S,∆)

)

·

√√√√ k∑
b=1

Tr

(
SaQγ(S,∆′)

Sb
∣∣∆′b −∆b

∣∣√
∆b∆

′
b

∆′bQγ(S,∆′)

)

≤
∥∥∥∥∆′ −∆√

∆∆′

∥∥∥∥
√

1

n
Tr (SaQγ(S,∆) (1− γQγ(S,∆)))

·
√

1

n
Tr (SaQγ(S,∆′) (1− γQγ(S,∆′)))

<

∥∥∥∥∆′ −∆√
∆∆′

∥∥∥∥√Ĩ(S,∆)aĨ(S,∆′)a

14
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B.2. General properties of the stable msemmimetric and of the stable class

Remark 27 The function ds is not a metric because it does not satisfy the triangular inequality,
one can see for instance that:

ds(4, 1) =
3

2
>

1√
2

+
1√
2

= ds(4, 2) + ds(2, 1)

One can show that given x, y ∈ R+, for any p ∈ N∗ and y1, . . . , yp−1 ∈ R+, we have the inequality:

ds(x, y1) + · · ·+ ds(yp−1, z) ≥ ds
(
x

1
p , z

1
p

)
.

It is an equality in the case yi = x
p−i
p z

i
p for i ∈ {1, . . . , p−1}. We can not get interesting inferences

to palliate the absence of a triangular inequality since the function x 7→ xp is not Lipschitz for the
semi-metric ds (instead, one can show that x 7→ x

1
p is 1

p -Lipschitz).

Proof [Proof of Proposition 2]
Let us consider x, y ∈ R+, such that, say, x ≤ y. We suppose in a first time that f/ is non-

increasing and that f· is non-decreasing. We know that f(x)
x ≥

f(y)
y , and subsequently:

f(y)− f(x) ≤ f(y)

y
(y − x) and f(y)− f(x) ≤ f(x)

x
(y − x) (7)

The same way, since f(x)x ≤ f(y)y we also have the inequalities:

f(x)− f(y) ≤ f(y)

x
(y − x) and f(x)− f(y) ≤ f(x)

y
(y − x) (8)

Now if f(y) ≥ f(x), we can take the root of the product of the two inequalities of (7) and if
f(y) ≤ f(x), we take the root of the product of the two inequalities of (8), to obtain, in both cases:

|f(x)− f(y)| ≤

√
f(y)f(x)

xy
|x− y|

That means that f ∈ S(R+).
Reciprocally, we suppose that f ∈ S(R+), if f(x) ≤ f(y), then f(x)x ≤ f(y)y and:(
f(x)

x
≤ f(y)

y

)
⇒

(
f(y)− f(x) ≤ f(y)

y
(y − x)

)
⇒

(
f(y)

y
≤ f(x)

x

)
,

and if f(x) ≤ f(y), then f(x)
x ≥

f(y)
y and:

(f(x)x ≤ f(y)y) ⇒
(
f(x)− f(y) ≤ f(y)

x
(y − x)

)
⇒ (f(y)y ≤ f(x)x) .

In both cases (f(x) ≤ f(y) and f(y) ≤ f(x)), we see that f/(x) ≥ f/(y) and f·(x) ≥ f·(y), we
have thus proved our result.
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Remark 28 Given f : D+
n → D+

n , we can introduce as in subsection 2.2 f/, f· : D+
n → D+

n

defined with:

f/ : ∆ 7→ Tr

(
f(∆)

∆

)
and f· : ∆ 7→ Tr (∆f(∆))

It is possible to inspire from Property 2 to define a similar class that can be called the weak stable
class Sw(D+

n ). A function f : D+
n → D+

n is in Sw(D+
n ) if and only if f/ is nonincreasing and f· is

nondecreasing. It can be showed that IM , ĨS ∈ Sw(D+
n ) Although this definition does not rely on

a metric (nor on a semi metric), it is quite convenient to show fixed point theorems, but we did not
find any use in our paper since we already have IM , ĨS ∈ S(D+

n ).

For the proof of Proposition 3, let us give two small results.

Lemma 29 Given four positive numbers a, b, c, d ∈ R+:

√
ab+

√
αβ ≤

√
(a+ b)(α+ β) and

a+ α

b+ β
≤ max

(
a

b
,
α

β

)
Proof For the first result, we deduce from the inequality 2abαβ ≤ aα+ bβ:(√

ab+
√
αβ
)2

= ab+ αβ + 2
√
abαβ ≤ ab+ αβ + aα+ bβ = (a+ b)(α+ β)

For the second result, we simply bound:

a+ α

b+ β
≤ a

b

b

b+ β
+
α

β

β

b+ β
≤ max

(
a

b
,
α

β

)(
b

b+ β
+

β

b+ β

)
= max

(
a

b
,
α

β

)

Proof [Proof of Property 3] The three first properties are obvious, we are just left to show the
stability through the sum. Note that this time, there is no characterization on S(R+) with the
monotonicity of f/ and f· given in Property 2 (for that reason, this property is easier to show on the
set Sw(D+

n ) described in Remark 28). Nonetheless, given f, g ∈ S(D+
n ) and ∆,∆′ ∈ R+ there

exists i0 ∈ [n] such that:

ds(f(∆) + g(∆), f(∆′)− g(∆′)) =

∣∣f(∆i0)− f(∆′i0) + g(∆i0)− g(∆′i0)
∣∣√

(f(∆i0) + g(∆i0))(f(∆′i0) + g(∆′i0))

≤
∣∣f(∆i0)− f(∆′i0)

∣∣+
∣∣g(∆i0)− g(∆′i0)

∣∣√
f(∆i0) + f(∆i0) +

√
g(∆′i0) + g(∆′i0)

≤ max

 ∣∣f(∆i0)− f(∆′i0)
∣∣√

f(∆i0) + f(∆i0)
,

∣∣g(∆i0)− g(∆′i0)
∣∣√

g(∆′i0) + g(∆′i0)

 ≤ ds(∆,∆′)

thanks to Lemma 29 and the stable character of f and g.
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B.3. Topological properties of the stable semi-metric

Lemma 30 Any Cauchy sequence of (D+
n , ds) is bounded from below and above

Proof Considering a Cauchy sequence of diagonal matrices ∆(k) ∈ D+
n , we know that there exists

K ∈ N such that:

∀p, q ≥ K, ∀i ∈ {1, . . . , n} : |∆(p)
i −∆

(q)
i )| ≤

√
∆

(p)
i ∆

(q)
i

For k ∈ N, let us introduce the indexes ikM , i
k
m ∈ N, satisfying:

∆
(k)

ikM
= max

(
∆

(k)
i , 1 ≤ i ≤ n

)
and ∆

(k)

ikM
= min

(
∆

(k)
i , 1 ≤ i ≤ n

)
If we suppose that there exists an extraction (∆

(φ(k))

ikM
)k≥0 such that ∆

(φ(k))

ikM
−→
k→∞

∞ then:

√
∆

(φ(k))

i
φ(k)
M

≤
√

∆
(N)

i
φ(k)
M

+

∆
(N)

i
φ(k)
M√

∆
(φ(k))

i
φ(k)
M

−→
k→∞

√
∆

(N)

i
φ(k)
M

<∞

which is absurd. Therefore (∆
(k)

ikM
)k≥0 and thus also (∆(k))k≥0 are bounded superiorly. For the

inferior bound, we consider the same way an extraction (∆
(ψ(k))

ikm
)k≥0 such that ∆

(ψ(k))

ikm
−→
k→∞

0. We

have:

∆
(φ(k))

i
φ(k)
M

≥ ∆
(N)

i
φ(k)
M

−
√

∆
(N)

i
φ(k)
M

∆
(φ(k))

i
φ(k)
M

−→
k→∞

√
∆

(N)

i
φ(k)
M

> 0.

which is once again absurd.

Proof [Proof of Property 4] Given a Cauchy sequence of diagonal matrices ∆(k) ∈ D+
n , we know

from preceding lemma that there exists δM , δm ∈ R+ such that ∀k ≥ 0 : δmIn ≤ ∆(k) ≤ δMIn.
Thanks to the Cauchy hypothesis:

∀ε > 0, ∃K ≥ 0 | ∀p, q ≥ K : ∀i ∈ {1, . . . , n} :
∣∣∣∆(p)

i −∆
(p)
i

∣∣∣ ≤ εδM
and as a consequence, (∆(k))k≥0 is a Cauchy sequence in the complete space (D0,+

n , ‖ · ‖) it con-
verges to a matrix ∆(∞) ∈ D0,+

n . Moreover, ∆(∞) ≥ δkIn as any ∆(k), for all k ∈ N, thus
∆(∞) ∈ D+

n and we are left to show that ∆(k) −→
k→∞

∆(∞) for the semi-metric ds. It suffices to

write:

ds(D
(k), D(∞)) =

∥∥∥∥∥D(k) −D(∞)

√
D(k)D(∞)

∥∥∥∥∥ ≤ δm ∥∥∥D(k) −D(∞)
∥∥∥ −→
k→∞

0.

17
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Proof [Proof of Theorem 5] There exists λ ∈ (0, 1) and a constant δM , δm ∈ R+ such that
∀∆,∆′ ∈ D+

n , ds(f(∆), f(∆′)) ≤ λds(∆,∆
′) and δmIn ≤ f(∆) ≤ δMIn. The sequence

(∆(k))k≥0 satisfying:

∆(0) = In and ∀k ≥ 1 : ∆(k) = f(∆(k−1))

is a Cauchy sequence. Given ε > 0, we have indeed for K ≥ log(εδm/2δM )
log(λ) :

∀p, q > K : ds(∆
(q),∆(p)) ≤ λKds

(
f q−K(∆(q−K)), fp−K(∆(p))

)
≤ 2δMλ

K

δm
≤ ε

We know thanks to Property 4 that there exists ∆∗ ∈ D+
n such that f(∆∗) = ∆∗ (since f is

continuous) and the contracting character of f ensures that it is the unique fixed point.

Remark 31 It is possible to relax a bit the contracting hypothese on f if one supposes that f is
monotonic. Let us consider a weakly monotonic mapping f : D+

n → D+
n bounded from below and

above. If we suppose that f is stable and verifies:

∀∆,∆′ ∈ D+
n : ds(f(∆), f(∆′)) < ds(∆,∆

′) (9)

then there exists a unique fixed point D ∈ D+
n satisfying ∆∗ = f(∆∗).

Proof We first suppose that f is nondecreasing. As before, let us consider δM , δm ∈ R+ such
that ∀∆ ∈ D+

n δmIn ≤ f(∆) ≤ δMIn. The sequence (∆(k))k≥0 satisfying ∆(0) = ∆mIn, and
for all k ≥ 1, ∆(k) = f(∆(k−1)) is a nondecreasing sequence bounded superiorly with δM , thus it
converges to ∆∗ ∈ D+

n and ∆∗ = f(∆∗). This fixed point is clearly unique thanks to (9).
Now if f is nonincreasing then ∆ 7→ f2(∆) is non decreasing and bounded inferiorly and

superiorly thus it admits a unique fixed point ∆∗ ∈ D+
n satisfying ∆∗ = f2(∆∗). We can deduce

that f(∆∗) = f2(f(∆∗)) which implies by uniqueness of the fixed point that f(∆∗) = ∆∗ and the
uniqueness of such a ∆∗ is again a consequence of (9).

Proof [Proof of Corollary 7] We saw in Lemma 2 that:

ds
(
I(S,∆), I(S,∆′)

)
< λds

(
∆,∆′

)
with λ = sup

{∥∥∥1− γQ̃S(∆)
∥∥∥ ,∆ ∈ D+

n

}
.

Now, thanks to Lemma 6, we can bound:

λ ≤ 1

1 + γ
f0‖S‖

< 1 and
inf1≤a≤k(TrSa)Ip

f0 ‖S‖+ γ
≤ ‖I(S, f(∆))‖ ≤

sup1≤a≤k(TrSa)Ip

γ

and therefore g ◦ Q̃S ◦ f is contracting and bounded from below and above: we can employ The-
orem 5 to set the existence and the uniqueness of a solution ∆ ∈ D+

n to ∆ = g ◦ Q̃S ◦ f(∆).

18
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Appendix C. Concentration and estimation of the resolvent

Given S ∈ Snp , we note S−i ≡ (S1, . . . , Si−1, 0, Si, · · ·Sn) then for ∆ ∈ D+
n and i ∈ [n], we note:

Q−i(S,∆) ≡ Qz(S−i,∆) =

(
1

n

n∑
i=1

Si∆ + zIn

)−1

We have the first simple identity:

Q(S,∆)−Q−i(S,∆) =
1

n
Q(S,∆)SiQ−i(S,∆), (10)

Now if we consider a matrixM = (m1, . . . ,mn) ∈Mp,n, we noteM−i ≡ (m1, · · · ,mi−1, 0,mi+1, . . . ,mn)
then (M ·MT )−i = (M−i ·MT

−i) and noting for simplicity QM ≡ Qz(M, ·), we see that ǏM (∆) ≡
Ǐz(M ·MT ,∆) = Diag( 1

nm
T
i Q−imi)1≤i≤n and we can deduce from (10) the so-called “Schur

identity”:

QM (∆)mi =
QM−i(∆)mi

1 + ∆i
n m

T
i Q

M
−i(∆)mi

and IM (∆) =
ǏM (∆)

In + ∆ǏM (∆)
(11)

Proof [Proof of Corollary 17]
It is shown in Louart and Couillet (2019) that 1

nziQ−i(∆)zi ∈ 1
n Tr (CiE[Q−i])±E2(1/

√
n) +

E1(1/n) and since ‖ 1
nCi‖1 = 1

n Tr(Ci) = O(1), we know from Theorem 16 applied to the random

matrix Z∆1/2 that ‖ 1
n Tr (CiE[Q−i]) − 1

n Tr
(
CiQ(C, ∆

1+∆ΛC(∆)
)]
)
‖ ≤ O

(√
log n/n

)
. Thus

with the identity ΛC(∆)i = 1
n Tr

(
CiQ(C, ∆

1+∆ΛC(∆)
)]
)

, we deduce that:

1

n
ziQ−i(∆)zi ∈ ΛC(∆)i ± E1

(√
log n

n

)
.

Now we can employ Proposition 13 to the O(1)-Lipschitz mapping f : t 7→ 1
1+∆it

to set that
wi ≡ 1

1+∆ 1
n
ziQ−i(∆)zi

∈ 1
1+ 1

n
Tr(CiE[Q−i])

± E1(
√

log n/n) and even (since |wi| ≤ 1 we have a

stronger result):

1
nziQ−i(∆)zi

1 + ∆ 1
nziQ−i(∆)zi

∈ ΛC(∆)i
1 + ∆ΛC(∆)i

± E1

(√
log n

n

)
.

We can then conclude with identity 11 the result of the Corollary.
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Proof [Proof of Proposition 18] Given S ∈ Snp and ∆,∆′ ∈ D+
n , there exists i0 ∈ [n] such that:

ds(Λ
S(∆),ΛS(∆′)) = ds

(
Ǐ

(
S,

∆

In + ∆ΛS(∆)

)
, Ǐ

(
S,

∆′

In + ∆′ΛS(∆′)

))
< ds

(
∆

In + ∆ΛS(∆)
,

∆′

In + ∆′ΛS(∆′)

)
= ds

(
In
∆

+ ΛS(∆),
In
∆′

+ ΛS(∆′)

)

=

∣∣∣∣ 1
∆i0

+ ΛS(∆)i0 − 1
∆′i0

+ ΛS(∆′)i0

∣∣∣∣√(
1

∆i0
+ ΛS(∆)i0

)(
1

∆′i0
+ ΛS(∆′)i0

)

≤ max


∣∣∣∣ 1

∆i0
− 1

∆′i0

∣∣∣∣√
1

∆i0

1
∆′i0

,

∣∣ΛS(∆)i0 − ΛS(∆′)i0
∣∣√

ΛS(∆)i0ΛS(∆′)i0


≤ max

(
ds(∆,∆

′), ds(Λ
S(∆),ΛS(∆′))

)
Thanks to Lemma 2, the stability rules given in Property 3, and the little tools given by Lemma 29
already used to prove Property 3. As a conclusion:

ds(Λ
S(∆),ΛS(∆′)) < max

(
ds(∆,∆

′), ds(Λ
C(∆),ΛC(∆′))

)
,

which directly implies that ds(ΛS(∆),ΛS(∆′)) < ds(∆,∆
′), in other words, ΛS is stable.

The upper and lower bounds on ΛS(∆) for S ∈ Snp and ∆ ∈ D+
n are direct consequences of the

bounds on I (the same are true for Ǐ) given in Lemma 6

Appendix D. Estimation of the robust scatter

D.1. Strategical Theorem

Proof [Proof of Theorem 19] Let us first bound (be careful that the stable semi-metric does not
satisfy the triangular inequality):∥∥∥∥∥ ∆−∆′√

∆f(∆′)

∥∥∥∥∥ ≤ ds(f(∆), f(∆′)) +

∥∥∥∥∥f(∆′)−∆′√
∆f(∆′)

∥∥∥∥∥ ≤ λ
∥∥∥∥∆−∆′√

∆∆′

∥∥∥∥+

∥∥∥∥∥f(∆′)−∆′√
∆f(∆′)

∥∥∥∥∥ .
Then, since

∥∥∥∆−∆′√
∆∆′

∥∥∥ ≤ ∥∥∥∥ ∆−∆′√
∆f(∆′)

∥∥∥∥(1 +

∥∥∥∥√f(∆′)−
√
f ′(∆′)√

∆′

∥∥∥∥) and ε ≡
∥∥∥∥√|f(∆′)−f ′(∆′)|√

∆′

∥∥∥∥ ≤
O(
√
as) by hypothesis, setting K ′ = 1

1−λ−ε ≤ O(1), we have the inequality:∥∥∥∥∥ ∆−∆′√
∆f(∆′)

∥∥∥∥∥ ≤ K ′
∥∥∥∥∥f(∆′)−∆′√

∆f(∆′)

∥∥∥∥∥ which implies
∥∥∥∥∆−∆′√

∆

∥∥∥∥ ≤ K ′′
∥∥∥∥f(∆′)−∆′√

∆

∥∥∥∥ , (12)
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for some constant K ′′ > 0, thanks to the inequality ‖f(∆′)−∆′‖ ≤ O(as) leading to:

O(1) ≤ ‖∆′‖ −O(as) ≤ f(∆′) ≤ ‖∆′‖+O(as) ≤ O(1).

We are left to bound from below and above ‖∆‖ to recover the result of the Theorem from (12).
Considering the index i0 such that ∆i0 = min(∆i)1≤i≤n, we have:

∣∣∆i0 −∆′i0
∣∣ ≤ K ′′√∆i0

∥∥∥∥∥f(∆′)−∆′√
∆i0

∥∥∥∥∥ ≤ O(as),

therefore, ∆i0 ≥ ∆′i0 −O(as) ≥ O(1). On the other hand, one can bound again from (12):

‖
√

∆‖ ≤
∥∥∥∥ ∆′√

φ

∥∥∥∥+K ′′
∥∥∥∥f(∆′)−∆′√

∆

∥∥∥∥ ≤ O(1)

As a consequence ∆ ∼ O(1), and we can conclude from (12).

D.2. Stability properties of η

Proof [Proof of Proposition 20] It is a simple application of Theorem 5. If we note f : η 7→ 1
1
x

+u(η)
,

we know that f is bounded from below and above, for all η ∈ R+:

1
1
x + u∞

≤ f(η) ≤ x.

We can then employ Theorem 5 since f is contracting for the stable semi-metric:

ds(f(η), f(η′)) = ds

(
1

f(η)
,

1

f(η′)

)
=

|u(η)− u(η′)|√(
1
x + u(η)

) (
1
x + u(η′)

)
≤

√
u(η)u(η′)(

1
x + u(η)

) (
1
x + u(η′)

)ds(u(η), u(η′))

≤
√

1
1

u(η)u(η′)x2 + 1
u(η′)x + 1

u(η)x + 1
ds(u(η), u(η′))

≤ 1

1 + 1
u∞x

(
1 + 1

u∞x

)ds(η, η′)
To prove the stability of η, we are going to use the characterization with the monotonicity of the
functions η/ : x 7→ η(x)

x and η· 7→ xη(x) presented in Property 2. Let us consider x, y ∈ R+ such
that x ≤ y, if η(x) ≤ η(y), then η·(x) ≤ η·(y), besides since, in addition, u/ is nondecreasing:

η/(x) =
1

1 + xu(η(x))
≥ 1

1 + yη(y)u(η(x))
η(x)

≥ 1

1 + yu(η(y))
= η/(y).
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The same way, if η(x) ≥ η(y), then η/(x) ≥ η/(y) and:

η·(x) =
1

1
x2 + u(η(x))

x

≤ 1
1
y2 + η(x)

x
u(η(y))
η(y)

≤ 1
1
y2 + u(η(y))

y

= η·(y)

We see that in both cases, η/(x) ≥ η/(y) and η·(x) ≤ η·(y), therefore, thanks to Property 2,
η ∈ S(R+).

Proof [Proof of Lemma 22] If there exists α > 0 (and α < 1) such that ∀x ∈ R+, η(x)
x ≥ α, then

η(x)

x
+ (1− α) ≥ 1 and therefore:

1
1
x + u(η(x))

= η(x) ≥ 1
1
x + 1−α

η(x)

,

which implies that u(η(x))η(x) ≤ 1 − α. But since η is not bounded (otherwise limt→∞
η(t)
t =

0 < α), η takes all the values around ∞ and in particular (u· being nondecreasing), u· ≤ 1 − α.
Conversely, if u∞· < 1, ∀x ∈ R+:

η(x)

x
≥ 1

1 + u∞·
x

η(x)

thus
η(x)

x
≥ 1− u∞· > 0
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