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Abstract

The article proposes and theoretically analyses a computationally efficient multi-
task learning (MTL) extension of popular principal component analysis (PCA)-
based supervised learning schemes [7, 5]. The analysis reveals that (i) by default
learning may dramatically fail by suffering from negative transfer, but that (ii)
simple counter-measures on data labels avert negative transfer and necessarily
result in improved performances.
Supporting experiments on synthetic and real data benchmarks show that the
proposed method achieves comparable performance with state-of-the-art MTL
methods but at a significantly reduced computational cost.

1 Introduction

From single to multiple task learning. Advanced supervised machine learning algorithms require
large amounts of labelled samples to achieve high accuracy, which in practice is often too demanding.
Multi-task learning (MTL) [11, 52, 53] and transfer learning provide a potent workaround by
appending extra somewhat similar datasets to the scarce available dataset of interest. The additional
data possibly being of a different nature, MTL effectively solves multiple tasks in parallel while
exploiting task relatedness to enforce collaborative learning.

State-of-the-art of MTL. To proceed, MTL solves multiple related tasks and introduces shared
hyperparameters or feature spaces, optimized to improve the performance of the individual tasks.
The crux of efficient MTL lies in both enforcing and, most importantly, evaluating task relatedness:
this in general is highly non-trivial as this implies to theoretically identify the common features of
the datasets. Several heuristics have been proposed which may be split in two groups: parameter-
versus feature-based MTL. In parameter-based MTL, the tasks are assumed to share common
hyperparameters [15, 49] (e.g., separating hyperplanes in a support vector machine (SVM) flavor) or
hyperparameters derived from a common prior distribution [54, 55]. Classical learning mechanisms
(SVM, logistic regression, etc.) can be appropriately turned into an MTL version by enforcing
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parameter relatedness: [15, 49, 35] respectively adapt the SVM, least square-SVM (LS-SVM), and
large margin nearest neighbor (LMNN) methods into an MTL paradigm. In feature-based MTL,
the data are instead assumed to share a common low-dimensional representation, which needs be
identified: through sparse coding, deep neural network embeddings, principal component analysis
(PCA) [2, 32, 50, 34] or simply by feature selection [33, 48, 18].

The negative transfer plague. A strong limitation of MTL methods is their lack of theoretical
tractability: as a result, the biases inherent to the base methods (SVM, LS-SVM, deep nets) are
exacerbated in MTL. A major consequence is that many of these heuristic MTL schemes suffer from
negative transfer, i.e., cases where MTL performs worse than a single-task approach [40, 29]; this
often occurs when task relatedness is weaker than assumed and MTL enforces fictitious similarities.

A large dimensional analysis to improve MTL. Based on a large dimensional random matrix
setting, this work focuses on an elementary (yet powerful) PCA-based MTL approach and provides an
exact (asymptotic) evaluation of its performance. This analysis conveys insights into the MTL inner
workings, which in turn provides an optimal data labelling scheme to fully avert negative transfer.

More fundamentally, the choice of investigating PCA-based MTL results from realizing that the
potential gains incurred by a proper theoretical adaptation of simple algorithms largely outweigh
the losses incurred by biases and negative transfer in more complex and elaborate methods (see
performance tables in the article). As a result, the main contribution of the article lies in achieving
high performance MTL at low computational cost when compared to competitive methods.

This finding goes in the direction of the compellingly needed development of cost-efficient and
environment-friendly AI solutions [24, 44, 20].

Article contributions. In detail, our main contributions may be listed as follows:

• We theoretically compare the performance of two natural PCA-based single-task supervised
learning schemes (PCA and SPCA) and justify the uniform superiority of SPCA;

• As a consequence, we propose a natural extension of SPCA to multi-task learning for which
we also provide an asymptotic performance analysis;
• The latter analysis (i) theoretical grasps the transfer learning mechanism at play, (ii) exhibits

the relevant information being transferred, and (iii) harnesses the sources of negative transfer;
• This threefold analysis unfolds in a counter-intuitive improvement of SPCA-MTL based

on an optimal data label adaptation (not set to ±1, which is the very source of negative
transfer); the label adaptation depends on the optimization target, changes from task to task,
and can be efficiently computed prior to running the SPCA-MTL algorithm;

• Synthetic and real data experiments support the competitive SPCA-MTL results when
compared to state-of-the-art MTL methods; these experiments most crucially show that high
performance levels can be achieved at significantly lower computational costs.

Supplementary material. The proofs and Matlab codes to reproduce our main results and sim-
ulations, along with theoretical extensions and additional supporting results, are provided in the
supplementary material.

Notation. e[n]m ∈ Rn is the canonical vector of Rn with [e
[n]
m ]i = δmi. Moreover, e[mk]ij = e

[mk]
m(i−1)+j .

2 Related works

A series of supervised (single-task) learning methods were proposed which rely on PCA [7, 39, 51, 16]:
the central idea is to project the available data onto a shared low-dimensional space, thus ignoring
individual data variations. These algorithms are generically coined supervised principal component
analysis (SPCA). Their performances are however difficult to grasp as they require to understand the
statistics of the PCA eigenvectors: only recently have large dimensional statistics, and specifically
random matrix theory, provided first insights into the behavior of eigenvalues and eigenvectors of
sample covariance and kernel matrices [8, 23, 4, 25, 37]. To the best of our knowledge, none of these
works have drawn an analysis of SPCA: the closest work is likely [3] which however only provides
statistical bounds on performance rather than exact results.
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On the MTL side, several methods were proposed under unsupervised [30, 43, 6], semi-supervised
[38, 28] and supervised (parameter-based [46, 15, 49, 1] or feature-based [2, 27]) flavors. Although
most of these works generally achieve satisfying performances on both synthetic and real data, few
theoretical analyses and guarantees exist, so that instances of negative transfer are likely to occur.

To be exhaustive, we must mention that, for specific types of data (images, text, time series) and under
the availability of numerous labelled samples, deep learning MTL methods have recently been devised
[41]. These are however at odds with the article requirement to leverage scarce labelled samples and
to be valid for generic inputs (beyond images or texts): these methods cannot be compared on even
grounds with the methods discussed in the present study.1

3 Supervised principal component analysis: single task preliminaries

Before delving into PCA-based MTL, first results on large dimensional PCA-based single-task
learning for a training set X = [x1, . . . , xn] ∈ Rp×n of n samples of dimension p are needed. To
each xi ∈ Rp is attached a label yi: in a binary class setting, yi ∈ {−1, 1}, while for m ≥ 3 classes,
yi = e

[m]
j ∈ Rm, the canonical vector of the corresponding class j.

PCA in supervised learning. Let us first recall that, applied to X , PCA identifies a subspace of
Rp, say the span of the columns of U = [u1, . . . , uτ ] ∈ Rp×τ (τ ≤ p), which maximizes the variance
of the data when projected on the subspace, i.e., U solves:

max
U∈Rp×τ

tr

(
UTXX

T

p
U

)
subject to UTU = Iτ .

The solution is the collection of the eigenvectors associated with the τ largest eigenvalues of XX
T

p .

To predict the label y of a test data vector x, a simple method to exploit PCA consists in projecting
x onto the PCA subspace U and in performing classification in the projected space. This has
the strong advantage to provide a (possibly dramatic) dimensionality reduction (from p to τ ) to
supervised learning mechanisms, thus improving cost efficiency while mitigating the loss incurred
by the reduction in dimension. Yet, the PCA step is fully unsupervised and does not exploit the
available class information. It is instead proposed in [7, 12] to trade U for a more representative
projector V which “maximizes the dependence” between the projected data V TX and the output
labels y = [y1, . . . , yn]T ∈ Rm×n. To this end, [7] exploits the Hilbert-Schmidt independence
criterion [19], with corresponding optimization

max
V ∈Rp×τ

tr

(
V TXyy

TXT

np
V

)
subject to V TV = Iτ .

This results in the Supervised PCA (SPCA) projector, the solution V = V (y) of which being the
concatenation of the τ dominant eigenvectors of Xyy

TXT

np . Subsequent learning (by SVMs, empirical
risk minimizers, discriminant analysis, etc.) is then applied to the projected training V Txi and test
V Tx data. For binary classification where y is unidimensional, Xyy

TXT

np is of rank 1, which reduces

V Tx to the scalar V Tx = yTXTx/
√
yTXTXy, i.e., to a mere matched filter.

Large dimensional analysis of SPCA. To best grasp the performance of PCA- or SPCA-based
learning, assume the data arise from a large dimensional m-class Gaussian mixture.2

Assumption 1 (Distribution of X) The columns of X are independent random vectors with X =

[X1, . . . , Xm], Xj = [x
(j)
1 , . . . , x

(j)
nj ] ∈ Rp×nj for x(j)i ∼ N (µj , Ip), also denoted x(j)i ∈ Cj . We

further write M ≡ [µ1, . . . , µm] ∈ Rp×m.

1But nothing prevents us to exploit data features extracted from pretrained deep nets.
2To obtain simpler intuitions, we consider here an isotropic Gaussian mixture model (i.e., with identity

covariance). This strong constraint is relaxed in the supplementary material, where arbitrary covariances are
considered; the results only marginally alter the main conclusions.
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Assumption 2 (Growth Rate) As n→∞, p/n→ c0 > 0, the feature dimension τ is constant and,
for 1 ≤ j ≤ m, nj/n→ cj > 0; we denote c = [c1, . . . , cm]T and Dc = diag(c). Besides,

(1/c0)D
1
2
c M

TMD
1
2
c →M ∈ Rm×m.

We will show that, under this setting, SPCA is uniformly more discriminative on new data than PCA.

As n, p → ∞, the spectrum of 1
pXX

T is subject to a phase transition phenomenon now well
established in random matrix theory [4, 8]. This result is crucial as the PCA vectors of 1

pXX
T are

only informative beyond the phase transition and otherwise can be considered as pure noise.

Proposition 1 (Eigenvalue Phase transition) Under Assumptions 1-2, as n, p→∞, the empirical
spectral measure 1

p

∑p
i=1 δλi of the eigenvalues λ1 ≥ . . . ≥ λp of XX

T

p converges weakly, with

probability one, to the Marc̆enko-Pastur law [31] supported on [(1 −
√

1/c0)2, (1 +
√

1/c0)2].
Besides, for 1 ≤ i ≤ m, and for `1 > . . . > `m the eigenvalues ofM,3

λi
a.s.−→

{
λ̄i ≡ 1 + 1

c0
+ `i + 1

c0`i
≥ (1 +

√
1/c0)2 , `i ≥ 1√

c0

(1 +
√

1/c0)2 , otherwise
; λm+1

a.s.−→ (1 +
√

1/c0)2.

Proposition 1 states that, if `i ≥ 1/
√
c0, the i-th largest eigenvalue of 1

pXX
T separates from the

main bulk of eigenvalues. These isolated eigenvalues are key to the proper functioning of PCA-based
classification as their corresponding eigenvectors are non-trivially related to the class discriminating
statistics (here the µj’s). Consequently, UTx ∈ Rτ also exhibits a phase transition phenomenon.

Theorem 1 (Asymptotic behavior of PCA projectors) Let x ∼ N (µj , Ip) independent of X .
Then, under Assumptions 1-2, with (`i, ūi) the decreasing (distinct) eigenpairs ofM, as p, n→∞,

UTx−Gj → 0, Gj ∼ N (m
(pca)
j , Iτ ), in probability,

where [m
(pca)
j ]i =

{ √
c0`i−1
`2i (`i+1)

ūTiMD
− 1

2
c e

[m]
j , i ≤ min(m, τ) and `i ≥ 1√

c0

0 , otherwise.

As such, only the projections on the eigenvectors of 1
pXX

T attached to isolated eigenvalues carry
informative discriminating features. Practically, for all n, p large, it is thus useless to perform PCA on
a larger dimension than the number of isolated eigenvalues, i.e., τ ≤ arg max1≤i≤m{`i ≥ 1/

√
c0}.

Consider now SPCA. Since XyyTXT

np only has m non-zero eigenvalues, no phase transition occurs: all
eigenvalues are “isolated”. One may thus take τ = m principal eigenvectors for the SPCA projection
matrix V , these eigenvectors being quite likely informative.

Theorem 2 (Asymptotic behavior of SPCA projectors) Let x ∼ N (µj , Ip) independent of X .
Then, under Assumptions 1-2, as p, n→∞, in probability,

V Tx−Gj → 0, Gj ∼ N (m
(spca)
j , Iτ ), [m

(spca)
j ]i =

√
1/(˜̀

i) v̄
T
i D

1
2
cMD

− 1
2

c e
[m]
j

for ˜̀
1 ≥ . . . ≥ ˜̀

m the eigenvalues of Dc +D
1
2
cMD

1
2
c and v̄1, . . . , v̄m their associated eigenvectors.

Since both PCA and SPCA data projections UTx and V Tx are asymptotically Gaussian and isotropic
(i.e., with identity covariance), the oracle-best supervised learning performance only depends on the
differences m(×)

j −m
(×)
j′ (× being pca or spca). In fact, being small dimensional (of dimension τ ),

the vectors m(×)
j can be consistently estimated from their associated empirical means, and are known

in the large n, p limit (with probability one).

3We implicitly assume the `i’s distinct for simplicity of exposition.
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Figure 1: Theoretical (Th) vs. empirical (Emp) error for PCA- and SPCA-based binary classification:
x
(`)
i ∼ N ((−1)`µ, Ip) (` ∈ {1, 2}), µ = e

[p]
1 , n1 = n2 = 500. Averaged over 1 000 test samples.

Remark 1 (Consistent estimate of sufficient statistics) From Assumption 2, cj can be empirically
estimated by nj/n. This in turns provides a consistent estimate for Dc. Besides, as n, p→∞,

1T
njX

T
j Xj′1nj′

a.s.−→ [MTM ]jj′ , ∀j 6= j′ and 1T
nj
2

XT
j,1Xj,21nj

2

a.s.−→ [MTM ]jj , ∀j

where Xj = [Xj,1, Xj,2] ∈ Rp×nj , with Xj,1, Xj,2 ∈ Rp×(nj/2). Combining the results provides a
consistent estimate forM as well as an estimate m̂

(×)
j for the quantities m(×)

j , by replacing c and

M by their respective estimates in the definition of m(×)
j .

These results ensure the (large n, p) optimality of the classification decision rule, for a test data x:

arg max
j∈{1,...,m}

‖UTx− m̂
(pca)
j ‖2, arg max

j∈{1,...,m}
‖V Tx− m̂

(spca)
j ‖2. (1)

As a consequence, the discriminating power of both PCA and SPCA directly relates to the limiting
(squared) distances ∆m

(×)
(j,j′) ≡ ‖m

(×)
j −m

(×)
j′ ‖2, for all pairs of class indices 1 ≤ j 6= j′ ≤ m, and

the classification error P (x→ Cj′ |x ∈ Cj) satisfies

P (x→ Cj′ |x ∈ Cj) = Q
(

1

2

√
∆m

(×)
(j,j′)

)
+ o(1), for Q(t) =

1√
2π

∫ ∞
t

e−x
2

dx.

In particular, and as confirmed by Figure 1, when cj = cj′ , SPCA uniformly dominates PCA:

∆m
(spca)
(j,j′) −∆m

(pca)
(j,j′) =

τ∑
i=1

(
v̄TiMD

− 1
2

c (e
[τ ]
j − e

[τ ]
j′ )
)2

`2i (`i + 1)
≥ 0.

For m = 2 classes, irrespective of c1, c2, one even finds in explicit form

∆m
(spca)
(1,2) −∆m

(pca)
(1,2) =

16
n
p ‖∆µ‖2 + 4

,
∆m

(spca)
(1,2) −∆m

(pca)
(1,2)

∆m
(spca)
(1,2)

=
16

n
p ‖∆µ‖4

where ∆µ ≡ µ1 − µ2, conveniently showing the influence of n/p and of ‖∆µ‖2 in the relative
performance gap, which vanishes as the task gets easier or as n/p increases (so with more data).

Summarizing, under a large dimensional setting, we showed that SPCA-based classification uniformly
outperform the PCA alternative, thus motivating the design of an SPCA-based MTL approach.

4 From single- to multi-task SPCA-based learning

4.1 Multi-class setting

Let now X = [X[1], . . . , X[k]] ∈ Rp×n be a collection of n independent p-dimensional data vectors,
divided into k subsets attached to individual “tasks”. Task t is an m-class classification problem with
training samples X[t] = [X[t]1, . . . , X[t]m] ∈ Rp×ni with X[t]j = [x

(j)
t1 , . . . , x

(j)
tntj ] ∈ Rp×ntj the ntj

vectors of class j ∈ {1, . . . ,m}. In particular, n =
∑k
t=1 nt for nt ≡

∑m
j=1 ntj .
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To each x(j)t` ∈ Rp is attached a corresponding “label” (or score) y(j)t` ∈ Rm. We denote in short
yt = [y

(1)
t1 , . . . , y

(m)
tnt ]T ∈ Rnt×m and y = [yT1 , . . . , y

T
k ]T ∈ Rn×m the matrix of all labels. The

natural MTL extension of SPCA would default y(j)t` ∈ Rm to the canonical vectors e[m]
j (or to ±1

in the binary case). We disrupt here from this approach by explicitly not imposing a value for y(j)t` :
this will be seen to be key to avert the problem of negative transfer. We only let y(j)t` = ỹtj , for all
1 ≤ ` ≤ ntj and for some generic matrix ỹ = [ỹ11, . . . , ỹkm]T ∈ Rmk×m, i.e., we impose that

y = Jỹ, for J = [j11, . . . , jmk], where jtj = (0, . . . , 0,1ntj , 0, . . . , 0)T.

As with the single-task case, we work under a Gaussian mixture model for each class Ctj .

Assumption 3 (Distribution of X) For class j of Task t, denoted Ctj , x(j)t` ∼ N (µtj , Ip), for some
µtj ∈ Rp. We further denote M ≡ [µ11, . . . , µkm] ∈ Rp×mk.

Assumption 4 (Growth Rate) As n→∞, p/n→ c0 > 0 and, for 1 ≤ j ≤ m, ntj/n→ ctj > 0.

Denoting c = [c11, . . . , ckm]T ∈ Rkm and Dc = diag(c), (1/c0)D
1
2
c MTMD

1
2
c →M ∈ Rmk×mk.

We are now in position to present the main technical result of the article.

Theorem 3 (MTL Supervised Principal Component Analysis) Let x ∼ N (µtj , Ip) independent
of X and V ∈ Rp×τ be the collection of the τ ≤ mk dominant eigenvectors of XyyX

T

np ∈ Rp×p.
Then, under Assumptions 3-4, as p, n→∞, in probability,

V Tx−Gtj → 0, Gtj ∼ N (mtj , Iτ ), for [mtj ]i =

√
1/(c0 ˜̀

i) v̄
T
i (ỹỹT)

1
2D

1
2
cMD

− 1
2

c e
[mk]
tj

with ˜̀
1 > . . . > ˜̀

mk the eigenvalues of (ỹỹT)
1
2 (D

1
2
cMD

1
2
c + Dc)(ỹỹT)

1
2 and v̄1, . . . , v̄mk their

eigenvectors.4

As in the single task case, despite the high dimension of the data statistics appearing in V , the
asymptotic performance only depends on the (small) mk ×mk matricesM and Dc, which here
leverages the inter-task inter-class products µT

tjµt′j′ . This correlation between tasks together with
the labelling choice ỹ (importantly recall that here V = V (y)) influences the MTL performance.
The next section discusses how to optimally align ỹ andM so to maximize this performance. This,
in addition to Remark 1 being evidently still valid here (i.e., c andM can be a priori consistently
estimated), will unfold into our proposed asymptotically optimal MTL SPCA algorithm.

4.2 Binary classification and optimal labels

To obtain more telling conclusions, let us now focus on binary classification (m = 2). In this
case, y = Jỹ, with ỹ ∈ R2k (rather than in R2k×2) unidimensional. Here XyyTXT

np has for unique
non-trivial eigenvector Xy/‖Xy‖ and V Tx is scalar.

Corollary 1 (Binary MTL Supervised Principal Component Analysis) Let x ∼ N (µtj , Ip) in-
dependent of X . Then, under Assumptions 3-4 and the above setting, as p, n→∞,

V Tx−Gtj → 0, Gtj ∼ N (m
(bin)
tj , 1), where m

(bin)
tj =

ỹTD
1
2
cMD

− 1
2

c etj√
ỹT(D

1
2
cMD

1
2
c +Dc)ỹ

.

From Corollary 1, denoting m̂
(bin)
t1 the natural consistent estimate for m(bin)

t1 (as per Remark 1), the
optimal class allocation decision for x reduces to the “averaged-mean” test

V Tx = V (y)Tx
Ct1
≷
Ct2

1

2

(
m̂

(bin)
t1 + m̂

(bin)
t2

)
(2)

4For simplicitly, we avoid the scenario where the eigenvalues ˜̀j appear with multiplicity, which would require
to gather the eigenvectors into eigenspaces. This would in effect only make the notations more cumbersome.
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with corresponding classification error rate εt ≡ 1
2P (x → Ct2|x ∈ Ct1) + 1

2P (x → Ct1|x ∈ Ct2)
(assuming equal prior class probability) given by

εt ≡ P
(
V Tx

Ct1
≷
Ct2

1

2
(m̂

(bin)
t1 + m̂

(bin)
t2 )

)
= Q

(
1

2
(m

(bin)
t1 −m

(bin)
t2 )

)
+ o(1). (3)

From the expression of m(bin)
tj , the asymptotic performance clearly depends on a proper choice of ỹ.

This expression being quadratic in ỹ, the εt minimizer ỹ = ỹ?[t] assumes a closed-form:

ỹ?[t] ≡ arg max
ỹ∈R2k

(m
(bin)
t1 −m

(bin)
t2 )2 = D−

1
2

c (M+ I2k)
−1MD−

1
2

c (et1 − et2).

Letting ˆ̃y?[t] be the natural consistent estimator of ỹ?[t] (again from Remark 1), and updating V =

V (ỹ[t]) accordingly, the corresponding (asymptotically) optimal value ε?t of the error rate εt is

ε?t = Q
(

1

2

√
(e

[2k]
t1 − e

[2k]
t2 )TD−

1
2

c M (M+ I2k)
−1MD−

1
2

c (e
[2k]
t1 − e

[2k]
t2 )

)
+ o(1). (4)

This formula is instructive to discuss: under strong or weak task correlation, ỹ?[t] implements differing
strategies to avoid negative transfers. For instance, if µT

tjµt′j′ = 0 for all t′ 6= t and j, j′ ∈
{1, . . . ,m}, then the two rows and columns ofM associated to Task t are all zero but on the 2× 2
diagonal block: ỹ?[t] is then all zeros but on its two Task-t elements; any other value at these zero-entry
locations (such as the usual ±1) is suboptimal and possibly severely detrimental to classification.
Letting ỹ[t] = [1,−1, . . . , 1,−1]T is even more detrimental when µT

tjµt′j′ < 0 for some t′ 6= t′:
when the mapping of classes across tasks is reversed, these tasks work against the classification.

Remark 2 (On Bayes optimality) Under the present MTL setting of a mixture of two isotropic ran-
dom Gaussian vectors, the authors recently established that the Bayes optimal error rate (associated
to the decision rule infg P (g(x) > 0 | x ∈ Ct1)) precisely coincides with ε?t1.5 This proves here that,
at least under the present data configuration, the proposed SPCA-MTL framework is optimal.

4.3 Binary-based multi-class classification

Having an optimal binary classification framework for every task and every pair of classes, one may
expect to reach high performance levels in generic multi-class settings by resorting to a one-versus-all
extension of the binary case. For every target task t, one-versus-all implements m binary classifiers:
classifier ` ∈ {1, . . . ,m} separates class Ct` – locally renamed “class C(`)t1 ” – from all other classes
– gathered as a unique “class C(`)t2 ”. Each binary classifier is then “optimized” using labels ỹ?(`)[t]

as per Equation (4); however, the joint class C(`)t2 is here composed of a Gaussian mixture: this
disrupts with our optimal framework, thereby in general leading to suboptimal labels; in practice
though, for sufficiently distinct classes, the (suboptimal) label ỹ?(`)[t] manages to isolate the value

m
(bin)
t` = m

(bin,`)
t1 for class Ct` = C(`)t1 from the values m(bin)

tj of all other classes Ctj , j 6= `, to such

an extent that (relatively speaking) these m
(bin)
tj can be considered quite close, and so close to their

mean m
(bin,`)
t2 , without much impact on the classifier performance. Finally, the class allocation for

unknown data x is based on a largest classifier-score. But, to avoid biases which naturally arise in the
one-versus-all approach [9, Section 7.1.3], this imposes that them different classifiers be “comparable
and aligned”. To this end, we exploit Corollary 1 and Remark 1 which give a consistent estimate
of all classifier statistics: the test scores for each classifier can be centered so that the asymptotic
distribution for class C(`)t1 is a standard normal distribution for each 1 ≤ ` ≤ m, thereby automatically
discarding biases. Thus, instead of selecting the class with largest score arg max` V (y

?(`)
[t] )Tx (as

conventionally performed [9, Section 7.1.3]), the class allocation is based on the centered scores
arg max`{V (y

?(`)
[t] )Tx−m

(bin,`)
t1 }.6 These discussions result in Algorithm 1.

5The result builds on recent advances in physics-inspired (spin glass models) large dimensional statistics; see
for instance [26] for a similar result in a single task semi-supervised learning setting. Being a parallel work of
the same authors, the reference is concealed in the present version to maintain anonymity.

6More detail and illustrations are provided in the supplementary material.
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Algorithm 1: Proposed multi-class MTL SPCA algorithm.

Input: Training X = [X[1], . . . , X[k]], X[t′] = [X[t′]1, . . . , X[t′]m], X[t′]` ∈ Rp×nt′` and test x.
Output: Estimated class ˆ̀∈ {1, . . . ,m} of x for target Task t.
Center and normalize the data per task using z-score normalization [36].
for ` = 1 to m do

Estimate c andM (from Remark 1) using X[t′]` as data of class C(`)t′1 for each t′ ∈ {1, . . . , k}
and {X[t′]1, . . . , X[t′]m} \ {X[t′]`} as data of class C(`)t′2 .

Evaluate labels ỹ?(`)[t] = D−
1
2

c (M+ I2k)
−1MD−

1
2

c (e
[2k]
t1 − e

[2k]
t2 ).

Compute the classification score g(`)x,t = ỹ
?(`)T
[t] JTXTx/‖ỹ?(`)T[t] JTXT‖.

Estimate m
(bin,`)
t1 as m̂(bin,`)

t1 from Corollary 1.
end for
Output: ˆ̀= arg max`∈{1,...,m}(g

(`)
x,t − m̂

(bin,`)
t1 ).
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p MTL SPCA MTL LSSVM CDLS
16 0.34 s 4.15 s 7.16 s
32 0.34 s 4.46 s 7.43 s
64 0.39 s 5.38 s 8.61 s
128 0.40 s 8.28 s 8.80 s
256 0.55 s 12.2 s 11.9 s
512 0.57 s 48.3 s 17.5 s
1024 0.88 s 315.6 s 27.1 s
2048 2.02 s 1591.8 s 73.5 s

Figure 2: (Left) Theoretical (Th)/empirical (Emp) error rate for 2-class Gaussian mixture transfer
with means µ1 = e

[p]
1 , µ⊥1 = e

[p]
p , µ2 = βµ1 +

√
1− β2µ⊥1 , p = 100, n1j = 1 000, n2j = 50;

(Right) running time comparison (in sec); n = 2p, ntj/n = 0.25. Averaged over 1 000 test samples.

5 Supporting experiments

We here compare the performance of Algorithm 1 (MTL SPCA), on both synthetic and real data
benchmarks, to competing state-of-the-art methods, such as MTL-LSSVM [46] and CDLS [21].7

Transfer learning for binary classification. First consider a two-task two-class (k,m = 2) sce-
nario with x(j)t` ∼ N ((−1)jµt, Ip), µ2 = βµ1 +

√
1− β2µ⊥1 for µ⊥1 any vector orthogonal to µ1 and

β ∈ [0, 1] controlling inter-task similarity. Figure 2 depicts the empirical and theoretical classification
error ε2 for the above methods for p = 100 and n = 2 200; for completeness, the single-task SPCA
(ST-SPCA) of Section 3 (which disregards data from other tasks) as well as its naive MTL extension
with labels ỹ[t] = [1,−1, . . . , 1,−1]T (N-SPCA) were added. MTL SPCA properly tracks task
relatedness, while CDLS fails when both tasks are quite similar. MTL LSSVM shows identical
performances but at the cost of setting optimal hyperparameters. Probably most importantly, when
not optimizing the labels y, the performance (of N-SPCA) is strongly degraded by negative transfer,
particularly when tasks are not related. Figure 2 also provides typical computational times for each
algorithm when run on a modern laptop, and confirms that Algorithm 1 scales very favorably with
the data dimension p, while MTL LSSVM and CDLS quickly become prohibitively expensive.

Transfer learning for multi-class classification. We next experiment on the ImageClef dataset
[22] made of 12 common categories shared by 3 public data “domains”: Caltech-256 (C), ImageNet
ILSVRC 2012 (I), and Pascal VOC 2012 (P). Every pair of domains is successively selected as

7We insist that MTL SPCA is intended to function under the constraint of scarce data and does not account
for the very nature of these data: to avoid arbitrary conclusions, image- or language-dedicated MTL and transfer
learning methods (e.g., modern adaptions of deep nets for transfer learning [45]) are not used for comparison.
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S/T P→ I P→C I→P I→C C→P C→ I Average
ST SPCA 91.84 96.24 82.26 96.24 82.26 91.84 90.11
N-SPCA 92.21 96.37 84.34 95.97 81.34 90.47 90.12
MTL LSSVM 93.03 97.24 84.79 97.74 83.74 94.92 91.91
CDLS 92.03 94.62 84.82 95.72 81.04 92.54 90.13
MTL SPCA 93.39 96.61 85.24 96.68 83.76 93.39 91.51

Table 1: Transfer learning accuracy for the ImageClef database: P(Pascal), I(Imagenet), C(Caltech);
different “Source to target” task pairs (S→T) based on Resnet-50 features.

101 102

0.2

0.25

Number of tasks

’MTL SPCA’

’N-SPCA’

’ST-SPCA’

Books DVD Elec
0.18

0.2

0.22

0.24

Added task

’MTL SPCA’

’N-SPCA’

’ST-SPCA’

[7-9] [3-8] [5-6] [2-9] [3-5]

0.1

0.2

0.3

Added task

’N-SPCA’

’MTL SPCA’

’ST-SPCA’

Figure 3: Empirical classification error vs. number of tasks; (Left) Synthetic Gaussian with random
task correlation: p = 200, n11 = n12 = 50, n21 = n22 = 5, 10 000 test samples; (Center)
Amazon Review: n11 = n12 = 100, n21 = n22 = 50, 2 000 test samples; (Right) MNIST: initial
p = 100-PCA preprocessing, n11 = n12 = 100, n21 = n22 = 50, 500 test samples.

“source” and a “target” for binary (transfer) multi-task learning, resulting in 6 transfer tasks S→T for
S,T∈ {I,C,P}. Table 1 supports the stable and competitive performance of MTL-SPCA, on par with
MTL LSSVM (but much cheaper).

Increasing the number of tasks. We now investigate the comparative gains induced when increas-
ing the number of tasks. To best observe the reaction of each algorithm to the additional tasks, we here
consider both a tunable synthetic Gaussian mixture and (less tractable) real-world data. The synthetic
data consist of two Gaussian classes with means µtj = (−1)jµ[t] with µ[t] = β[t]µ+

√
1− β2

[t]µ
⊥

for β[t] drawn uniformly at random in [0, 1] and with µ = e
[p]
1 , µ⊥ = e

[p]
p . The real-world data are

the Amazon review (textual) dataset8 [10] and the MNIST (image) dataset [14]. For Amazon review,
the positive vs. negative reviews of “books”, “dvd” and “electronics” products are added to help
classify the positive vs. negative reviews of “kitchen” products. For MNIST, additional digit pairs
are added progressively to help classify the target pair (1, 4). The results are shown in Figure 3 which
confirms that (i) the naive extension of SPCA (N-SPCA) with labels ±1 can fail to the point of being
bested by (single task) ST-SPCA, (ii) MTL-SPCA never decays with more tasks.

Multi-class multi-task classification. We finally turn to the full multi-task multi-class setting of
Algorithm 1. Figure 4 simultaneously compares running time and error rates of MTL-SPCA and
MTL-LSSVM9 on a variety of multi-task datasets, and again confirms the overall computational
gains (by decades!) of MTL-SPCA for approximately the same performance levels.

6 Conclusion

Following recent works on large dimensional statistics for the design of simple, cost-efficient,
and tractable machine learning algorithms [13], the article confirms the possibility to achieve high
performance levels while theoretically averting the main sources of biases, here for the a priori difficult
concept of multi-task learning. The article, we hope, will be followed by further investigations of
sustainable AI algorithms, driven by modern mathematical tools. In the present multi-task learning

8Encoded in p = 400-dimensional tf*idf feature vectors of bag-of-words unigrams and bigrams.
9CDLS only handles multi-task learning with k = 2 and cannot be used for comparison.
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10−1
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time (s) Datasets (Features) Tasks Classes Mark
Synthetic (Gaussian) 3 10 ◦

Office-Caltech[17] (VGG) 4 10 �
Office 31[42] (Resnet-50) 4 31 �

Office-Home[47] (Resnet-50) 3 65 4
Image-Clef[22] (Resnet-50) 3 12 	

Figure 4: (Left) Runtime vs. classification error (εt) for multi-task multi-class MTL-LSSVM (filled
marks) and MTL-SPCA (empty marks). (Right) Datasets. Synthetic: µj = 2e

[p]
j , µ⊥j = 2e

[p]
p−j ,

β1 = 0.2, β2 = 0.4, β3 = 0.6; p = 200, n1j = n2j = 100, n3j = 50; 1 000 test sample averaging.

framework, practically realistic extensions to semi-supervised learning (when labelled data are scarce)
with possibly missing, unbalanced, or incorrectly labelled data are being considered by the authors.
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Abstract

This document contains the main technical arguments omitted in the core of the
article due to space limitation and is organized as follows. Section 1 details the
large dimensional analysis of PCA. Section 2 provides the asymptotic performance
of SPCA in the most general case of a Gaussian mixture model (with arbitrary
means and covariances) in a multi-task setting. The single-task setting is retrieved
as a special case. Section 3 details and illustrates the binary-based multi-class
classification and proposes alternative schemes to the one-versus-all approach
covered in the main article. Supplementary experiments are provided in Section 4.

1 Large dimensional analysis of Single Task PCA

We recall that the solution U of PCA is explicitly given by the collection of the eigenvectors
associated with the τ largest eigenvalues of 1

pXX
T. The goal of this section is to compute the

isolated eigenvalues of 1
pXX

T and to study the behavior of the projection of a new test data on the
feature space spanned by PCA under the large dimensional regime.

Assumption 1 (Distribution of X and x) The columns of X are independent random vectors with
X = [X1, . . . , Xm], Xj = [x

(j)
1 , . . . , x

(j)
nj ] ∈ Rp×nj where x(j)

i ∼ N (µj , Ip). As for x, it follows
an independent N (µx, Ip) distribution. We will further denote x ∈ Cj to indicate that data vector x
belongs to class j, i.e., x ∼ N (µj , Ip).

Assumption 2 (Growth Rate) As n→∞, p/n→ c0 > 0 and, for 1 ≤ j ≤ m, nj

n → cj > 0; we
will denote c = [c1, . . . , cm]T. Furthermore, the latent feature space dimension τ is constant with
respect to n, p.
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1.1 Isolated eigenvalues

To retrieve the isolated eigenvalues of 1
pXX

T, we simply aim to solve the determinant equation in
z ∈ R+

det

(
1

p
XXT − zIp

)
= 0.

Writing X = MJT + W with M = [µ1, . . . , µm] ∈ Rp×m, J = [j1, . . . , jm], where jj =
(0, . . . , 0,1nj

, 0, . . . , 0)T and where W is a random matrix with independent standard Gaussian
entries, this becomes

det

(
1

p
WWT + UVT − zIp

)
= 0, (1)

where U = 1√
p [M,WJ ] ∈ Rp×2m and V = 1√

p [MJTJ+WTJ,M ] ∈ Rp×2m are low rank matrices

(as n, p→∞); as for 1
pWWT, its limiting eigenvalue distribution under Assumption 2 is known as

the Marc̆enko-Pastur law [5], recalled next in whole generality:

Theorem 1 Let W be a p × n matrix with i.i.d. real- or complex-valued entries with zero mean
and unit variance. Then, as n, p → ∞ such that p/n a.s.−→ c0, the empirical spectral measure
µĈ = 1

p

∑p
i=1 δλ̂i

of the eigenvalues λ̂1 ≥ . . . ≥ λ̂p of 1
pWWT, converges weakly, with probability

one, to a nonrandom distribution, known as the Marc̆enko–Pastur law and denoted µc0MP. If c0 ∈ (0, 1),
µc0MP has density:

µc0MP(dx) =

√
(λ+ − x)(x− λ−)

2πc0x
dx

where λ± = (1±
√

1/c0)2. If c0 ∈ (1,∞), µMP is the weighted sum of a point mass at 0 and of the
density µ1/c0

MP with weights 1− (1/c0) and 1/c0.

The spectrum of 1
pWWT, which contains no structural information (generally refer as a “noise

bulk”), will not be of interest for classification. The challenge is to determine which observed
eigenvalues actually represent the class structure. Specifically, let us seek for the presence of an
eigenvalue λj of 1

pXX
T asymptotically greater than the limit (1 +

√
1/c0)2 of the largest eigenvalue

of 1
pWWT. Following the initial ideas of [1, 2], the approach is to isolate the low rank contribution

UVT from the noise matrix 1
pWWT. Factoring out 1

pWWT − zIp and using Sylverster’s identity
(det(AB + I) = det(BA+ I)), Equation (1) is equivalent to:

det
(
VTQ(z)U + I2m

)
= 0, with Q(z) =

(
1

p
WWT − zIp

)−1

.

We next retrieve the large dimensional limit (or, more specifically a deterministic equivalent [4,
Chapter 6]) of VTQ(z)U+I2m under Assumptions 1 and 2. Defining the resolvents and co-resolvents
Q(z) = ( 1

pWWT−zIp)−1 and Q̃(z) = ( 1
pW

TW −zIn)−1 , as n, p→∞ with p/n→ c ∈ (0,∞),
we have

Q(z)↔ Q̄(z), Q̄(z) = δ(z)Ip

Q̃(z)↔ ¯̃Q(z), ¯̃Q(z) = δ̃(z)In

where (δ̃(z), δ(z)) are defined as

δ(z) =
c0 − 1− c0z +

√
(c0 − 1− c0z)2 − 4z

2z
, δ̃(z) =

1

c0

(
δ(z) +

1− c0
z

)
and the notation F ↔ F̄ stands for the fact that, under Assumption 2, for any deterministic linear
functional f : Rn×p → R, f(F − F̄ ) → 0 almost surely (for instance, for u, v of unit norm,
uT(F−F̄ )v

a.s.−→ 0 and, forA ∈ Rp×n deterministic of bounded operator norm, 1
n trA(F−F̄ )

a.s.−→ 0).
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In particular, developing the definitions of V and U ,

det
(
VTQ(z)U + I2m

)
= det

(
Im + 1

pJ
TJMTQ(z)M + 1

pJ
TWTQ(z)M 1

pJ
TJMTQ(z)WJ + 1

pJ
TWTQ(z)WJ

1
pM

TQ(z)M Im + 1
pM

TQ(z)WJ

)
and we then have, from the above deterministic equivalents, that

det
(
VTQ(z)U + I2m

)
= det

(
Im + δ(z)J

TJ
p MTM (1 + zδ̃(z))JTJ

δ(z) 1
pM

TM Im

)
+ o(1)

= det

(
Im − zδ̃(z)δ(z)

JTJ

p
MTM

)
+ o(1).

The limiting position of the (hypothetical) isolated eigenvalues z is therefore solution of:

det
(
Im − zδ̃(z)δ(z)M

)
= 0

whereM = lim
p→∞

1
c0
D

1
2
c MTMD

1
2
c . Denoting `1 ≥ . . . ≥ `m the eigenvalues ofM, the eigenvalues

z = λ̂i such that λ̂i > (1 +
√

1/c0)2 are explicit and pairwise associated to `i whenever:

λ̂i =
1

c0
+ 1 + `i +

1

c0`i
> (1 +

√
1/c0)2

which occurs if and only if `i ≥ 1√
c0

. This completes the proof of Proposition 1.

1.2 PCA projectors

In this section, the goal is to study the asymptotic behavior of uTi x|x ∈ Cj , for i ≤ τ . Since
conditionally on the training data X , uTi x is expressed as the projection of the deterministic vector ui
on the isotropic gaussian random vector x, it follows that uTi x is asymptotically Gaussian.

Computation of the mean. Since ui is independent from x, we have conditionally to the training
data X that E[uTi x] = µT

j ui. It then remains to compute the expectation with respect to X . First,
since ui is defined up to a sign, we may impose

µT
j ui =

µT
j uiu

T
i 1p/p√

1T
puiu

T
i 1p/p2

(2)

Using the Cauchy’s integral formula, we have for any vector a ∈ Rp of bounded norm (i.e.
lim
p→∞

‖a‖ <∞),

aTuiu
T
i

1p
p

=
−1

2πı

∮
γi

aT
(

1

p
WWT + UVT − zIp

)−1 1p
p

=
−1

2πı

∮
γi

aT
(
Q(z)−Q(z)U

(
I2m + VTQ(z)U

)−1 VTQ(z)
) 1p
p

=
1

2πı

∮
γi

aTQ(z)U
(
I2m + VTQ(z)U

)−1 VTQ(z)
1p
p

with γi a contour surrounding only the isolated eigenvalues λ̂i of 1
pXX

T.

Using the deterministic equivalents of Q̃(z) and Q(z), we have

aTQ(z)U ↔ 1
√
p

[δ(z)aTM, 01×m]

Im + VTQ(z)U ↔

(
Im + δ(z)J

TJ
p MTM (1 + zδ̃(z))JTJ

δ(z) 1
pM

TM Im

)

VTQ(z)
1p
p
↔ 1
√
p

(
δ(z)JTJMT 1p

p

δ(z)MT 1p

p

)
.
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Altogether, this gives :

aTuiu
T
i

1p
p
↔ −1

2πı

∮
γi

zδ̃(z)δ(z)2aTMD
1
2
c

ūiū
T
i

1− zδ(z)δ̃(z)`i
D

1
2
c M

T 1p
p
dz

with ūi the eigenvector ofM associated to the eigenvalue `i. The only pole of the integrand inside γi
is the isolated eigenvalue λ̂i. From the residue theorem, this gives

aTuiu
T
i

1p
p
↔ c0`i − 1

`2i (`i + 1)
aTMD

1
2
c ūiū

T
i D

1
2
c M

1p
p
.

Finally, using Equation (2), we conclude

µT
j ui

a.s.−→

√
c0`i − 1

`2i (`i + 1)
ūTiMD

− 1
2

c e
[m]
j .

Computation of the variance. The computation is immediate since U is orthonormal, therefore
Var(uTi x) = 1.

2 Large dimensional analysis of Multi-Task SPCA

We recall that the solution V of SPCA is explicitly given by the collection of the eigenvectors
associated with the τ largest eigenvalues of 1

pX
yyT

n XT. The goal of this section is to evaluate the
position of these isolated eigenvalues and to study the behavior of the projection of a new test data on
the feature space spanned by SPCA under the large dimensional regime.

Assumption 3 (Distribution of X) For class j of Task t, denoted Ctj , x(j)
t` ∼ N (µtj ,Σtj), for some

µtj ∈ Rp. We further denote M ≡ [µ11, . . . , µkm] ∈ Rp×mk.

Assumption 4 (Growth Rate) As n→∞, p/n→ c0 > 0 and, for 1 ≤ j ≤ m, ntj/n→ ctj > 0;
we denote c = [c11, . . . , ckm]T ∈ Rkm, and Dc = diag(c). Besides,

(1/c0)D
1
2
c M

TMD
1
2
c →M ∈ Rmk×mk,

lim sup
p

max

(
1

p
trΣtjΣt′j′ ,

1

p
trΣtj

)
<∞

2.1 Isolated eigenvalues

The eigenvalues of 1
pX

yyT

n XT are solutions of

det

(
1

p
XJ

ỹỹT

n
JTXT − zIp

)
= det

(
1

p
(ỹỹT)

1
2 JTX

TX

n
J(ỹỹT)

1
2 − zIm

)
Besides we have

1

n
JTX

TX

p
J ↔ 1

n
JTDṽJ +

1

c0
DcMTMDc

with ṽ = [ṽ11, . . . , ṽk2], ṽtj = lim
p→∞

1
p trΣtj .

Therefore, the isolated eigenvalues are, in the large n, p limit, the eigenvalues of H =

(ỹỹT)
1
2

(
1
nJ

TDṽJ +D
1
2
cMD

1
2
c

)
(ỹỹT)

1
2 . In the case of identity covariance structure treated in

the main article, ṽtj = 1, ∀t, j and therefore

H = (ỹỹT)
1
2

(
Dc +D

1
2
cMD

1
2
c

)
(ỹỹT)

1
2 .
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2.2 SPCA projectors

Computation of the mean. Since the eigenvector vi is defined up to sign, we may as above impose
that

µT
tjvi =

µT
tjviv

T
i 1p/p√

1T
p viv

T
i 1p/p2

. (3)

We have for any vector a ∈ Rp such that lim
p→∞

‖a‖ <∞,

aTviv
T
i

1p
p

=
−1

2πı

∮
γi

aT
(

1

p
XJ

ỹỹT

n
JTXT − zIp

)−1
1p
p

=
1

2πı

∮
γi

1

z
aT

1

np
XJ(ỹỹT)

1
2

(
zIm −

1

np
(ỹỹT)

1
2 JTXTXJ(ỹỹT)

1
2

)−1

(ỹỹT)
1
2 JTXT 1p

p

=
1

2πıc0

∮
γi

1

z
aTMDc(ỹỹT)

1
2 (zIm −H)

−1
(ỹỹT)

1
2DcMT 1p

p
+ o(1)

=
1

c0

1

λ̄i
aTMDc(ỹỹT)

1
2 v̄iv̄

T
i (ỹỹT)

1
2DcMT 1p

p
+ o(1)

with γi the contour surrounding the eigenvalue λ̄i ofH and v̄i the eigenvector ofH associated to λ̄i.

Therefore,

µT
tjvi

a.s.−→
√

1

λ̄i
v̄Ti (ỹỹT)

1
2D

1
2
cMD

− 1
2

c e
[mk]
tj .

Computation of the variance For the variance, conditionally to the training data X , Var(vTi x) =
vTi Σtjvi. Furthermore, it then remains to compute the expectation with respect to the training data
X:

vTi Σtjvi = tr
(
viv

T
i Σtj

)
=
−1

2πı
tr

(
Σtj

∮
γi

(
1

p
XJ

ỹỹT

n
JTXT − zIp

)−1
)

=
1

2πı
tr

(
Σtj

∮
γi

1

npz
XJ(ỹỹT)

1
2

(
zIm −

1

np
(ỹỹT)

1
2 JTXTXJ(ỹỹT)

1
2

)−1

(ỹỹT)
1
2 JTXT

)

=
1

2πı
tr

(∮
γi

1

npz
(ỹỹT)

1
2 JTXTΣtjXJ(ỹỹT)

1
2

(
zIm −

1

np
(ỹỹT)

1
2 JTXTXJ(ỹỹT)

1
2

)−1
)

=
1

λ̄i
(ỹỹT)

1
2 Ttj(ỹỹT)

1
2 + o(1)

where Ttj = 1
nJ

TDv̄J +D
1
2
cMD

1
2
c and v̄ab = lim

p→∞
1
p tr (ΣtjΣab).

When Σtj = Ip, as treated in the main article, it is immediate that Var(uTi x) = 1.

3 Binary-based multi-class classification

This section provides various applications and optimizations of the proposed MTL-SPCA framework
in the context of multi-class classification.

3.1 One-versus-all multi-class preliminary

The literature [3] describes broad groups of approaches to deal with classification with m > 2 classes.
We focus here on the most common method, namely the one-versus-all approach. The complete
optimization of one-versus-all being theoretically heavy to handle and demanding prior knowledge
on the decision output statistics, the method inherently suffers from sometimes severe practical
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limitations; these are partly tackled here exploiting the large dimensional analysis performed in this
article.

In the one-versus-all method, focusing on Task t, m individual binary classifiers, indexed by ` =
1, . . . ,m, are trained, each of them separating Class Ct` from the other m − 1 classes Ct`′ , `′ 6= `.
Each test sample is then allocated to the class index corresponding to the classifier reaching the
highest of the m classifier scores. Although quite used in practice, the approach first suffers a severe
unbalanced data bias when using binary (±1) labels as the set of negative labels in each binary
classification is on average m − 1 times larger than the set of positive labels, and also suffers a
center-scale issue when ultimately comparing the outputs of the m decision functions, the average
locations and ranges of which may greatly differ; these issues lead to undesirable effects, as reported
in [3, section 7.1.3]).

These problems are here simultaneously addressed: specifically, having access to the large dimen-
sional statistics of the classification scores allows us to appropriately center and scale the scores. Each
centered-scaled binary classifier is then further optimized by appropriately selecting the class labels
(different from ±1) so to minimize the resulting classification error. See Figure 1 for a convenient
illustration of the improvement induced by this centering-scaling and label optimization approach.

3.2 One-versus-all multi-class optimization

For each target task t, in a one-to-all approach, m MTL-SPCA binary classifications are solved with
the target class Ct` (renamed “class C`t1"), against all other C`t2 classes (combined into a single “C`t2
class”). Calling g(`)

x,t the output of the classifier ` for a new datum x in Task t, the class allocation

decision is traditionally based on the largest among all scores g(1)
x,t , . . . , g

(m)
x,t . However, this presumes

that the distribution of the scores g(1)
x,t when x ∈ C1, g(2)

x,t when x ∈ C2, etc., more or less have the
same statistical mean and variance. This is not the case in general, as depicted in the first column
of Figure 1, where data from class C1 are more likely to be allocated to class C3 (compare the red
curves).

By providing an accurate estimate of the distribution of the scores g(`)
x,t for all `’s and all genuine

classes of x, Theorem 3 of the main article allows us to predict the various positions of the Gaussian
curves in Figure 1. In particular, it is possible, for each binary classifier ` to center and scale g(`)

x,t
when x ∈ Ct`. This operation averts the centering and scaling biases depicted in the first column of
Figure 1: the result of the center-scale operation appears in the second column of Figure 1.

This first improvement step simplifies the algorithm which now boils down to determining the index
of the largest g(`)

x,t −m
(bin,`)
t1 , ` ∈ {1, . . . ,m}, while limiting the risks induced by the center-scale

biases.

This being said, our theoretical analysis further allows to adapt the input labels ỹ(`)
[t] in such a way to

optimize the expected output. Ideally, assuming x genuinely belongs to class Ct`, one may aim to
increase the distance between the output score g(`)

x,t and the other output scores g(`′)
x,t for `′ 6= `. This

however raises two technical questions:

1. Corollary 1 of the main article is derived under a 2-class Gaussian mixture model while for
classifier ` of the one-versus-all approach, the data are composed of m Gaussians, of which
one belongs to class C`t1 and the other m− 1 to class C`t2 (which remains a mixture when
m > 2). In this case, the labels express as y = Jỹ, with now ỹ ∈ Rmk (instead of R2k) for

J =

(
1n11 . . .

1nmk

)
;

2. the procedure demands to simultaneously adapt all input scores ỹ(1)
[t] , . . . , ỹ

(m)
[t] .

To solve Item 1., we extend Corollary 1 to a one-versus-all based binary classification.
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Corollary 1 (One-versus-all Binary MTL Supervised Principal Component Analysis) Let x ∼
N (µtj , Ip) independent of X . Then, under Assumptions 3-4 and the above setting, as p, n→∞,

V Tx−Gtj → 0, Gtj ∼ N (m
(bin)
tj , 1), where m

(bin)
tj =

ỹTD
1
2
cMD

− 1
2

c etj√
ỹT(D

1
2
cMD

1
2
c +Dc)ỹ

.

Note that Corollary 1 is similar to Corollary 1 of the main article but now with ỹ ∈ Rmk and
M,Dc ∈ Rmk×mk.

A first option to solve Item 2. consists in maximizing the distance between the output score g(`)
x,t

for x ∈ Ct` and the scores g(`)
x,t for x 6∈ Ct`. By “mechanically” pushing away all wrong decisions,

this ensures that, when x ∈ Ct`, g(`)
x,t is greater than g(`′)

x,t for `′ 6= `. This is visually seen in the
third column of Figure 1, where the distances between the rightmost Gaussians and the other two is
increased when compared to the second column, and we retrieve the desired behavior. Specifically,
the proposed (heuristic) label “optimization” here consists in solving, for a target Task t and each
` ∈ {1, . . . ,m} the optimization problem:

ỹ
?(`)
[t] = max

ỹ
(`)

[t]
∈Rkm

min
j 6=`

(
m

(bin),`
t` −m

(bin),`
tj

)
(4)

with Q the Gaussian q-function.

Being a non-convex and non-differentiable (due to the max) optimization, Equation (4) cannot
be solved straightforwardly. An approximated solution consists in relaxing the max operator
max(x1, . . . , xn) into the differentiable soft-max operator 1

γn log(
∑n
j=1 exp(γxj)) for some γ > 0,

and use a standard gradient descent optimization scheme, here initialized at ỹ(`)
[t] ∈ Rmk filled with

1’s at every m(i′ − 1) + `, for i′ ∈ {1, . . . ,m}, and with −1’s everywhere else.

An alternative option to tackle Item 2. (the one developed in the core article) consists in reducing
the dimension of the labels to ỹ(`)

[t] ∈ R2k by “merging” all Gaussians of class Ctj with j 6= ` into
a unique approximated Gaussian class with mean

∑
j 6=`

ntj

n−nt`
µtj . We may then (abusively) apply

Corollary 1, leading to an explicit expression of the optimal label ỹ?(`)[t] , from which Algorithm 1 in
the main article unfolds.

Figure 2 compares the “Min-Max” optimization scheme with the scheme assuming the Gaussian
approximation for class 2 (denoted “Gaussian Approx”). The two methods interestingly have
comparable performance. The synthetic data considered for this experiment consists of 2-tasks with
ten Gaussian classes with means µ1j = µj and µ2j = βµj +

√
1− β2µ⊥j .

4 Supplementary experiments

We next experiment on two transfer learning datasets:

• the Office31 dataset [6] which contains 31 object categories in three domains: Amazon (A),
DSLR (D) and Webcam (W). The Amazon images were captured from a website of online
merchants (clean background and unified scale). The DSLR domain contains low-noise high
resolution images. For Webcam, the images of low resolution exhibit significant noise and
color. Every pair of domains is successively selected as “source” and a “target” for binary
(transfer) multi-task learning, resulting in 6 transfer tasks S→T for S,T∈ {A,D,W};
• the OfficeHome dataset [7] which consists of images from 4 different domains: Artistic

images (A), Clip Art (C), Product images (P) and Real-World images (R). For each domain,
the dataset contains images of 65 object categories found typically in Office and Home
settings.

Table 1 reports the comparative performances of the various algorithms and, while exhibiting a
slight superiority for the MTL-LSSVM scheme, supports the stable and competitive performance of
MTL-SPCA.
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Figure 1: Test score distribution in a 2-task and 3 classes-per-task setting, using a one-versus-all
multi-class classification. Every graph in row ` depicts the limiting distributions of g(`)

x,t for x in
different classes. Column 1 (Classical) is the standard implementation of the one-versus-all approach.
Column 2 (Scaled scores) is the output for centered and scaled g(`)

x,t for x ∈ C`. Column 3 (Optimized

labels) is the same as Column 2 but with optimized input scores (labels) ỹ?(`)[t] . Under “classical”
approach, data from C1 (red curves) will often be misclassified as C2. With “optimized labels”, the
discrimination of scores for x in either class C2 or C3 is improved (blue curve in 2nd row further away
from blue curve in 1st row; and similarly for green curve in 3rd versus 1st row).

S/T w→ a w→ d a→w a→ d d→w d→ a Mean
score

ST-SPCA 77.63 93.72 90.09 90.51 91.33 75.43 86.45
CDLS 76.47 92.52 91.57 90.07 91.43 74.99 86.17
N-SPCA 74.10 96.44 79.59 81.94 95.10 73.15 83.39
MTL-LSSVM 80.85 97.63 93.11 91.91 95.12 79.41 89.67
MTL SPCA 77.67 96.70 90.72 91.09 94.83 76.90 87.99

Table 1: Classification accuracy over Office31 database. w(Webcam), a(Amazon), d(dslr), for
different “Source to target” task pairs (S → T ) based on Resnet-50 features.
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