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A Random Matrix Approach to Recurrent Neural Networks

Abstract

Recurrent neural networks, especially in their
linear version, have provided many qualita-
tive insights on their performance under dif-
ferent configurations. This article provides,
through a novel random matrix framework,
the quantitative counterpart of these per-
formance results, particularly in the case of
echo-state networks. Beyond mere insights,
our approach conveys a deeper understanding
on the core mechanism under play for both
training and testing.

1. Introduction

Echo-state networks (ESN’s) are part of the broader
family of recurrent neural networks, specifically ded-
icated to handling time-series related tasks (such as
prediction, non-linear interpolation, etc.) (Jaeger,
2001a;b). Their main feature, as opposed to more con-
ventional neural networks, is to rely on a fixed (but
generally randomly chosen) connectivity matrix, the
so-called reservoir, and only to enforce network-to-sink
edges during the training phase. This reduces overfit-
ting but in turn only allows for short-term memoriza-
tion capabilities, unlike backward propagated neural
networks that instead target long-term memory.

The fact that the reservoir is chosen once and for all,
instead of constantly being updated, eases the theo-
retical analysis of these networks. As such, by means
of a succession of works (e.g., (Jaeger, 2001a; Ganguli
et al., 2008; Strauss et al., 2012)), many qualitative
aspects of ESN’s have been fairly well understood. In
particular, it has been made clear that both the oper-
ator norm and the spectral radius of the connectivity
matrix play a central role in the ESN performance,
that normal versus non-normal connectivity matrices
convey strikingly different behavior, etc. However, to
the best of the authors’ knowledge, there has never
been an attempt to turn these qualitative considera-
tions into concrete quantitative figures.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Figure 1. Echo-state neural network.

The objective of the present article is to provide a first
theoretical analysis of the (mean-square error) perfor-
mance of linear ESN’s with internal noise for both
the training and the testing tasks (an illustration of
such a network is depicted in Figure 1). To this end,
we shall leverage recent tools from the field of ran-
dom matrix theory (the applications of which are so
far almost not existent in neural networks) and shall
conveniently work under the assumption that both the
reservoir size n and the training (or testing) duration T
(or T̂ ) are large and commensurable. The large dimen-
sional framework will induce concentration of measure
properties that bring asymptotic determinism in the
performance of the random outputs. These results will
take closed-form expressions which, if not completely
explicit, are nonetheless easily interpreted. Turning
the connectivity matrices into (large) random realiza-
tions of simple random matrix models, we then further
simplify these expressions that ultimately lead to ele-
mentary formulas.

Among the noteworthy outcomes of these theoretical
results, we shall understand deeply the impact of nor-
mal versus non-normal matrices in the training and
testing performance as well as the impact of the inter-
nal noise as not only an overfitting shield but also as
a major driver of robustness to erratic data. We shall
also propose a new connectivity matrix design, coined
multi-memory matrix, the performance of which is
fully understood, that helps handling time series with
multiple-scale memory properties.

Note in passing that, beyond their machine learning
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A Random Matrix Approach to Recurrent Neural Networks

attractiveness for obvious network stability reasons
(although ridge regularized networks without internal
noise are often preferred), ESN’s with in-network noise
appropriately model biological short-term memory in
the brain. Our results may then also embrace both the
neurophysiology and neurocomputation fields.

In the remainder of the article, we shall first introduce
the necessary random matrix toolbox used through-
out the article (and so far not conventional in machine
learning), before addressing the question of estimating
the performance of network training and testing tasks.
Applications of our results will be discussed next, be-
fore closing on a reflective discussion. The technical
results found throughout the paper are proved in an
extended version of the present article.

2. The Random Matrix Framework

Before delving into the concrete ESN performance, we
shall first consider the elementary objects under study
from a random matrix perspective.

We assume here an n-node ESN with connectivity ma-
trix W ∈ Rn×n, source-to-reservoir vector m ∈ Rn,
states xt ∈ Rn, t = −∞, . . . ,∞, and in-network noise
ηεt ∼ N (0, η2In), fed by a scalar input ut ∈ R. The
state evolution equation follows:

xt+1 = Wxt +mut+1 + ηεt+1. (1)

The ESN will be trained for a period T and tested for
a period T̂ , using a least-square regression approach.
Denoting X = [x0, . . . , xT−1] ∈ Rn×T , it shall appear
in Section 3 that the mean-square error performance
in training relies fundamentally on the matrices

Qγ ≡
(

1

T
XXT + γIn

)−1

Q̃γ ≡
(

1

T
XTX + γIT

)−1

(2)

for γ > 0. These matrices, respectively called resol-
vent and co-resolvent of the Gram matrix 1

TXX
T in

the operator theory jargon, have been extensively used
in random matrix theory for various models of X (Bai
& Silverstein, 2009; Pastur & Ŝerbina, 2011) with mul-
tiple applications to engineering notably (Couillet &
Debbah, 2011). The model of X defined through (1)
is not part of those models studied in classical random
matrix works, but the technical tools exist to handle
it. Precisely, we shall use here the Gaussian framework
devised by Pastur (Pastur & Ŝerbina, 2011), based on
an integration-by-parts formula for Gaussian random
variables and the so-called Nash–Poincaré inequality.

To this end, we first need elementary growth assump-
tions on the size n and the periods T and T̂ .

Assumption 1 Define the matrix A = MU with
M = [m,Wm, . . . ,WT−1m] and U = T−

1
2 {uj−i}T−1

i,j=0.
Then, as n→∞,

1. n/T → c ∈ (0,∞) and n/T̂ → ĉ ∈ [0,∞)

2. lim supn ‖W‖ < 1

3. lim supn ‖AAT‖ <∞

with ‖ · ‖ the operator norm.

For notational convenience, we define the relation
Xn ↔ Yn to mean that the (random or determinis-
tic) matrices Xn, Yn satisfy aTn(Xn − Yn)bn → 0, al-
most surely, for all deterministic unit norm vectors an,
bn. Under Assumption 1, applying the aforementioned
Gaussian framework, we have the following result.

Theorem 1 (Deterministic Equivalent) Let As-
sumption 1 hold. For γ > 0, and with Qγ and Q̃γ
defined in (2), as n→∞,

Qγ ↔ Q̄γ ≡
1

γ

(
In + η2R̃γ +

1

γ
A
(
IT + η2Rγ

)−1
AT

)−1

Q̃γ ↔ ¯̃Qγ ≡
1

γ

(
IT + η2Rγ +

1

γ
AT
(
In + η2R̃γ

)−1

A

)−1

where Rγ ∈ RT×T and R̃γ ∈ Rn×n are solutions to

Rγ =

{
1

T
tr
(
Si−jQ̄γ

)}T
i,j=1

R̃γ =

∞∑
q=−∞

1

T
tr
(
Jq ¯̃Qγ

)
Sq

with [Jq]ij ≡ δi+q,j, Sq ≡
∑
k≥0W

k+(−q)+(W k+q+)T.

Theorem 1 precisely states that any random bilinear
form of the type aTnQγbn for deterministic an, bn, can
be well approximated, for all large n, T , by the de-
terministic quantity aTnQ̄γbn. As shall be seen in Sec-
tion 3, this will provide us with a deterministic approx-
imation of the training performance of ESN’s. Note in
passing that Theorem 1 is strongly reminiscent of the
earlier results (Hachem et al., 2006) in a close but dif-
ferent context, and are thus not surprising.

The testing phase performance is more involved and
does not solely rely on a single Qγ-type matrix. This
is because this phase involves both the trained dataset
X and the newly observed states X̂ = [x̂0, . . . , x̂T̂−1],
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A Random Matrix Approach to Recurrent Neural Networks

where x̂t = xt+L for some L � T (we assume here
a post-training wash-out step for simplicity). Surpris-
ingly enough, we shall not need the advanced statistics
of X̂ explicitly (as opposed to X as seen previously)
but shall rather exploit its independence from X. As
such, the quantities at stake here are the matrices

1√
T
QγX,

1

T
XTQγBQγX

for B any symmetric matrix independent of X such
that lim supn ‖B‖ <∞. Precisely, we have the follow-
ing second deterministic equivalents.

Theorem 2 (Second deterministic equivalent)
Let Assumption 1 hold and let B ∈ Rn×n be a sym-
metric matrix of bounded spectral norm, independent
of X. Then, recalling the notations of Theorem 1, for
every γ > 0,

Qγ
1√
T
X ↔ Q̄γA(In + η2Rγ)−1

1

T
XTQγBQγX ↔ η2γ2 ¯̃QγG

[B]
γ

¯̃Qγ

+ PTQ̄γ

[
B + G̃[B]

γ

]
Q̄γP

with P = A(In + η2Rγ)−1 and where G
[B]
γ , G̃

[B]
γ are

solutions to

G[B]
γ =

{
1

T
tr
(
Si−jQ̄γ

[
B + G̃[B]

γ

]
Q̄γ

)}T
i,j=1

G̃[B]
γ =

∞∑
q=−∞

η4γ2 1

T
tr
(
Jq ¯̃QγG

[B]
γ

¯̃Qγ

)
Sq.

Equipped with these technical results, we are now
in position to provide our main contribution to the
asymptotic performance of ESN as n, T, T̂ →∞.

3. Asymptotic Performance

Recall that the ESN under study is defined by the
state equation (1). We shall successively discuss the
performance of the training and testing steps of this
linear ESN.

3.1. Training Performance

In the training phase, one wishes to map an input se-
quence u = [u0, . . . , uT−1]T to a corresponding known
output sequence r = [r0, . . . , rT−1]T. To this end, we
shall enforce the reservoir-to-sink connections of the
network, gathered into a vector ω ∈ Rn and depicted
in color in Figure 1, so to minimize the quadratic re-
construction error

Eη(u, r) ≡ 1

T

∥∥XTω − r
∥∥2
.

The solution to this classical problem is to take ω to
be the least-square regressor

ω ≡
{

(XXT)−1Xr , T > n
X(XTX)−1r , T ≤ n. (3)

To such an ω are associated an Eη(u; r) which it is
convenient to see here as

Eη(u, r) =

{
limγ↓0 γ

1
T r

TQ̃γr , T > n
0 , T ≤ n (4)

where Q̃γ was defined in (2).

Applying Theorem 1 in the limit where γ → 0, we have
the following first limiting performance result.

Proposition 1 (Training MSE) Let Assumption 1
hold and let r ∈ RT be a vector of Euclidean norm
O(
√
T ). Then, with Eη(u, r) defined in (4), as n→∞,

Eη(u, r)↔
{

1
T r

TQ̃r , c < 1
0 , c > 1.

where, for c < 1,

Q̃ ≡
(
IT +R+

1

η2
ATR̃−1A

)−1

and R, R̃ are solutions to1

R = c

{
1

n
tr
(
Si−jR̃−1

)}T
i,j=1

R̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT +R)−1

)
Sq.

Although seemingly not simple, note that, by writing

ATR̃−1A = UT
{
mT(W i−1)TR̃−1W j−1m

}T
i,j=1

U

the matrix Q̃ involved in the asymptotic expression for
Eη(u, r) clearly features independently:

• the input data matrix U composed in columns
of the successive delayed versions of the vector
T−

1
2 [u−(T−1), . . . , uT−1]T;

• the network structuring matrices R and
(W i−1)TR̃−1W j−1;

• the factor η−2, not present in R, R̃, which trades
off the need for regularizing the ill-conditioned
matrixATR̃−1A (through the matrixM inA) and
the need to increase the weight of the information-
carrying matrix ATR̃−1A (through the matrix U
in A).

1R and R̃ are rigorously the limits of Rγ and γR̃γ from
Theorem 1, respectively, as γ ↓ 0.
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A Random Matrix Approach to Recurrent Neural Networks

Note in particular that, since ‖W‖ < 1, the matrix
{mT(W i−1)TR̃−1W j−1m}Ti,j=1 has an exponentially
decaying profile down the rows and columns (essen-
tially decaying with i + j). As such, all but the first

few columns of R̃− 1
2MU vanish as n, T grow large,

providing us with a first testimony of the ESN short
term memory specificity, since only the first columns
of U (i.e., the first delays of {ut}) are accounted for.

The matrix R̃− 1
2M then plays the important role of

tuning the memory decay.

A particularly interesting scenario is when c = 0 (i.e.,
n/T → 0). In this case, it is immediate that R = 0
and R̃ = S0 =

∑
k≥0W

k(W k)T, so that

Eη(u, r) ≡ η2

T
rT
(
η2IT + UTMTS−1

0 MU
)−1

r

where [MTS−1
0 M ]kk = mT(W k−1)TS−1

0 W k−1m is rec-
ognized to be J(k−1) with J the Fisher memory curve
introduced in (Ganguli et al., 2008). The latter was
shown to provide a qualitative measure of the capacity
of the ESN to store a k-step delayed information. In
Proposition 1, the notion is generalized to account for
the finiteness of T with respect to n (i.e., c > 0) and,
even when c = 0, conveys a non trivial importance to
the off-diagonal terms mT(W i−1)TR̃−1W j−1m, i 6= j.

3.2. Testing Performance

Having considered the training performance in Sec-
tion 3.1, we now assume ω given through its definition
(3). To avoid unnecessary complications, we shall stick
here to the case where c < 1 and leave the case c > 1
to the extended version of the article. We wish to
evaluate the performance in testing new data inputs
û = [û0, . . . , ûT̂−1]T which ought to be mapped by the

ESN to the desired output r̂ = [r̂0, . . . , r̂T̂−1]T. Thus
our next quantity of interest is the mean square error

Êη(u, r; û, r̂) =
1

T̂

∥∥∥r̂ − X̂Tω
∥∥∥2

where X̂ = [x̂0, . . . , x̂T̂−1] with x̂t = xt+L for some
L sufficiently large (larger than 2T , say) to ensure ap-
proximate independence between {x̂t} and {xt}. That
is, we assume a sufficiently long wash-out period be-
tween training and testing (as conventionally done).
Alternatively, one may merely reinitialize the network
after training and generate a sufficiently long dry-run
period prior to testing. Similarly, we shall denote next

Â = M̂Û with Ûij = ûj−i and M̂ = [m, . . . ,W T̂−1m].

Developing the expression of Êη(u, r; û, r̂), it is conve-

nient to observe that

Êη(u, r; û, r̂) =
1

T̂
‖r̂‖2 + lim

γ↓0

1

T 2T̂
rTXTQγX̂X̂

TQγXr

− lim
γ↓0

2

T T̂
r̂TX̂TQγXr.

We may then straightforwardly apply Theorem 2 in
the limit of vanishing γ to retrieve the testing coun-
terpart of Proposition 1 as follows.

Proposition 2 (Testing MSE) Let Assumption 1

hold with c < 1 and let r̂ ∈ RT̂ be a vector of Euclidean

norm O(
√
T̂ ). Then, as n→∞, with the notations of

Proposition 1,

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
ÂTQP r√

T
− r̂√

T̂

∥∥∥∥∥
2

+
1

T
rTQ̃GQ̃r

+
1

η2T
rTPTQ

[
S0 + G̃

]
QPr

with P = A(IT +R)−1 and (G, G̃) solution to

G = c

{
1

n
tr
(
Si−jR̃−1

[
S0 + G̃

]
R̃−1

)}T
i,j=1

G̃ =

∞∑
q=−∞

1

T
tr
(
Jq(IT +R)−1G(IT +R)−1

)
Sq.

Note that the deterministic approximation for
Êη(u, r; û, r̂) in Proposition 2 may be divided into a
first term involving û, r̂ and the next two terms only
involving u, r. As such, once training is performed,
only the former term may alter the asymptotic perfor-
mance. Again, the case c = 0 leads to simpler expres-
sions, as G = 0 and G̃ = 0 in this case, so that

Êη(u, r; û, r̂)↔

∥∥∥∥∥ÂT
(
η2S0 +AAT

)−1
A

r√
T
− r̂√

T̂

∥∥∥∥∥
2

+
1

T
rTAT

(
η2S0 +AAT

)−2
Ar.

In order to validate the results of Section 3.1 and Sec-
tion 3.2, we provide in Figure 2 an example of simu-
lated versus asymptotic performance for a prediction
task over the popular Mackey–Glass model (Glass &
Mackey, 1979). Disregarding for the moment the dif-
ference between the two displayed theoretical curves,
note importantly that the accuracy of the approxima-
tion, while increasing as it should for larger values
of n, T, T̂ , may strongly decrease as η2 → 0. This
is an expected outcome (from deeper mathematical
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A Random Matrix Approach to Recurrent Neural Networks

analysis of the proofs of our propositions) which is
reminiscent of the ESN instability observed and doc-
umented in (Jaeger, 2001b) as the internal noise van-
ishes. As a matter of fact, it can be shown that one
needs η2 � n−

1
2 for a theoretical guarantee that the

approximation is accurate.
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Figure 2. Training and testing (normalized) MSE for the
Mackey Glass one-step prediction, W defined as in Fig-
ure 3, n = 200, T = T̂ = 400 (top) and n = 400,
T = T̂ = 800 (bottom). Comparison between Monte Carlo
simulations (Monte Carlo) and theory from Propositions 1–
2 (Th. (fixed W )) or Corollary 2 (Th. (limit)).

4. Applications

Let us now move to particular scenarios where Propo-
sitions 1–2 either greatly simplify or convey new in-
sights.

4.1. Random W matrices

We consider here the scenario where, instead of being
considered deterministic, we take W to be a single re-
alization of an elementary (large dimensional) random
matrix.

4.1.1. Real Haar W .

First consider the scenario where W = σZ with Z
random orthogonal with statistical invariance by left-
and right-multiplication by orthogonal matrices, i.e., Z
is a random real Haar matrix. Then one can determine
an explicit expression for the matrices R, R̃, G, and
G̃ involved in Propositions 1–2. In particular, we have
the following result (also depicted in Figure 2).

Corollary 1 (Haar W , c < 1) Let W = σZ with Z
random real Haar and m be independent of W with
‖m‖ = 1. Then, under Assumption 1 with c < 1,

Eη(u, r)↔ (1− c) 1

T
rTQr

Êη(u, r; û, r̂)↔

∥∥∥∥∥ 1

η2
ÛTD̂UQ

r√
T
− r̂√

T̂

∥∥∥∥∥
2

+
1

1− c
1

T
rTQr − 1

T
rTQ2r

where Q = (IT + 1
η2U

TDU)−1, while D ∈ RT×T and

D̂ ∈ RT̂×T̂ are diagonal with

Dii = D̂ii = (1− σ2)σ2(i−1).

We clearly see through Corollary 1 the impact of σ
which weighs through Dii the successive delay vectors
U·,i starting from i = 1 for zero delay. This is again
reminiscent of the works (Ganguli et al., 2008) where
the diagonal elements of D were understood quali-
tatively as a memory curve, with the property that∑
i≥1Dii = 1, so that the ESN allocates a total unit

amount of memorization capabilities across the succes-
sively delayed versions of u.

This observation inspires the generalization of Corol-
lary 1 to a less obvious, although desirable, structure
for W . Indeed, note that, with W = σZ and Z real
Haar, memory is allocated according to the exponen-
tial decay function k 7→ σk, thus only allowing for a
“single mode” memory, i.e., rt should be an exponen-
tially decaying function of ut−k. If instead, as is more
common, rt is a more elaborate function of both close
past ut−k but also of further past ut−k′ values, then it
might be appropriate for the ESN not to get restricted
to a single k 7→ σk decay profile.
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As such, we propose to consider the matrix W =
diag(σ1Z1, . . . , σ`Z`) (with diag the block-diagonal op-
erator), where the matrices Zi ∈ Rni×ni are indepen-
dent real Haar matrices of given sizes and σi > 0 as-
sume different values across i. In this case, we have
the following natural extension of Corollary 1.

Corollary 2 (Multi-memory W ) Let the
assumptions of Corollary 1 hold but for
W = diag(σ1Z1, . . . , σ`Z`) with Zi ∈ Rni×ni in-
dependent real Haar matrices,

∑
i ni = n, and σi > 0.

Then the conclusions of Corollary 1 remain valid but
for

Dii = D̂ii =

∑`
j=1 njσ

2(i−1)
j∑`

j=1 nj(1− σ2
j )−1

.

Figure 3 depicts the function k 7→ Dkk (which again
may be thought of as a memory curve) for the “mul-
timemory” matrix W of Corollary 2 versus elemen-
tary random Haar matrices with single σ values. Note
the evolution of the function slope which successively
embraces the memory curves of each individual Haar
matrix composing W .

Following the same example, we now compare in Fig-
ure 4 the testing performance for the Mackey–Glass
one-step prediction task under the multi-memory W
versus the composing Haar W+

i . It is interesting to
see here that the multi-memory matrix is almost uni-
formly more powerful than the composing matrices
and that it matches the performance of the best among
the latter. This suggests the possibility to use such a
matrix structure in scenarios where the experimenter
has little knowledge about the particularly adequate
choice of σ in a mere Haar model for W .

4.1.2. Normal and non normal i.i.d. W .

We subsequently move to the next natural model for
W , that is W composed of i.i.d. zero mean entries with
or without Hermitian symmetry. In the latter case,
the study is similar to that of the real Haar case and
shall lead to the same result as Corollary 1 but for a
different profile of the diagonal entries of the matrix
D. As for the former symmetrical case (referred to in
random matrix theory as the Wigner case), it leads to
a more involved (non explicit) expression for R, which
assumes a strikingly different structure than when W
is non-symmetric (in the later case, R is proportional
to the identity matrix). Visually, we find in the large
n limit the structure depicted in Figure 5.

When placed in the context of Proposition 1, the ob-
served checkerboard structure for the Wigner case sug-
gests an inappropriate spread of the reservoir energy
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Figure 3. Memory curve τ 7→ Dτ,τ for W =
diag(W1,W2,W3), Wj = σjZj , Zj ∈ Rnj×nj Haar dis-
tributed, σ1 = .99, n1/n = .01, σ2 = .9, n2/n = .1, and
σ3 = .5, n3/n = .89. The matrices W+

i are defined by
W+
i = σiZ

+
i , with Z+

i ∈ Rn×n Haar distributed.
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Figure 4. Testing (normalized) MSE for the Mackey Glass
one-step ahead task, W (multimemory) versus W+

1 =
.99Z+

1 , W+
2 = .9Z+

2 , W+
3 = .5Z+

3 (with Z+
i Haar dis-

tributed) all defined as in Figure 3, n = 400, T = T̂ = 800.

when it comes to fulfilling pure delay tasks. This is
indeed observed numerically with strong performance
losses already induced by elementary memorization
tasks. A particular example is depicted in Figure 6
where, again for the Mackey–Glass input dataset but
for a memorization task (consisting in recalling τ past
outputs rather than predicting future outputs). This
study and the observed performance results suggest
an outstanding performance advantage of non-normal
versus normal matrix structures, which might deserve
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Figure 5. Upper 9 × 9 part of R for c = 1/2 and σ = 0.9
for W with i.i.d. zero mean Gaussian entries (left) and W
Gaussian Wigner (right). Linear grayscale representation
with black being 1 and white being 0.

deeper future investigation.
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Figure 6. Training (top) and testing (bottom) performance
of a τ -delay task for τ ∈ {1, . . . , 4} compared for i.i.d. W
versus Wigner W , σ = .9 and n = 200, T = T̂ = 400 in
both cases (here on the Mackey-Glass dataset).

4.2. In-network noise and robustness

We complete this section by the investigation of a par-
ticular scenario in which we assume that input data
may be corrupted by extra noise in the testing dataset.
This models the fact that one may often possess a large
bank of “clean” data to train an ESN but that the re-
ality of test data can sometimes be somewhat, if not
strongly, different. Our toy model here consists in con-
sidering that an extra Gaussian noise is added to the
data û with probability p on each sample ût, while
the output r̂ is still expected to be consistent with the
noiseless version of û.

From a proper theoretical analysis of the result of
Proposition 2, conducted precisely in the extended ver-
sion of the article, we claim that, letting s2 be the
aforementioned additive noise variance and assuming
that Êη → 0 as η → 0 and s = 0 (a scenario that can
be enforced by letting e.g., r be a linear combination
of finitely many past inputs of u), then there exists
a trade-off by which too small values of η2 induce an
increase in the mean square error (all the more that
s2 is large) while large values of η2 induce too much
internal noise. There thus exists an optimal value for
η2 which minimizes the testing MSE.

This phenomenon is depicted in a concrete scenario
in Figure 7, still for the same Mackey–Glass one-step
ahead prediction task. A particular realization of a
random Mackey–Glass time series is also presented
in Figure 8, which clearly highlights the robustness
strength of internal noise.

5. Concluding Remarks

The random matrix framework introduced in this arti-
cle brings new light to the actual performance of linear
echo-state networks with internal noise (and more gen-
erally recurrent networks), where past works merely
provided insights based on incomplete considerations
of the network processing (such as information theo-
retic metrics of the reservoir information). Our results
make it clear what levers should be tuned and opti-
mized upon when designing these networks. Although
not presently discussed, an outcome of this study (doc-
umented in an extended article) contradicts some be-
liefs, such as that suggesting that it is appropriate to
take m as one of the leading eigenvectors of W ; we can
prove that this choice necessarily leads to poor mean
square error performance. But aside from purely the-
oretical considerations, our results also allow for a fast
evaluation of the ESN performance without requiring
extensive Monte Carlo simulations which we believe
experimenters should find convenient.
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Figure 7. Testing (normalized) MSE for the Mackey-Glass
one-step ahead task with 1% or 10% impulsive N (0, .01)
noise pollution in test data inputs, W Haar with σ = .9,
n = 400, T = T̂ = 1000. Circles indicate the NMSE theo-
retical minima. Error bars indicate one standard deviation
of the Monte Carlo simulations.
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Figure 8. Realization of a 1% N (0, .01)-noisy Mackey-
Glass sequence versus network output, W Haar with σ =
.9, n = 400, T = T̂ = 1000. In magnifying lenses, points
of added impulsive noise.

We stressed above the words linear and internal noise,
as they are often at the center of debates in the field.
Regarding internal noise, while being an appropriate
model assumption in biological networks, it is often
regarded as artificial in machine learning (where a
regularized least square ω is chosen to stabilize the
network). Since large networks induce concentration
of measure phenomena that stabilize the MSE perfor-
mance of the network, we forcefully believe that inter-
nal noise (leading to random but equally performing
outputs) are instead more desirable than determinis-

tic (and thus statically biased) outputs. In the full
version of this article, comparisons are performed be-
tween both cases. But the utmost limiting aspect of
the present work rather lies in the linear character of
the state equation (1). It is known, more from ex-
periments and insights than theory, that breaking the
linear frontier brings vastly more interesting properties
to neural networks, with in particular the possibility
for ‖W‖ to exceed one. A necessary next step of the
random matrix framework may be a coupling to mean
field considerations which may adequately handle the
behavior of non linear versions of echo-state networks.
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H. Poincaré, 42(6):649–670, 2006.

Jaeger, H. The “echo state” approach to analysing and
training recurrent neural networks-with an erratum
note. Bonn, Germany: German National Research
Center for Information Technology GMD Technical
Report, 148:34, 2001a.

Jaeger, Herbert. Short term memory in echo state net-
works. GMD-Forschungszentrum Informationstech-
nik, 2001b.
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