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ABSTRACT

A new approach to minimum variance distortionless response
(MVDR) beamforming is proposed under the assumption of si-
multaneously large numbers of array sensors and observations. The
key to our method is the design of an inverse covariance estimator
which is appropriately optimized for the MVDR application. This
is obtained by exploiting spectral properties of spiked covariance
models in random matrix theory. Our proposed solution is simple
to implement and is shown to yield performance improvements over
competing approaches.

Index Terms— MVDR beamforming, spiked covariance model,
random matrix theory.

1. INTRODUCTION

Adaptive beamforming is widely used for adaptively steering a beam
towards a desired signal while suppressing noise and interference at
the output of a sensor array. One popular approach is the minimum
variance distortionless response (MVDR) adaptive beamformer [1]
designed to minimize the array output power while maintaining
a distortionless response towards the signal of interest (SoI). The
performance of the MVDR beamformer depends on the estimation
accuracy of the inverse covariance matrix of the received signals,
which is involved in the beamformer’s construction. The “sample
matrix inversion” (SMI) beamformer is a standard approach, which
uses the inverse of the sample covariance matrix (SCM). However,
while it performs well when the number of observations greatly
exceeds the number of sensors of the receive array, in modern
data-limited scenarios or high-dimensional applications (with large
numbers of sensors), performance degradation occurs because of the
increased estimation errors in the SCM, especially when the samples
used for estimation include the SoI [2, 3].

Various approaches have been proposed to design more ro-
bust beamforming solutions which aim to overcome this problem.
The most common are diagonal loading and eigen-subspace tech-
niques [4–8]. As we will demonstrate, for the former approach, even
with the theoretically-optimal diagonal loading factor for the MVDR
beamformer, chosen to minimize the array output power, it exhibits
suboptimal performance under data-limited or high-dimensional
scenarios; for the latter, it becomes ineffective at low signal-to-noise
ratios (SNRs) or when the dimension of the signal-plus-interference
subspace is large.

In this paper, we propose a novel MVDR beamforming solution
under high-dimensional settings and in the face of data limitations.
Our proposed method is based on the assumption that the receive
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covariance matrix has a specific structure, referred to as a “spiked
model” in random matrix theory (RMT). Specifically, this construc-
tion comprises a low-rank perturbation of a scaled identity matrix.
Inspired by the recent work [9] which proposed optimized spike-
model-based covariance estimators for a range of different objective
functions, we exploit properties from RMT to identify the MVDR-
optimal inverse covariance estimator, and consequently obtain our
proposed MVDR beamforming solution. It is shown through nu-
merical examples to yield exceptional beamformer performance for
high-dimensional and data-limited scenarios.

2. BACKGROUND

2.1. Signal model and optimal MVDR beamforming

We consider a uniform linear array with N sensors, receiving m <
N narrow band signals. At snapshot j ∈ {1, · · · , n}, the received
observation vector x(j) ∈ CN can be represented by

x(j) =
√
p1a(θ1)φ1(j) +

m∑
i=2

√
pia(θi)φi(j) + n(j) , (1)

where for i = 1, . . . ,m, signal φi(j) ∈ C is independent com-
plex Gaussian with zero mean and variance one, pi ∈ R+ is the
corresponding signal power, and a(θi) ∈ CN is the unit norm steer-
ing vector that is a function of the direction of arrival (DoA) θi ∈
(−π, π] of the i-th source. The first term in (1) corresponds to the
SoI and the second term tom−1 interferers. We assume n(j) ∈ CN
is additive Gaussian white noise with zero mean and variance σ2.
The covariance matrix of the observations takes the following form:

CN = p1a(θ1)aH(θ1) +

m∑
i=2

pia(θi)a
H(θi) + σ2IN . (2)

The classical MVDR beamformer [1] seeks the beamformer
weight vector h = h(θ1) ∈ CN that minimizes the output power
P (h) = hHCNh while ensuring a distortionless response towards
the DoA of the SoI θ1. It is the solution to the following linearly
constrained quadratic problem:

min
h∈CN

P (h) = hHCNh, s.t. hHa(θ1) = 1.

The well-known solution to this constrained optimization is

hMVDR =
C−1
N a(θ1)

aH(θ1)C−1
N a(θ1)

(3)

and the corresponding output power is

P (hMVDR) =
1

aH(θ1)C−1
N a(θ1)



where a(θ1) is assumed known. In the following, for conve-
nience, we will consider the normalized total output power, ρ(h) =
P (h)/σ2.

From the matrix inversion lemma [10], an equivalent represen-

tation of the optimal beamformer is hMVDR =
C−1

i+na(θ1)

aH (θ1)C
−1
i+na(θ1)

where Ci+n = CN − p1a(θ1)a(θ1)H is the interference-plus-noise
covariance matrix. Here we assume that the SoI is present in the
observations, which makes it difficult to estimate Ci+n. Indeed, the
presence of the SoI in the training data has been shown to dramati-
cally reduce the convergence rate of beamforming algorithms [2, 5].

We note that, in addition to minimizing the output power, the
MVDR beamformer also maximizes the output SINR [11], defined

as SINR =
p1|ĥHa(θ1)|2

ĥHCi+nĥ
. Hence, we can also measure the beam-

former performance in terms of its achieved SINR.

2.2. Sample-based implementation of MVDR beamforming

In reality, C−1
N is unknown and instead we form an estimate, denoted

by Ĉ−1
N . Thus the MVDR beamformer based on any given plug-in

estimator Ĉ−1
N is constructed as

ĥMVDR =
Ĉ−1
N a(θ1)

aH(θ1)Ĉ−1
N a(θ1)

. (4)

The performance of this beamformer in terms of its normalized
total output power is given by

ρ(ĥMVDR) =
P (ĥMVDR)

σ2
=

1

σ2

aH(θ1)Ĉ−1
N CNĈ−1

N a(θ1)(
aH(θ1)Ĉ−1

N a(θ1)
)2 .

(5)

It reaches ρmin = ρ(hMVDR) only when Ĉ−1
N = C−1

N , otherwise it
is larger because of the imperfect inverse covariance estimation.

We define the SCM as SN = 1
n

∑n
j=1 x(j)xH(j). It is widely

known that the SMI beamformer ĥSMI =
S−1
N

a(θ1)

aH (θ1)S
−1
N

a(θ1)
can have

poor performance due to the finite-sampling effect, yielding much
higher normalized total output power than the theoretical minimum
ρmin, especially when N and n have a similar order of magnitude,
and for the case of interest with the SoI present in the observations
[2, 8, 12]. In this work, by utilizing prior knowledge of the structure
of CN , we will propose an optimized Ĉ−1

MVDR, and consequently an
optimized ĥMVDRopt, which is designed to minimize (5).

3. OPTIMIZED HIGH-DIMENSIONAL MVDR DESIGN

3.1. MVDR beamforming based on spiked covariance models

We aim to construct a MVDR-optimized sample-based estimate of
the precision matrix C−1

N , with CN defined in (2). We note that,
through eigen-decomposition, the matrix CN can be expressed as

CN = σ2

(
IN +

m∑
i=1

tiviv
H
i

)
, (6)

which has eigenvalues (σ2(t1 + 1), . . . , σ2(tm + 1), σ2, . . . , σ2),
where ti > 0 for i = 1, . . . ,m, and with v1, . . . ,vm denoting the
eigenvectors corresponding to the largest m eigenvalues. Because
CN is a low rank perturbation of σ2IN , the structure of CN is called

a spiked covariance model [13]. For simplicity, we assume that σ2

and m are known, though these may be estimated using standard
methods [14].

Denoting the eigenvalues and associated eigenvectors of the
SCM SN by λ1 ≥ λ2 ≥ · · · ≥ λN and u1, u2, . . ., uN , in this
paper, we look for estimators of the form

Ĉ−1
N (SN ) =

N∑
i=1

ηiuiu
H
i

where ηi > 0 are eigenvalue “shrinkage” functions to be suitably
designed for the MVDR application. With prior knowledge of the
spiked covariance structure of CN , it is natural to apply “hard clip-
ping” to the smallest N − m sample eigenvalues, so that ηm+1 =
· · · = ηN = 1/σ2. This, in effect, decreases the estimation error in
the SCM referred to as the eigenvalue spreading phenomenon [15].
Thus, we construct the estimator as

Ĉ−1
N (SN ) =

1

σ2

(
IN +

m∑
i=1

wiuiu
H
i

)
(7)

where wi = σ2ηi − 1. Our aim is to find the optimal w∗ =

[w∗1 , . . . , w
∗
m]T which forms the optimized Ĉ−1

MVDR that minimizes
ρ in (5).

By plugging (7) and (6) into (5), the normalized total output
power ρ is seen as a function of w = [w1, . . . , wm]T , which we de-
note as ρ(w) in the following. In particular, our optimization prob-
lem now becomes

w∗ = argmin
w∈Lm

ρ(w) (8)

where ρ(w) is defined in (9) at the top of the next page. The pa-
rameter range is specified as1 Lm = [−1 + ξ, q)m, for some small
ξ > 0 and large q > 0.

It is challenging to solve the problem (8) and obtain the optimal
w∗ in closed-form directly. Even if such w∗ was obtained, because
of the unobservable quantities of ti and vi involved, it could not be
used in reality. We tackle these problems by appealing to results
on the asymptotic properties of spiked covariance matrices to give a
simplified asymptotic representation ρ̄(w) of ρ(w) as N,n → ∞
and obtain the oracle w̄∗ that minimizes ρ̄(w) depending on CN .
Then we provide a sample-based consistent estimator ŵ∗ which con-
structs the optimal Ĉ−1

MVDR and consequently ĥMVDRopt. For our
asymptotic analysis, we assume the following:

Assumption 1.
a. As N,n→∞, N/n = cN → c for a certain c > 0.

b. The number of spikesm is fixed, independently ofN and n, while
t1 > · · · > tm with tm >

√
c, for all large N .

Remark 1. In Assumption 1.b, the quantity
√
c represents a fun-

damental “phase transition” point [16, 17]; that is, for each i ∈
{1, . . . ,m} such that for large N , ti >

√
c, there is a deterministic

one-to-one mapping between ti and λi under Assumption 1.a, which
can be used to estimate ti. As for ti ≤

√
c for large N , the relation

no longer holds, and the value of ti can no longer be estimated. A
similar comment also applies for eigenvectors. Hence, we assume
ti >

√
c for large N in order to estimate CN fully.

1Note that we restrict w to a bounded set Lm, which is a technical condi-
tion employed for establishing the uniform convergence result in Theorem 1
presented later.



ρ(w) =
aH(θ1)

(
IN +

∑m
i=1 wiuiu

H
i

) (
IN +

∑m
j=1 tjvjv

H
j

) (
IN +

∑m
h=1 whuhu

H
h

)
a(θ1)(

aH(θ1)
(
IN +

∑m
l=1 wlulu

H
l

)
a(θ1)

)2 (9)

3.2. Deterministic equivalent ρ̄(w) and the optimal w̄∗

Define the deterministic quantities ki = aH(θ1)viv
H
i a(θ1) and

si =
1−cN/t2i
1+cN/ti

, i = 1, . . . ,m, with δij the Kronecker-delta func-
tion. We have the following result:

Theorem 1. [Deterministic equivalent] Let Assumption 1 hold. As
N,n→∞, supw∈Lm |ρ(w)− ρ̄(w)| a.s.−→ 0 where

ρ̄(w) =
wTBw + 2wTd + a

(1 + wT e)2

with

B = diag [s1k1(1 + t1s1), . . . , smkm(1 + tmsm)] ,

d = [s1k1(1 + t1), . . . , smkm(1 + tm)]T ,

e = [s1k1, . . . , smkm]T , a = 1 +

m∑
i=1

tiki .

Proof: Details are provided in [14].
The following theorem provides the value w̄∗ = [w̄∗1 , . . . , w̄

∗
m]T

that minimizes ρ̄(w).

Theorem 2. [Optimal weights] Under the setting of Theorem 1,

w̄∗ = argmin
w∈Lm

ρ̄(w)

where, for i = 1, . . . ,m,

w̄∗i =
ti + cN
t2i + ti

(ψ − ti) , with ψ =

∑m
j=1

kj
tj∑m

j=1

kj
t2j

.

Proof: Details are provided in [14].

3.3. Estimated optimal weights ŵ∗ and proposed ĥMVDRopt

The optimal weights w̄∗i , i = 1, . . . ,m, present in Theorem 2 cannot
be directly used in practice because of the involved unobservable
quantities, i.e., ti and vi. In the following we provide sample-based
consistent estimators of these optimal weights to address this issue.

Theorem 3. [Estimated optimal weights] Under the setting of The-
orem 1, for all large n with probability one, λi > σ2(1 +

√
cN )2,

i = 1, . . . ,m, and we have

|ŵ∗i − w̄∗i |
a.s.−→ 0

where ŵ∗i = t̂i+cN
t̂2i+t̂i

(
ψ̂ − t̂i

)
, in which ψ̂ =

∑m
j=1

k̂j
t̂j∑m

j=1

k̂j

t̂2
j

,

t̂i =
λi/σ

2 + 1− cN +
√

(λi/σ2 + 1− cN )2 − 4λi/σ2

2
− 1 ,

k̂i =
1 + cN/t̂i

1− cN/(t̂i)2
aH(θ1)uiu

H
i a(θ1) .

Algorithm 1 Proposed MVDR beamformer construction

1. Compute the optimized shrinkage parameters ŵ∗i , i =
1, . . . ,m according to Theorem 3.

2. Form the precision matrix estimator :
Ĉ−1

MVDR = 1
σ2

(
IN +

∑m
i=1 ŵ

∗
i uiu

H
i

)
.

3. Construct the MVDR beamformer:

ĥMVDRopt =
Ĉ−1

MVDRa(θ1)

aH(θ1)Ĉ−1
MVDRa(θ1)

.

Proof: Details are provided in [14].
This leads to our proposed MVDR beamformer, described in

Algorithm 1.

4. NUMERICAL SIMULATIONS

In our simulations, we consider a uniform linear array with N iden-
tical omnidirectional sensors located half a wavelength apart. Each
data point is computed by averaging over 200 independent Monte-
Carlo trials. The sensor array receives m = 6 uncorrelated narrow-
band signals from the far field. The DoA of the SoI is θ1 = 0o,
while the DoAs of the interferers are θ2 = 5o, θ3 = 10o, θ4 = 30o,
θ5 = 50o and θ6 = 70o. The noise is complex Gaussian with mean
zero and variance one.

4.1. ρ-Performance and the deterministic equivalent

We first numerically study the convergence of our proposed algo-
rithm in terms of the function ρ. Define SNR = p1

σ2 and INR =
pi
σ2 (taken to be the same for all i = 2, . . . ,m). In Fig. 1, for
SNR = 5 dB, INR = 30 dB and n = 2N , four quantities are
presented: the expectation E[ρ(ŵ∗)] (computed empirically) with
our proposed ŵ∗ in Theorem 3; the asymptotic deterministic equiv-
alent ρ̄(w̄∗) based on Theorem 1; the theoretical minimum (oracle)
ρmin = 1/(σ2aH(θ1)C−1

N a(θ1)) and the expectation E[ρ(ĥSMI)]
with the SMI. As expected, E[ρ(ŵ∗)] converges to ρ̄(w̄∗) with the
increase of N and n. It is also demonstrated that ρ̄(w̄∗) is close to
ρmin, indicating the near-optimal performance of our proposed ap-
proach. On the other hand, E[ρ(ĥSMI)] is larger than E[ρ(ŵ∗)] over
the entire range of N .

4.2. Beamformer performance and comparison against previ-
ous methods

We compare the performance of ĥMVDRopt against the optimal
MVDR beamformer (3) with known CN , as well as ĥSMI, the SMI
beamformer. For each method, we present the beampattern and
the output SINR. For these comparisons, we fix INR = 30 dB
and n = 2N = 200. Shown in Fig. 2(a), our method ĥMVDRopt

achieves significantly enhanced noise suppression compared with
ĥSMI, in addition to placing deeper interference nulls. As for the
SINR performance, shown in Fig. 2(b), the proposed beamformer



ĥMVDRopt uniformly yields higher SINR than ĥSMI and is quite
close to the optimal beamformer when SNR is low.
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Fig. 1. ρ-performance when n = 2N .
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Fig. 2. Beampattern and SINR performance comparison of
ĥMVDRopt and ĥSMI (N = 100, n = 200).

Next, we compare with more advanced beamformers, which are
designed to at least partially overcome the problem of sample in-
sufficiency. One is the popular diagonal loading strategy ĥDL (see,
e.g., [6–8]), which employs the construction (4) with the covari-
ance matrix estimator ĈN (ϕ) = (1 − ϕ)SN + ϕIN where ϕ ∈
(0, 1) is an empirically computed “oracle” solution, chosen to min-
imize the normalized total output power in (5). It provides the opti-
mal performance achievable with the diagonal loading method. The

other is the eigen-subspace beamformer ĥEigsub =
S−1
N

aSub

aH
Sub

S−1
N

aSub
,

where aSub =
∑m
i=1 uiu

H
i a(θ1) [4, 5]. The beampatterns of these

beamformers are shown in Fig. 3(a) for SNR = 5 dB. Despite that
ĥEigsub exhibits slightly smaller “noise gain” than ĥDL, the pro-
posed ĥMVDRopt has a significantly improved response, suppress-
ing the noise the most. Fig. 3(b) shows the output SINR for different
SNRs where ĥMVDRopt uniformly displays the highest SINR, per-
forming comparable to ĥDL and ĥEigsub at low SNR and high SNR
respectively.

While not shown due to space constraint, we have conducted
further comparison with MVDR beamformers constructed from al-
ternative spike-model-based covariance matrix estimators [9]. This
again revealed superior performance of our proposed method. Full
details are presented in [14].
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Fig. 3. Beampattern and SINR performance comparison of
ĥMVDRopt, ĥEigsub and ĥDL (N = 100, n = 200).
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