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ABSTRACT
An improved MUSIC algorithm for direction-of-arrival es-
timation is introduced that accounts both for large array
sizes N comparatively with the number of independent
observations n and for the impulsiveness of the background
environment (e.g., presence of outliers in the observations).
This method derives from the spiked G-MUSIC algorithm
proposed in [1] and from the recent works by one of the
authors on the random matrix analysis of robust scatter
matrix estimators [2]. The method is shown to be asymp-
totically consistent where classical approaches are not. This
superiority is corroborated by simulations.

Index Terms— Random matrix theory, MUSIC, robust
estimation, elliptical distribution.

I. INTRODUCTION
The recent advances in random matrix theory have al-

lowed for several successive improvements of statistical
inference methods when the number of observations n is not
large compared to the population size N . In particular in [3],
a generalization of the well-known MUSIC algorithm [4] for
direction-of-arrival (DoA) estimation, called G-MUSIC, was
proposed which brings consistence to MUSIC in the regime
where N,n → ∞ with N/n → c ∈ (0,∞). This work
assumes that the signals are random and that each signal
subspace has a rank growing with N . Further extensions
went in the direction of deterministic but unknown signals
instead [5], and then in the direction of small signal subspace
dimensions compared to N (the so-called spiked model) [1].
Finally, the generalization to non-white Gaussian noise was
established in [6].

As a common denominator, all the works, which rely on
subspace characterization of the sample covariance matrix
of the observed samples, demand that the eigenvalues of
the noise subspace have a limiting compact support. This
allows one to isolate and identify the “signal eigenvalues” as
those eigenvalues found away from this support. However,
the eigenvalues of the noise subspace may not meet this
condition when sample outliers occur, entailing false alarms,
or when the background noise is very impulsive, leading then
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to a possibly unbounded eigenvalue support from which no
signal eigenvalue can be isolated. In these scenarios, none
of MUSIC or G-MUSIC (regular or spiked) are theoretically
acceptable.

More recently, the second author proposed a new ana-
lytical framework of robust estimation of large dimensional
scatter matrices in the series of works [7], [2], [8]. Robust
estimation of scatter exactly aims at mitigating the effect
of outliers and impulsiveness in the observed datasets. In
particular, it is shown in [2] that the limiting eigenvalue
distribution of impulsive samples has a bounded support with
no eigenvalue escaping. The present article hinges on this
observation by proposing a new MUSIC improvement, called
robust G-MUSIC, which works under the spiked signal space
assumption and accounts both for the large dimension of the
antenna array and for the impulsive nature of the noise. The
key idea is to trade the sample covariance matrix for a robust
scatter estimate as studied in [2]. It appears that robust G-
MUSIC manages to recover both the signal powers and their
DoA in impulsive scenarios where MUSIC and G-MUSIC
cannot. In particular, and maybe quite surprisingly at first
sight, the low rank population signal subspace (if powerful
enough) engenders isolated – hence detectable – eigenvalues
in the robust scatter estimate, while low rank sample outliers
remain contained in the noise subspace. Simulations are
performed that corroborate the theoretical analysis.

The remainder of the article introduces the array pro-
cessing system model in Section II and our main results
in Section III.

II. MODEL

We consider the model

yi =

L∑
l=1

√
plalslj +

√
τiwi, i ∈ {1, . . . , n} (1)

with al = a(θl) ∈ CN a unit norm directional vector
parametrized by θl ∈ [0, 2π), pl ∈ R+ a power parameter,
sl,j ∈ C random i.i.d. with zero mean and unit variance, τi
random i.i.d. with distribution ν such that

∫
tν(dt) = 1 and∫

t1+εν(dt) <∞ for some ε > 0, and wj ∈ CN a unitarily
invariant norm-

√
N vector. As for L, it is assumed finite.



Our objective is to estimate the powers p1, . . . , pL along
with the angles θ1, . . . , θL from the independent samples
y1, . . . , yn in the regime N,n→∞ with N/n→ c ∈ (0, 1).

Denoting w̃i = [s1i, . . . , sL1, w
T
i ]T ∈ CN+L (made of

independent entries of zero mean and unit variance) and
Ai = [

√
p1a1, . . . ,

√
pLaL,

√
τiIN ], we have yi = Aiw̃i.

We also denote

AiA
∗
i =

L∑
l=1

plala
∗
l + τiIN , B + τiIN .

We now introduce Maronna’s robust estimator of scatter
ĈN as in [2]. The matrix ĈN is defined, when it exists, as
the unique solution to the fixed-point matrix-valued equation
in Z:

Z =
1

n

n∑
i=1

u

(
1

N
y∗i Z

−1yi

)
yiy
∗
i (2)

where u : R+ → R+ is a nonnegative non-increasing
function with u(0) finite and such that φ(x) = xu(x) is in-
creasing and bounded with φ∞ = limx→∞ φ(x) ∈ (1, 1/c).

We recall from [2] that, if ĈN exists, then it can be written

ĈN =
1

n

n∑
i=1

v

(
1

n
y∗i Ĉ

−1
(i) yi

)
yiy
∗
i

where v : x 7→ u ◦ g−1, g : x 7→ x/(1 − cφ(x)), and
Ĉ(i) = ĈN − 1

nu
(
1
ny
∗
i Z
−1yi

)
yiy
∗
i . We shall also denote

ψ(x) = xv(x). Recall that v is non-increasing and ψ is
increasing with limit ψ∞ = φ∞/(1− cφ∞).

III. MAIN RESULTS
III-A. Theoretical results

Our main results are twofold. Proposition 1 first general-
izes [2, Theorem 2] on the asymptotic behavior of ĈN in the
large N,n regime. Then Theorem 1 and Theorem 2 provide
statistical inference methods that will be used to estimate the
powers p1, . . . , pL and angles θ1, . . . , θL.

Proposition 1 (Asymptotic Behavior): Let ĈN be defined
as the unique solution of (2) when it exists or arbitrarily
otherwise. Then, as N,n→∞ with N/n→ c ∈ (0, 1),

‖ĈN − ŜN‖
a.s.−→ 0 (3)

where

ŜN ,
1

n

n∑
i=1

v(τiγ)Aiw̃iw̃
∗
iA
∗
i

with γ the unique positive solution to

1 =

∫
ψ(tγ)

1 + cψ(tγ)
ν(dt). (4)

Sketch of Proof: We only provide an intuitive sketch
of the proof. The complete proof is found in an extended
version of this article. The asymptotic uniqueness of ĈN is
an extension of [2, Theorem 1] which follows from the same

ideas and is therefore not presented here. The interesting
aspect is the convergence (3) which relates to [2, Theorem 2].
Note in particular that, for B = 0, the result matches [2,
Theorem 2]. Following the intuitive approach delineated in
[2, Section 2.2], denoting Ĉ(i) = ĈN− 1

nu( 1
N y
∗
i Ĉ
−1
N yi)yiy

∗
i ,

we expect that, for large N,n

1

N
y∗i Ĉ

−1
(i) yi '

1

N
trAjA

∗
j Ĉ
−1
N

=
1

N
trBĈ−1 + τj

1

N
tr Ĉ−1N .

Denoting ᾱN = 1
N trBĈ−1N and γ̄N = 1

N tr Ĉ−1N , we expect
from random matrix intuition that ᾱN−αN

a.s.−→ 0 and γ̄N−
γN

a.s.−→ 0 as N,n→∞ for some deterministic equivalents
αN , γN > 0. If so, approximating 1

N y
∗
i Ĉ
−1
(i) yi by αN +

τjγN in the expression of Ĉ(i) and applying classical random
matrix results (for instance from [9, Theorem 1]), we must
have

γN =
1

N
tr

 1

n

n∑
j=1

v(αN + τjγN )AjA
∗
j

1 + ej

−1

where the ej are uniquely defined as the solution of

ej = v(αN + τjγN )

× 1

n
trAjA

∗
j

 1

n

n∑
j=1

v(αN + τjγ)AjA
∗
j

1 + ej

−1 .
The latter further simplifies as

ej = cv(αN + τjγN )(αN + τjγN ) = cψ(αN + τjγN ).

This then gives the system

γN =
1

N
tr

 1

n

n∑
j=1

v(αN + τjγN )

1 + cψ(αN + τjγN )
(B + τjIN )

−1

αN =
1

N
trB

 1

n

n∑
j=1

v(αN + τjγN )

1 + cψ(αN + τjγN )
(B + τjIN )

−1 .
It now follows from the small-rank property and norm
boundedness of the vectors composing B that αN → 0.
Also, the small rank of B does not alter asymptotically the
trace term in γN so that B can be discarded in this expression
in the limit. Hence γN → γ which, outside a zero measure
set, satisfies (4) from the strong law of large numbers.

Proposition 1 states that, for many problems dealing with
ĈN , which is a complicated matrix defined as the solution
of a fixed-point equation, one can instead use ŜN , a much
simpler object of the bi-correlated sample covariance matrix
type, extensively analyzed in [10]. A thorough analysis of
the expression of ŜN reveals that it has a limiting eigenvalue
distribution with compact support but may, unlike the coun-
terpart result [2, Theorem 2], exhibit isolated eigenvalues



wj =

∫
v(tγ)ν(dt)(

1 + δ(λ̂j)tv(tγ)
)2
∫ v(tγ)ν(dt)

1 + δ(λ̂j)tv(tγ)

1− 1

c

∫
δ(λ̂j)

2t2v(tγ)2ν(dt)(
1 + δ(λ̂j)tv(tγ)

)2


−1

(5)

ŵj =
1

n

n∑
i=1

v(τ̂i)(
1 + δ̂(λ̂j)τ̂iv(τ̂iγ̂N )

)2
 1

n

n∑
i=1

v(τ̂i)

1 + δ̂(λ̂j)τ̂iv(τ̂iγ̂N )

1− 1

N

n∑
i=1

δ̂(λ̂j)
2τ2i v(τ̂i)

2(
1 + δ̂(λ̂j)τ̂iv(τ̂iγ̂N )

)2


−1

. (6)

outside its limiting support. This is due to the presence of
the small rank B matrix in each term AiA

∗
i .

Despite this modification from [2, Theorem 2], Proposi-
tion 1 still ensures as a fundamental corollary that, denoting
λ1(X) ≤ . . . ≤ λN (X) the ordered eigenvalues of a
Hermitian matrix X ,

max
1≤i≤N

|λi(ĈN )− λi(ŜN )| a.s.−→ 0.

This relation is fundamental to proceed to G-estimation as
in [3]. In particular, from now on, as far as (first order) G-
estimation is concerned, we can equivalently work with ĈN

or ŜN .
We are now in position to introduce our first main result.
Theorem 1 (Estimation with known ν): Denote q1 ≥ . . . ≥

qL > 0 the positive eigenvalues of B (they may depend
of N ), u1, . . . , uL their respectively associated eigenvectors
in B, and û1, . . . , ûN the eigenvectors of ĈN respectively
associated with the eigenvalues λ̂1 ≥ . . . ≥ λ̂N . For x > 0
sufficiently large, call δ(x) the unique negative solution of

δ(x) = c

(
−x+

∫
tv(tγ)

1 + δ(x)tv(tγ)
ν(dt)

)−1
.

Then, recalling the definition of γ as the solution of (4), we
have the following two results:

1. Eigenvalue estimation. For each k with lim infN qk
sufficiently large,

−c

(
δ(λ̂k)

∫
v(tγ)

1 + δ(λ̂k)tv(tγ)
ν(dt)

)−1
− qk

a.s.−→ 0.

2. Localization function estimation. Assume that
lim infN qL is large enough. Denote ηN , η̂N : [0, 2π) → R
the functions given by

ηN (θ) = 1−
L∑

k=1

a(θ)∗uku
∗
ka(θ)

η̂N (θ) = 1−
L∑

k=1

wka(θ)∗ûkû
∗
ka(θ)

where wj > 0 is given in (5). Then, for each θ ∈ [0, 2π),

η̂N (θ)− ηN (θ)
a.s.−→ 0

as N,n→∞ and N/n→ c.

Proof: The proof follows similar steps to the proof of
the first order results in [11] (see also [12]), although for
a slightly different spiked model. For lack of space, we do
not further detail these here. The complete derivation can be
found in an extended version of this article.

Theorem 1 states that, based on the largest eigenvalues
of ĈN , one can recover consistently estimate the values of
q1, . . . , qL as well as of the localization functions ηN (θ) for
each θ.

Note that the theorem mentions that qk should be large
enough. A more precise statement would be that, asymp-
totically, the number of eigenvalues found away from the
limiting support of ĈN must equal at least k. Without
this assumption, the above estimates would not be valid.
This is a classical condition that relates to the often named
separability condition by which population eigenvalues qk
engender sample eigenvalues found away from the limiting
support of the spectrum of ĈN (or equivalently of ŜN ). An
exact characterization of the minimum value that qk must
take can be performed depending on ν but is not always
simple to characterize. Note importantly that, if the sample
covariance matrix were used in place of ĈN (therefore
leading to a G-MUSIC algorithm), the impulsiveness of
the noise may not allow for the eigen-spectrum of noise
subspace to be of compact support, making it impossible to
separate signal eigenvalues.

Theorem 1 assumes ν to be a known value. Using instead
the fact that γ − γ̂N

a.s.−→ 0 where

γ̂N =
1

n

n∑
i=1

1

N
y∗i Ĉ

−1
(i) yi

and that τi can be well approximated by 1
N y
∗
i Ĉ
−1
(i) yi/γ̂N ,

we deduce the following alternative empirical estimator.
Theorem 2 (Estimation with unknown ν): With the same

conditions and notations as in Theorem 1, denote

γ̂N =
1

n

n∑
i=1

1

N
y∗i Ĉ

−1
(i) yi

τ̂i =
1

γ̂N

1

N
y∗i Ĉ

−1
(i) yi.

where we recall that Ĉ(i) = ĈN− 1
nu( 1

N y
∗
i Ĉ
−1
N yi)yiy

∗
i . Also



call δ̂(x) the unique solution to

δ̂(x) =
N

n

(
−x+

1

n

n∑
i=1

τ̂iv(τ̂iγ̂N )

1 + δ̂(x)τ̂iv(τ̂iγ̂N )

)−1
.

Then we have the following results
1. Eigenvalue estimation. For each k with lim infN qk

large enough,

−

(
δ̂(λ̂k)

1

N

n∑
i=1

v(τ̂iγ̂N )

1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂N )

)−1
− qk

a.s.−→ 0.

2. Localization function estimation. Assume that
lim infN q1 is large enough. Denote η̂emp

N : [0, 2π) → R
the function given by

η̂emp
N (θ) = 1−

L∑
k=1

ŵka(θ)∗ûkû
∗
ka(θ)

where ŵj is defined in (6). Then, for each θ ∈ [0, 2π),

η̂emp
N (θ)− ηN (θ)

a.s.−→ 0.

Note that Theorem 2 provides another set of consistent
estimators for the same quantities qk and ηN (θ) as in
Theorem 1 but that do not rely on the knowledge of ν,
as the τi are individually estimated. There is however no
saying whether knowing ν or not improves the quality of
the estimates.

III-B. Application to array processing
In this section, we use Theorem 1 and Theorem 2 to

perform source detection, power estimation, and source
localization in array processing.

We consider the model (1) in which slj , l = 1, . . . , L are
L ≥ 0 signal sources impinging at time instant j an N -
antenna array with angles θ1, . . . , θL. The signal yi received
at time i at the array is corrupted by the background noise√
τiwi with wi unitary and τi having unit-mean distribution

ν. In particular, if ν = ν′/
∫
tdν′(t) , νG with ν′ ∼ χ2

2N

(the chi-square distribution with 2N degrees of freedom),
the noise is standard Gaussian. We however consider here
scenarios where the noise may have a more impulsive
behavior. In particular, one may take ν = ν′′/

∫
tdν′′(t) with

ν′′ ∼ (1−ε)νG +εδA for some ε small and a large A value,
introducing then outliers of high amplitude, which simulates
strong but rare noise impulses. One may alternatively take
ν continuous with heavier than Gaussian tails, leading in
particular to scenarios where the limiting spectrum of the
sample covariance matrix has unbounded support, translating
here the large impulsiveness of the background noise.

Note now that ηN (θ) (in Theorem 1) can be written
ηN (θ) = a(θ)∗ΠWa(θ) with ΠW = IN −

∑L
k=1 uku

∗
k a

projector on the population noise subspace. This is then the
localization function found in the standard MUSIC algorithm

[4]. Item 2) of Theorems 1 and 2 thus provides asymp-
totically consistent estimates for this localization function,
under knowledge of ν or not. From Theorems 1 and 2, we
may then define two novel DoA estimates θ̂1, . . . , θ̂L and
θ̂emp
1 , . . . , θ̂emp

L for the angles θ1, . . . , θL, which we hereafter
call the robust G-MUSIC and empirical robust G-MUSIC
estimates, respectively, and which we define as the L deepest
minima of the functions θ 7→ η̂N (θ) and θ 7→ η̂N (θ)emp,
respectively. As recalled above, depending on the nature of
ν (in particular in very impulsive scenarios), the classical
MUSIC and G-MUSIC algorithms cannot provide a viable
alternative to robust G-MUSIC.

We may also assume that a(θ) is such that, for each i 6= j,
a(θi)

∗a(θj)→ 0. This is in particular the case if [a(θ)]k =
N−

1
2 exp(2πı(k − 1)θ), corresponding to a uniform linear

array. In this scenario, it is easily seen that, as N →∞, qi →
pi for each i ∈ {1, . . . , L}. The item 1) of both Theorems 1
and 2 can then be used here to estimate p1, . . . , pL under
knowledge or not of ν. Similar to the localization function
estimate, for some ν, classical sample covariance matrix-
based techniques to estimate the pi such as [3], [13] cannot
be adapted to account for the τi.

Figure 1 compares the performance of robust G-MUSIC
and empirical robust G-MUSIC against MUSIC and G-
MUSIC for L = 2, θ1 = 10◦, θ2 = 12◦, and ν ∼
Gamma(0.8, 1.25). The MUSIC algorithm assumes as an
estimate for ηN (θ) the function θ 7→ a(θ)∗Π

(SCM)
W a(θ) with

Π
(SCM)
W the noise subspace of the sample covariance matrix

for the vectors y1, . . . , yn. Robust MUSIC is similar but with
ĈN in place of the sample covariance matrix. The G-MUSIC
algorithm is similar to the robust G-MUSIC method but with
the function v set equal to one, which is somewhat similar
to the G-MUSIC approach developed in [6].1 In addition to
G-MUSIC, we introduce the empirical G-MUSIC algorithm
which, similar to the empirical robust G-MUSIC approach,
uses estimates of τi instead of using the information of ν.

Figure 1 shows that, due to N/n not being too small,
MUSIC and robust MUSIC cannot separate the two close
angles, which is a well-documented behavior. The G-MUSIC
approaches accommodate for this, but suffer from the impul-
sive noise nature, and even more so if the shape parameter
of the Gamma distribution gets reduced, as can be verified
by further simulations.

IV. REFERENCES
[1] P. Vallet, W. Hachem, P. Loubaton, X. Mestre, and

J. Najim, “An improved music algorithm based on
low-rank perturbation of large random matrices,” in
Proceedings of IEEE Workshop on Statistical Signal
Processing (SSP’11), Nice, France, 2011.

1The model in [6] is essentially the same as here with v set to one, up to
a structural difference in the spiked model under study. It is interesting to
note in particular that, setting v to one, the results of Theorem 1 are very
similar in nature to the results in [6].



−10 −5 0 5 10 15 20
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

M
SE

RG-MUSIC
Emp. RG-MUSIC
G-MUSIC
Emp. G-MUSIC
Robust MUSIC
MUSIC

Fig. 1. Mean square error (MSE) performance of the smallest
angle estimation of the MUSIC estimators for N = 20,
n = 100, two sources at 10◦ and 12◦, Gamma-(0.8, 1.25)
impulsions. Robust G-MUSIC (RG-MUSIC) and empirical
robust G-MUSIC (Emp. RG-MUSIC) are compared against
MUSIC, G-MUSIC, and empirical G-MUSIC (Emp. G-
MUSIC).

[2] R. Couillet, F. Pascal, and J. W. Silverstein, “The
random matrix regime of Maronna’s M-estimator
with elliptically distributed samples,” Journal of
Multivariate Analysis, 2013. [Online]. Available:
http://arxiv.org/abs/1311.7034

[3] X. Mestre, “Improved estimation of eigenvalues of
covariance matrices and their associated subspaces
using their sample estimates,” IEEE Transactions on
Information Theory, vol. 54, no. 11, pp. 5113–5129,
Nov. 2008.

[4] R. Schmidt, “Multiple emitter location and signal pa-
rameter estimation,” IEEE Transactions on Antennas
and Propagation, vol. 34, no. 3, pp. 276–280, 1986.

[5] P. Vallet, P. Loubaton, and X. Mestre, “Improved
subspace estimation for multivariate observations
of high dimension: the deterministic signals case,”
IEEE Transactions on Information Theory, 2010,
submitted for publication. [Online]. Available:
http://arxiv.org/abs/1002.3234

[6] J. Vinogradova, R. Couillet, and W. Hachem, “Statis-
tical inference in large antenna arrays under unknown
noise pattern,” arXiv preprint 1301.0306, 2013.

[7] R. Couillet, F. Pascal, and J. W. Silverstein,
“Robust M-estimation for Array Processing: a
random matrix approach,” IEEE Transactions on
Information Theory, 2013. [Online]. Available:
http://arxiv.org/abs/1204.5320

[8] R. Couillet and M. McKay, “Large dimensional anal-
ysis and optimization of robust shrinkage covariance
matrix estimators,” Submitted to Journal of Multivari-
ate Analysis, 2013.

[9] S. Wagner, R. Couillet, M. Debbah, and D. T. M.
Slock, “Large system analysis of linear precoding
in MISO broadcast channels with limited feedback,”
IEEE Transactions on Information Theory, vol. 58,
no. 7, pp. 4509–4537, 2012. [Online]. Available:
http://arxiv.org/abs/0906.3682

[10] R. Couillet and W. Hachem, “Analysis of the limit
spectral measure of large random matrices of the
separable covariance type,” Journal of Multivariate
Analysis, 2013.

[11] ——, “Fluctuations of spiked random matrix models
and failure diagnosis in sensor networks,” IEEE Trans-
actions on Information Theory, 2012, to appear.

[12] F. Chapon, R. Couillet, W. Hachem, and X. Mestre,
“On the isolated eigenvalues of large Gram random
matrices with a fixed rank deformation,” Electronic
Journal of Probability, 2012, submitted for publication.

[13] R. Couillet, J. W. Silverstein, Z. D. Bai, and M. Deb-
bah, “Eigen-inference for energy estimation of multiple
sources,” IEEE Transactions on Information Theory,
vol. 57, no. 4, pp. 2420–2439, 2011.


