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ABSTRACT

This article introduces a random matrix framework for the analysis
of the trade-off between performance and complexity in a class of
machine learning algorithms, under a large dimensional data X =
[x1, . . . , xn] ∈ Rp×n regime. Specifically, we analyze the spec-
tral properties of K �B ∈ Rn×n, for a kernel random matrix K =
{f( 1

p
‖xi−xj‖2)}ni,j=1 upon which a sparsity maskB ∈ {0, 1}n×n

is applied: this reduces the number ofKij to evaluate, thereby reduc-
ing complexity, while weakening the power of statistical inference
on K, thereby impeding performance. Assuming the data structured
as X = Z +

√
nµvT for informative vectors µ ∈ Rp, v ∈ Rn,

and white noise Z, we exhibit a phase transition phenomenon be-
low which spectral methods must fail and which is a function of the
sparsity structure ofB. This finds immediate applications to the fun-
damental limits of complexity-reduced spectral clustering as well as
principal component analysis.

Index Terms— Random matrix theory; large dimensional statis-
tics; spectral clustering; PCA.

1. INTRODUCTION

The ongoing exponential increase of the volume of data and the im-
perious need to devise smart and autonomous algorithms to process
them sets a strong pressure on (i) the scalability of machine learning
techniques, and (ii) a theoretical understanding of the fundamental
limitations of large dimensional data processing.

However, as they rely on non linear feature extraction and deal
with complex structured data, most machine learning algorithms fail
to be prone to analysis and theoretical guarantees. This is all the
more exacerbated in the present large and numerous data era, and
sometimes leads to disruptive algorithm behavior as the dimension
p of the data increases. Recent breakthroughs in the field of ran-
dom matrix theory provide renewed hope to address Challenges (i)
and (ii). Assuming that the dimension p and the sample size n of
data X = [x1, . . . , xn] ∈ Rp×n are simultaneously large (formally,
n, p → ∞ with p/n → c ∈ (0,∞)), random matrix theory has
recently shown that large non linear kernel K = {κ(xi, xj)}ni,j=1

[1, 2, 3] and activation-function [4] matrices, which are ubiquitous
in machine learning, exhibit a simple and tractable behavior in the
limit; not only does this enable a thorough understanding of the al-
gorithm performance but it also allows for the revision, the improve-
ment, and even the entire reconsideration of machine learning intu-
itions and methods (e.g., [5, 6, 7]). Possibly more importantly, it has
moreover been shown [8, 9] that these large n, p results are universal
with respect to the data distribution, i.e., the theoretical results de-
veloped on Gaussian data models remain provably valid for a large
range of realistic generative data models.
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Anchored in these findings which mostly address Challenge (ii),
this article investigates instead Challenge (i). Being at the core of
machine learning algorithms, the above kernel matrices K ∈ Rn×n
are expensive to evaluate (in general of complexity O(n2p)), pos-
sibly to store, but most fundamentally to operate on (invert, extract
eigenvectors, etc.). The objective of the article is to evaluate the the-
oretical consequences of a (possibly drastic) reduction in the number
of entries ofK being evaluated, in terms of algorithm performances.
Specifically, by introducing a random maskB which entry-wise dis-
cards a proportion 1− ε of the entries of K, the article:
• determines the limiting eigen-spectrum of the ‘punctured’

kernel K � B, where K = 1
p
XTX , X = Z +

√
nµvT, for

deterministic µ ∈ Rp, v ∈ Rn of fixed norms, Z random
with independentZij ∼ N (0, 1) entries, andB ∈ {0, 1}n×n
random with independent Bernoulli entries with parameter ε;

• identifies a phase-transition phenomenon by which: (a) if
‖µ‖2 exceeds a threshold Γ, the largest eigenvalue λ̂ ofK�B
is isolated and its associated eigenvector v̂ has a non trivial
alignment to the vector v, (b) if not, the dominant eigenvector
v̂ of K �B is asymptotically orthogonal to v;

• applies these findings to determine the fundamental limits
of two novel algorithms: (a) ‘punctured’ spectral clustering
in a two-class setting, (b) ‘punctured’ principal component
analysis in a single-direction factor model; from these results
unfolds a fundamental performance-complexity trade-off for
these elementary kernel methods. This trade-off is shown to
largely outperform more conventional subsampling (for (a))
and dimensionality reduction (for (b)) methods.

The remainder of the article is structured as follows. Section 2
introduces the formal model under study along with the key random
matrix quantities of interest. Section 3 presents our main results,
which are then concretely applied and discussed in Section 4, with
a proof sketch provided in Section 5. The article closes in Section 6
on a discussion of the anticipated consequences and future investiga-
tions in this new performance-complexity trade-off line of research.

2. MODEL AND PROBLEM SETTING

Let X = [x1, . . . , xn] ∈ Rp×n be a collection of n data samples of
dimension p. For reasons that will be clarified in the applications of
Section 4, we assume that X is modelled as

X = Z +
√
nµvT

where Z ∈ Rp×n has i.i.d.N (0, 1) entries, µ ∈ Rp and v ∈ Rn are
deterministic vectors with ‖µ‖ fixed and independent of p and n,1

‖v‖2 = 1 and lim supn max1≤i≤n{
√
nv2i } = 0.

1This assumption is set for simplicity of exposition. It may be relaxed
to µ ∈ Rp random independent of Z and such that ‖µ‖ converges almost
surely to a finite limit as p→∞. See Section 4.2 for a concrete application
of this generalization.
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We further define the symmetric binary matrix B ∈ {0, 1}n×n,
which will serve as a ‘puncturing’ mask applied to the canonical
inner-product kernel matrix 1

p
XTX , with, for 1 ≤ i < j ≤ n,

Bij ∼ Bern(ε)

and Bji = Bij , and for 1 ≤ i ≤ n, Bii = b ∈ {0, 1}.
The core object under study in the present article is the punc-

tured kernel matrix

S =
1

p
XTX �B.

From the definition of B, on average, a proportion 1 − ε of the off-
diagonal entries of S is set to zero (thus in practice not evaluated),
so that 1− ε plays the role of a sparsity enhancer; as for its diagonal
entries, they are either all maintained (if b = 1) or set to zero (if
b = 0). We will later see it to be crucial for the diagonal entries Bii
to be either all maintained or all discarded.

The objective of the article is to provide a description of the
spectral behavior, and most fundamentally (a) of the existence of
a dominant isolated eigenvalue λ̂ in the spectrum of S and (b) of
the correlation between the eigenvector v̂ associated to λ̂ and the
population vector v, as a function of the limiting ratio c, the signal-
to-noise ratio ‖µ‖2, and the sparsity parameter ε.

To this end, we assume both p and n are large and will, for
mathematical purpose, assume that p, n → ∞ in such a way that
p/n→ c ∈ (0,∞). We further recall that ‖µ‖ is fixed with respect
to p, n, that ‖v‖ = 1, and that lim supn max1≤i≤n{

√
nv2i } = 0.

Elaborating on tools from random matrix theory (in particular
tools developed in [10]), the large dimensional spectral behavior of
S is accessible via a thorough analysis of its resolvent

Q(z) ≡ (S − zIp)−1 (1)

defined for all z ∈ C \ Sp(S) with Sp(S) the set of eigenvalues
of S. The resolvent Q(z) is as such the central object of our main
technical results, delineated next.

3. MAIN RESULTS

.

3.1. Deterministic equivalent and limiting spectrum

Our main technical result provides a deterministic equivalent Q̄(z)
for the resolvent Q(z) defined in (1), that is, Q̄(z) is deterministic
and such that, for all sequences of deterministic matrix A ∈ Rn×n
and vectors a, b ∈ Rn of bounded norms (with respect to n), with
probability one,

1

n
trA(Q(z)− Q̄(z))→ 0, aT

(
Q(z)− Q̄(z)

)
b→ 0.

This will be denoted Q(z) ↔ Q̄(z) and allows, as shown subse-
quently, for the transfer of most of the spectral properties of Q(z)
(and thus of S) to Q̄(z).

Theorem 3.1 (Deterministic equivalent of Q(z)). Under the as-
sumptions and notations of Section 2, as p, n→∞,

Q(z)↔ Q̄(z) ≡ m(z)

(
In +

‖µ‖2εm(z)

c+ εm(z)
vvT
)−1

= m(z)In −
‖µ‖2εm(z)2vvT

c+ εm(z)(1 + ‖µ‖2)
(2)

wherem(z) is the Stieltjes transform (i.e.,m(z) =
∫

(t−z)−1ν(dt))
of the almost sure limiting spectral measure ν = limn

1
n

∑
λ∈Sp(S) δλ

of S, and is the unique complex analytic solution to

z = b− 1

m(z)
− ε

c
m(z) +

ε3m(z)2

c(c+ εm(z))
. (3)

Proof. A sketch of proof is given in Section 5.

Before exploiting Theorem 3.1 to our present objective, a few
remarks are in order. We may first observe that Q̄(z) takes the form
of a perturbation of the scaled identity matrix by the scaled rank-
1 matrix vvT. As per the study of spiked random matrix models
[11, 12], this form predicts the possible existence of an isolated dom-
inant eigenvalue λ̂ in the spectrum of S with associated eigenvector
v̂ aligned to some extent to v. This is established in section 3.2. Be-
fore this, interesting conclusions from Theorem 3.1 can be drawn in
the limit where ε→ 0 or 1.

Remark 1 (Marc̆enko-Pastur and semi-circle limits). When ε = 1,
letting z′ = z + 1− b, Equation (3) can be rewritten

z′mb(z
′)2 + (cz′ + 1− c)mb(z

′) + c = 0

where mb(z
′) ≡ m(z′ + b − 1) is the Stieltjes transform of the

measure ν(· + b − 1). We thus recover the defining equation of the
Stieltjes transform of the Marc̆enko-Pastur distribution [13] for the
variable z + 1− b. In particular, the limiting measure ν has support
[(1−

√
1/c)2 + b− 1, (1 +

√
1/c)2 + b− 1].

If instead, ε� 1, it can be shown that Equation (3) becomes

z − b+
1

m(z)
+
ε

c
m(z) = Oε(ε

2) (4)

which, letting z′ =
√
c/ε(z − b), leads to

mb,ε(z
′)2 + z′mb,ε(z

′) + 1 = Oε(ε
3
2 ) (5)

wheremb,ε(z
′) =

√
ε/cm(

√
ε/cz′+b) formb,ε the Stieltjes trans-

form of the shifted-scaled measure ν((· − b)
√
c/ε). We thus re-

trieve the defining Stieltjes transform of Wigner’s semi-circle law
[14]. In particular, in the first order in ε, the limiting support of ν is
[−2
√
ε/c+ b, 2

√
ε/c+ b].

Remark 1 thus predicts that the limiting measure ν of the
spectrum of the punctured kernel S = K � B evolves from the
Marc̆enko-Pastur law, typical of the Gram matrix XTX towards a
semi-circle measure, typical of the symmetric matrix B with in-
dependent entries (up to symmetry). Interestingly, note that the
ε-negligible term in (5) is of order Oε(ε

3
2 ), suggesting a fast con-

vergence towards the semi-circle behavior, as soon as ε is away from
one. Figure 1 visually confirms this observation by displaying the
limiting behaviors for ε ∈ {0.1, 0.5, 0.9}. Figure 1 also predicts the
possibility, for c < 1, of a transitional state where the support of ν
is divided in two connected components.2

From Remark 1, we may also already anticipate some of our
subsequent findings on the punctured kernel performance in the case
of stringent puncturing. Indeed, in the regime of small ε, for (4) to
have a non-trivial behavior (recall that z − cb = O(ε−

1
2 ), one must

2Writing Equation (3) under the functional form z(m) = b− 1
m
− ε
c
m+

ε3m2

c(c+εm)
, the edges of the connected components of ν are the real solutions

to z′(m) = 0 which can be expressed as a polynomial of order 4: the support
may then contain up to two components (i.e., 4 edges).



have m(z) = O(ε−
1
2 ) . Plugged into (2), it thus comes that the

ratio between the ‘noise’ contribution (m(z)In) and the ‘informa-

tion’ contribution ( ‖µ‖2εm(z)2vvT

c+εm(z)(1+‖µ‖2) ) of the deterministic equivalent

Q̄(z) of Q(z) is only non-trivial if ‖µ‖2 = O(ε−
1
2 ). As a conse-

quence (see more in Section 3.2), as the puncturing becomes more
severe (i.e., as ε→ 0), the ‘energy’ ‖v‖2‖µ‖2 = ‖µ‖2 of the infor-
mation matrix µvT must increase at least as 1/

√
ε for it to remain

visible and retrievable.
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Fig. 1: Empirical eigenvalue distributions of 1
p
XTX�B, for b = 1,

n = 1000 and v = [1T
n
2
,−1T

n
2

]T. (Top row) ε = 0.9; (middle
row) ε = 0.5; (bottom row) ε = 0.1. (Left column) p = 2000
(c = 2) and ‖µ‖2 = 3; (right column) p = 100 (c = 0.1)
and ‖µ‖2 = 1. (Red line) theoretical limiting spectral density ν
computed by numerically inverting the Stieltjes transform m(z) in
Theorem 3.1.3 (Green line) theoretical position of isolated spike as
per Theorem 3.2. (Orange lines) small ε approximation of support
edges as per Corollary 3.2.1.

Remark 2 (On the elements Bii). The assumption that the elements
Bii = b be fixed and equal, while the Bij , i 6= j, are taken ran-
dom, may surprise the reader. Letting Bii random would however
break the statistical ‘exchangeability’ of the entries Qij of the resol-
vent: this would specifically lead to Q̄(z) being of the formD1(z)+
D2(z)vv′D2(z) for random diagonal matrices D1(z) and D2(z),
each having two distinct elements (i.e., the [Dj(z)]ii’s are the same
for all Bii constant). As an immediate consequence, the dominant
eigenvector v̂ of S, which we expect to faithfully recover v, would
instead be a severely (‘Bii-wise’) deformed version of v.

3We recall that, if m(z) =
∫
(λ − z)dν(λ), then dν(x) =

limy↓0
1
π
Im[m(x+ ıy)]dx.

As for the choice of b ∈ {0, 1}, note that Q̄(z) only depends on
b through (3). As such, with the change of variable z′ = z − b and
the fact thatm(z) =

∫
(λ−z)−1dν(λ) =

∫
(λ−z′)−1dν(λ−b) ≡

m(z′) , Q̄(z′) when expressed as a function of z′ and m(z′) does
not depend on b. This indicates that the only effect of b is to ‘shift’
the whole spectrum of the limiting spectral measure ν of S by a
constant b . Consequently, b may be chosen arbitrarily.

Remark 3 (On the assumptions on µ, v). The asymmetry between
the assumptions on µ ∈ Rp, which is taken arbitrary, and on v ∈ Rn,
instead constrained by maxi

√
nv2i = o(1), may seem surprising.

Recalling that 1
p
(
√
nµvT)T(

√
nµvT) � B = n

p
‖µ‖2vvT � B, it

appears that only v is directly affected by the puncturing imposed by
B to the information matrix. If v is ‘localized’ (i.e., only has non-
zero entries in fixed positions as with, say, v = 1√

2
(1, 1, 0, . . . , 0)T),

each random realization of B may either maintain (B11 = B12 =
B22 = 1) or discard (B11 = B12 = B22 = 0) a non-trivial part of
the energy of vvT, thereby leading to a non converging (and possibly
severely deleterious) behavior of the kernel statistics in the large n, p
limit. This is avoided by letting v be quite ‘delocalized’, i.e., has no
largely dominant entry.

Technically, in the course of the proof of Theorem 3.1, the ma-
trix n

p
‖µ‖2vvT � Ḃ, where Ḃ = B − E[B], should be appended to

the expression (2) of Q̄(z)−1. Noticing that vvT � Ḃ = DvḂDv ,
where Dv = diag(v1, . . . , vn), it then unfolds that

∥∥∥vvT � Ḃ∥∥∥ ≤√ε(1− ε) max
1≤i≤n

{
√
n|vi|2}

∥∥∥∥∥ Ḃ√
nε(1− ε)

∥∥∥∥∥
where the matrix in the right-hand side norm has i.i.d. entries of zero
mean and variance 1/n: from [14], its almost sure limiting spectrum
is the semi-circle law with norm almost surely converging to 2. As
such, one needs maxi

√
n|vi|2 = o(1) to ensure that ‖n

p
‖µ‖2vvT�

Ḃ‖ vanishes. This is achieved if v is sufficiently delocalized, for
instance by imposing, as we presently do, that maxi v

2
i = o(n−

1
2 ).4

Having established Theorem 3.1 and discussed some prelimi-
nary intuitions on the large dimensional behavior of the punctured
kernel S, we are now in position to evaluate the exact conditions un-
der which the signal µvT can be recovered from S and, under these
conditions, the quality of the estimation of the information vector v.

3.2. Phase transition, isolated eigenvalue and eigenvector

This section establishes (i) the condition on ‖µ‖ under which the
largest eigenvalue λ̂ of S isolates (and thus becomes informative)
and, in this case, (ii) the limit ζ of the alignement ζ̂ ≡ |v̂Tv|2 be-
tween the eigenvector v̂ associated to λ̂ and the (non-trivial) popula-
tion eigenvector v of the information matrix (µvT)T(µvT).

To this end, we exploit Theorem 3.1 by noticing that, as per
Cauchy’s integral,

|v̂Tv|2 =
−1

2πı

∮
C
λ̂

vTQ(z)vdz ' −1

2πı

∮
Cλ
vTQ̄(z)vdz (6)

for Cx a sufficiently small positively-oriented complex contour sur-
rounding x, λ the presumably existing limit for λ̂ as p, n→∞; the

4Note in passing that we could have let n
1
4 v be random, independent of

B and Z, with i.i.d. entries with bounded 4+ δ (for some δ > 0) moment to
obtain, by Markov’s inequality, the same result, with high probability.



approximation only holds true if λ̂ indeed remains isolated from all
other eigenvalues of S. The deterministic expression on the right-
hand side can be evaluated explicitly, leading to the following result.

Theorem 3.2 (Isolated spectrum). Define the functions

F (x) = x4 + 2x3 +
(

1− c

ε

)
x2 − 2cx− c

G(x) = b+
ε

c
(1 + x) +

1

1 + x
+

ε

x(1 + x)

and let Γ be the largest real solution to F (Γ) = 0. Then, under the
assumptions of Section 2, as p, n → ∞, with probability one, the
largest eigenvalue λ̂ of S and its associated eigenvector v̂ satisfy

λ̂→ λ =

{
G(‖µ‖2) , ‖µ‖2 > Γ
G(Γ) , ‖µ‖2 ≤ Γ

ζ̂ ≡ |v̂Tv|2 → ζ =

{
F (‖µ‖2)

‖µ‖2(1+‖µ‖2)3 , ‖µ‖2 > Γ

0 , ‖µ‖2 ≤ Γ.

Theorem 3.2 ensures the presence of an isolated dominant eigen-
value λ̂ of S and a non-trivial alignment ζ̂ between the correspond-
ing eigenvector v̂ and the information vector v of the model, if and
only if ‖µ‖2 > Γ. If instead ‖µ‖2 ≤ Γ, then λ̂ converges to the
right-edge E+

ν of the support [E−ν , E
+
ν ] of ν, so that

E+
ν = b+

ε

c
(1 + Γ) +

1

1 + Γ
+

ε

Γ(1 + Γ)
.

Interestingly, the values of the limits λ and ζ assume explicit formu-
lations, while the threshold Γ remains implicit (at least it takes the
non-convenient form of a root of a fourth-order polynomial). In the
regime ε� 1 though, the value for Γ becomes tractable.

Corollary 3.2.1 (Small ε approximation). Under the notations of
Theorem 3.2, in the limit of small ε,

Γ =

√
c

ε
− 1 + ε+O(ε

3
2 ), E±ν = b± 2

√
ε

c
+
ε2

c
+O(ε

5
2 ).

The accuracy of these estimates is illustrated in Figure 1.

3.3. Performance-complexity trade-off

By discarding a proportion ε of the entries of K, the computational
cost of the matrix K�B is reduced by a factor ε when compared to
the computational cost of K.

Besides, to estimate v from the leading eigenvector v̂ of K �
B, one may naturally resort to the power method which runs the
procedure vt+1 = ṽt+1/‖ṽt+1‖ with ṽt+1 = (K � B)vt for all
t ≥ 0 for some arbitrary v0 until convergence. For all large n,
the product operation (K � B)vt has a computational cost of order
O(n2ε), thereby again reduced by a factor ε.

4. APPLICATIONS

The punctured kernel analysis performed in Section 2 finds sev-
eral immediate applications, which we illustrate in this section.
A straightforward application is that of a ‘punctured kernel spec-
tral clustering’ of large Gaussian data xi ∼ N (±µ, Ip) in which√
nvi ∈ {±1} accounts for the sign of E[xi]. Less immediate, as

it requires to flip the meaning of p (now the number of samples)
and n (now the sample dimension) and to take (with a slight abuse)

µ ∼ N (0, 1
n
σ2
µIp), is the application to ‘punctured principal com-

ponent analysis’ based on the p i.i.d. n-dimensional random vectors
XT ≡ X̃ = [x̃1, . . . , x̃p] (i.e., x̃i is the i-th row and not column of
X), where E[x̃i] = 0 and E[x̃ix̃

T
i ] = In + σ2

µvv
T.

The asymptotic performances of the punctured kernel 1
p
XTX�

B and punctured sample covariance 1
p
X̃X̃T � B are described be-

low, along with a comparison to the standard ε-data sampling and
ε-dimensionality reduction techniques, respectively.

4.1. Kernel spectral clustering

In this application, we assume thatX = [x1, . . . , xn] ∈ Rp×n mod-
els a dataset generated by a two-class Gaussian mixture model, with
xi ∼ N (viµ, Ip). We may then write X = Z +

√
nµvT where√

nv ∈ {−1, 1}n. We further impose that
∑
i vi = 0, i.e., each

class has the same size.
From the popular spectral clustering algorithm [15] with ker-

nel K = { 1
p
xTi xj}ni,j=1 = 1

p
XTX , the dominant eigenvector v̂ of

XTX is expected to be aligned to v. Besides, by the complete sym-
metry of the class model, the natural estimate Ĉi of the class Ci of
xi is directly given by sgn(v̂i). Working instead on the punctured
kernel 1

p
XTX�B, and thus with the dominant eigenvector v̂ rather

than v̂ (both being equal when ε = 1 and b = 1), the corresponding
performance of punctured spectral clustering is as follows.

Theorem 4.1 (Performance of punctured kernel spectral clustering).
Let Ĉi = sgn(v̂i) be the estimated class Ci of vector xi, with the
eigenvector convention v1v̂1 > 0. Then, with probability one,

1

n

n∑
i=1

δ{Ci=Ĉi} = Q
(√

ζ/(1− ζ)
)

+ o(1)

where ζ is defined in Theorem 3.2 and Q(x) = 1
2π

∫∞
x
e−t

2/2dt.

Figure 2 illustrates Theorem 4.1 by comparing theoretical versus
simulated performance for varying ε and ‖µ‖2. It notably confirms
the sudden drop of classification accuracy below the phase transition
threshold and shows that the predicted asymptotics are already quite
accurate in this moderately large n = 200, p = 800 setting.
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Fig. 2: Classification performance of spectral clustering as a func-
tion of ε (x-axis) and ‖µ‖2 (y-axis) for c = 4, n1 = n2 = n/2 and
n = 200. (Left) asymptotic result of Theorem 4.1; (right) simula-
tions averaged over 100 Monte-Carlo runs. (Blue) theoretical phase
transition ‖µ‖2 = Γ evaluated from its expression in Theorem 3.2.
(Dashed blue) approximation ε� 1 as per Corollary 3.2.1.

An alternative approach to reduce the computational complex-
ity of spectral clustering consists in subsampling ns < n vectors



Xs ∈ Rp×ns of the whole dataset X and performing spectral clus-
tering on the resulting matrix 1

p
XT
sXs (without puncturing). By tak-

ing ns = dεne, the complexity, using a power method, is reduced
by a factor O(ε2). To reduce the complexity of an n-dimensional
spectral clustering, one may then let ns = n/m (ε = 1/m) and
perform m parallel spectral clustering, each of 1/m2 reduced com-
plexity: ultimately, similar to the proposed punctured kernel method,
this reduces the overall cost by a factor ε = 1/m.

However, the latter procedure looses the benefit of the ‘redun-
dancy’ inherent to data arising from the same class, which kernel
methods leverage [3]. This is quite detrimental to its performance.
Indeed, the asymptotic accuracy |v̂Ts vs|, with vs ∈ Rns the nor-
malized subset of v on the ns selected indices and v̂s ∈ Rns the
dominant eigenvector of 1

p
XT
sXs, follows from Theorem 3.2 by suc-

cessively letting, in the theorem statement: 1) ε = 1 and 2) c→ c/ε
where ε = ns/n becomes the subsampling rate. Using the subscript
s in the following to denote the subsampling case, this yields

Fs(x) = x4 + 2x3 +
(

1− c

ε

)
x2 − 2cx

ε
− c

ε
(7)

= (x+ 1)2
(
x+

√
c

ε

)(
x−

√
c

ε

)
the largest root Γs =

√
c/ε of which is the classical Marc̆enko-

Pastur spike phase transition [11]. We thus obtain

|v̂Ts vs|2 → ζs =
max{Fs(‖µ‖2), 0}
‖µ‖2(1 + ‖µ‖2)3

=
max{‖µ‖4 − c/ε0}
‖µ‖2(1 + ‖µ‖2)

.

Note that, for x > 0, F (x)−Fs(x) = c(2x+ 1)(ε−1− 1) ≥ 0
with equality only if ε = 1, so that (i) Γ < Γs, i.e., the phase
transition of the punctured kernel arises at lower signal-to-noise ra-
tios ‖µ‖2, and (ii) ζ > ζs, i.e., the asymptotic alignment is greater
for the punctured kernel method. The two methods only perform
equivalently when ε = 1, while the gain of the punctured kernel is
increased in the low density (ε � 1) regime. The comparison with
the phase transition derived for the punctured kernel as per Corol-
lary 3.2.1, i.e., Γ =

√
c/ε − 1 + O(ε), shows a gain of order 1 on

the signal-to-noise ratio phase transition when ε is small. Figure 3,
to be compared to Figure 2, clearly illustrates this result.

But Figure 3 reveals a more fundamental message: here for c
small, the punctured kernel phase transition has a peculiar “plateau”-
like shape, which strongly suggests that very harsh puncturing may
be performed with almost no loss of performance.

4.2. Principal component analysis

We here let X̃ = [x̃1, . . . , x̃ñ] ∈ Rp̃×ñ be a collection of ñ in-
dependent random vectors, each of dimension p̃, such that x̃i ∼
N (0, Ip̃ + σ2

µvv
T) for a given unit norm vector v ∈ Rp̃ drawn uni-

formly at random in the unit sphere Sp̃−1 and for some σµ > 0. The
objective is to perform a ‘punctured principal component analysis’
on X̃ , by retrieving the dominant eigenvector of the punctured sam-
ple covariance 1

ñ
X̃X̃T � B (with B as in the previous sections), in

order to estimate the main direction v of the data covariance.
This model falls under our present analysis if we let p̃ = n,

ñ = p (i.e., we exchange the roles of the number and dimension
of samples), X̃ = XT, where X = Z +

√
nµvT with Z as in the

previous sections and µ ∈ Rp taken random independent of Z as
µ ∼ N (0, σ2

µIp/n) (note that µ and its norm ‖µ‖ are random and
thus not fixed: yet, as per Footnote 1 in Section 2, the results of the

article remain valid since ‖µ‖2 → cσ2
µ =

σ2
µ

c̃
almost surely, where
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Fig. 3: Classification accuracy of ε-subsampling clustering as a
function of ε (x-axis) and ‖µ‖2 (y-axis) for c = 0.1, n1 = n2 =
n/2 and n = 1000. Simulations averaged over 100 Monte-Carlo
runs. (Green) phase transition of ε-subsampling (‖µ‖2 =

√
c/ε).

(Blue) phase transition of punctured kernel (from Theorem 3.2).

c̃ ≡ c−1; similarly, v satisfies the condition maxi
√
nv2i = o(1)

only with high probability). In this case, being the sum of inde-
pendent Gaussian vectors, x̃i = [ZT]·,i +

√
p̃µiv is indeed (con-

ditionally to v) a Gaussian vector with zero mean and covariance
E[x̃ix̃

T
i ] = Ip̃ + σ2

µvv
T, as requested.

As a consequence, the performance of the punctured PCA
method, estimated as the squared Euclidean distance between the
population eigenvector v and the punctured PCA estimate v̂ the
dominant eigenvector of 1

ñ
X̃X̃T �B = 1

p
XTX �B, is given by

‖v − v̂‖2 = 2
(

1− |vTv̂|
)

= 2

1−

√√√√ max(F
(
σ2
µ/c̃
)
, 0)

(σ2
µ/c̃)

(
1 + σ2

µ/c̃
)3
+ o(1)

with F (·) defined in Theorem 3.2, where we implicitly assumed that
the correct sign of v̂ (i.e., the one for which vTv̂ > 0) is selected.

An alternative cost reduction technique consists in proceeding
to PCA on a ‘dimensionality-reduced’ subset X̃r ∈ Rp̃r×ñ of rows
of X̃ , with p̃r < p̃. If we let p̃r/p̃ = ε, the computational cost is
reduced by a factor ε2, however with a ‘sacrifice’ (on average) of
1− ε of the eigenvector energy. Letting vr ∈ Rp̃r be the normalized
corresponding subvector of v, the performance associated to the es-
timation of vr by the dominant eigenvector v̂r of 1

ñ
X̃rX̃

T
r satisfies

‖vr − v̂r‖2 = 2

(
1−

√
max{εσ4

µ − c̃, 0}
εσ2
µ(c̃+ σ2

µ)

)
+ o(1)

≥ ‖v − v̂‖2 + o(1),

the inequality following from the same arguments as in Section 4.1.
Figure 4 illustrates these results and shows that, while at first

thoughts reducing the ratio p̃/ñ by dimensionality reduction im-
proves the detectability threshold Γr =

√
p̃/ñ + o(1) by a factor√

p̃r/p̃ =
√
ε, this simultaneously reduces the effective signal-to-

noise ratio σ2
µ(ñ/p̃) by a factor ε: the performance thus drops by

a factor
√
ε and a full loss of 1 − ε of the total (squared) energy

of v is left aside. The proposed punctured PCA approach, in addi-
tion to leveraging the latter issue by estimating the full vector v, also
outperforms its estimation over the mere (and intuitively simpler)
estimation of vr alone by v̂r .
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Fig. 4: Squared Euclidean distance between population eigenvectors
v (and sub-vector vr) and sample eigenvectors of punctured v̂ versus
dimensionality-reduced v̂r as a function of sparsity ε (x-axis) for
c̃ = 2, p̃ = 1000, and σ2

µ ∈ {2, 10}.

5. ELEMENTS OF PROOF OF THE MAIN RESULTS

Theorem 3.1 is proved using the ‘Gaussian tools’ advocated in [10].
Relying on the resolvent identity Q(z) = − 1

z
In + 1

z
( 1
p
XTX �

B)Q(z), the method consists in finding a fixed-point relation for
E[Qij(z)] by expanding E[[(XTX � B)Q(z)]ij ] thanks to Stein’s
lemma E[xf(x)] = E[f ′(x)] for x ∼ N (0, 1). As opposed to the
setting where B is absent (leading to the Marc̆enko-Pastur theorem
[13]), the evaluation of E[[(XTX � B)Q(z)]ij ] produces terms of
the type E[(XTX � b`b

T
`′)Q(z)], for b`, b′` columns of B, which

make it difficult to ‘close’ the fixed-point equation. The independent
Bernoulli assumption on the entries ofB guarantees that these terms
all have the same limiting behavior, depending on whether ` = `′ or
` 6= `′, which in the end allows for closing the system.

The proof of Theorem 3.2 then follows from standard arguments
of spiked model analysis [16, Chp. 9], starting from Cauchy’s inte-
gral formula (6). For the integral to be non-trivial, the limiting iso-
lated eigenvalue λ (around which the complex integral is performed)
must be the (unique) pole of the resolvent Q̄(z) in Theorem 3.1,
i.e., λ is such that the denominator c + εm(z)(1 + ‖µ‖2) evalu-
ated at z = λ vanishes. The associated residue is then obtained as
limz→λ(λ−z)vTQ̄(z)v, which follows from a first order expansion
of Q̄(z)−1 around z = λ. Finally, the phase transition condition ex-
ploits the fact that, as ‖µ‖ decreases from∞, |vTv̂| must decrease
from 1 until reaching 0 at the position of the phase transition for ‖µ‖.
This is precisely given by the equation F (‖µ‖2) = 0.

6. CONCLUSION AND DISCUSSION

Under a simplified, yet theoretically expressive data model, the arti-
cle demonstrates both the validity and the convincing performance of
a ‘kernel puncturing’ approach for spectral methods. It is in particu-
lar not a trivial result that the puncturing does not alter the structure
of the dominant estimated eigenvector, which is indeed perfectly re-
covered in the limit ‖µ‖ → ∞.

This opens the path to more structured puncturing methods to
optimize the performance-complexity trade-off of more advanced
tasks. One may notably seek the optimal structure of a (non-
identically distributed) puncturing matrix B when addressing a
multi-class supervised kernel method: should one puncture propor-
tionally to the number of elements per class? to the average distance
within and across class elements? A generalized analysis of the
present model surely holds the answer.
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