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ABSTRACT
The article studies two regularized robust estimators of
scatter matrices proposed in parallel in [1] and [2], based
on Tyler’s robust M-estimator [3] and on Ledoit and Wolf’s
shrinkage covariance matrix estimator [4]. These hybrid es-
timators convey robustness to outliers or impulsive samples
and small sample size adequacy to the classical sample
covariance matrix estimator. We consider here the case of
i.i.d. elliptical zero mean samples in the regime where both
sample and population sizes are large. We prove that the
above estimators behave similar to well-understood random
matrix models, which allows us to derive optimal shrinkage
strategies to estimate the population scatter matrix, largely
improving existing methods.

I. INTRODUCTION
Many scientific domains customarily deal with (possibly

small) sets of large dimensional data samples from which
statistical inference is performed. That is, the number n
of independent data samples x1, . . . , xn ∈ CN (or RN )
may not be large compared to the size N of the popula-
tion, suggesting that the empirical sample covariance matrix
C̄N = 1

n

∑n
i=1(xi − x̄)(xi − x̄)∗, x̄ = 1

n

∑n
i=1 xi, is a

poor estimate for CN = E[(x1 − E[x1])(x1 − E[x1])∗].
Several solutions have been proposed to work around this
problem. If the end application is not to retrieve CN but
some metric of it, recent works on random matrix theory
showed that replacing CN in the metric by C̄N often leads
to a biased estimate of the metric, but that this estimate
can be corrected by an improved estimation of the metric
itself via the samples x1, . . . , xn [5]. However, when the
object under interest is CN itself and N ' n, there is little
hope to retrieve any consistent estimate of CN . A popular
alternative proposed originally in [4] is to “shrink” C̄N ,
i.e., consider instead C̄N (ρ) = (1 − ρ)C̄N + ρIN for an
appropriate ρ ∈ [0, 1] that minimizes the average distance
E[tr((C̄N (ρ) − CN )2)]. The interest of ρ here is to give
more or less weight to C̄N depending on the relevance of
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the n samples, so that in particular ρ is better chosen close
to zero when n is large and close to one when n is small.

In addition to the scarcity of samples, outliers may be
present among the set of samples. These outliers, if not
correctly handled, may further corrupt the statistical in-
ference and in particular the estimation of CN . The field
of robust estimation intends to deal with this problem [6]
by proposing estimators that have the joint capability to
naturally attenuate the effect of outliers as well as to handle
samples of an impulsive nature, e.g., elliptically distributed
data. A common denominator of such estimators is their
belonging to the class of M-estimators, therefore taking the
form of the solution to an implicit equation. This poses
important problems of analysis in small N,n dimensions,
resulting mostly in only asymptotic results in the regime
N fixed and n → ∞. Nonetheless, recent works based
on random matrix theory have shown that a certain family
of such robust covariance matrix estimators asymptotically
behave as N,n → ∞ and N/n → c ∈ (0, 1) similar to
classical random matrices taking explicit forms [7], [8].

In the present article, we study two hybrid robust shrink-
age covariance matrix estimates ĈN (ρ) (hereafter referred to
as the Abramovich–Pascal estimate) and ČN (ρ) (hereafter
referred to as the Chen estimate) proposed in parallel in [9],
[2] and in [1], respectively. Both matrices are empirically
built upon Tyler’s M-estimate [3] and upon the Ledoit–Wolf
shrinkage estimator [4]. This allows for an improved degree
of freedom for approximating the population covariance ma-
trix and importantly allows for N > n, which Maronna’s and
Tyler’s estimators do not. In [2] and [1], ĈN (ρ) and ČN (ρ)
were proved to be well-defined as the unique solutions to
their defining fixed-point matrices. However, little is known
of their performance as estimators of CN in the regime
N ' n of interest here. Some progress in this direction
was made in [1] but this work does not manage to solve the
optimal shrinkage problem consisting of finding ρ such that
E[tr((ČN (ρ)− CN )2)] is minimized and resorts to solving
an approximate problem instead.

The present article fills the gap by showing that, as
N,n → ∞ with N/n → c ∈ (0,∞), both ĈN (ρ) and
ČN (ρ) asymptotically behave similar to well-known random
matrix models and are in fact asymptotically equivalent. This



result is then used to derive an optimal shrinkage strategy
for both estimators that, similar to [4], minimizes the square
Frobenius norm metric.

II. MAIN RESULTS

We start by introducing the main assumptions of the data
model under study. Let x1, . . . , xn ∈ CN (or RN ) be n
sample vectors characterized as follows.

Assumption 1: Denoting cN = N/n, cN → c ∈ (0,∞) as
N →∞.

Assumption 2: The vectors x1, . . . , xn ∈ CN are indepen-
dent with

a. xi =
√
τ iANyi, yi ∈ CN̄ , N̄ ≥ N , random zero mean

unitarily invariant with norm ‖yi‖2 = N̄ , AN ∈ CN×N̄
deterministic, and τ1, . . . , τn a collection of positive
scalars. We shall denote zi = ANyi.

b. CN , ANA
∗
N nonnegative definite, 1

N trCN = 1, and
lim supN ‖CN‖ <∞ in spectral norm.

c. νN , 1
N

∑N
i=1 δλi(CN ) → ν weakly with ν 6= δ0.

With this definition, the distribution of the vectors xi
contains in particular the class of elliptical distributions. Note
that, since yi is zero mean unitarily invariant with norm N̄ ,
yi =

√
N̄ ỹi
‖ỹi‖ with ỹi ∈ CN̄ standard Gaussian. We can

now introduce our main results.

Theorem 1 (Abramovich–Pascal Estimate): Let Assump-
tions 1 and 2 hold. For ε ∈ (0,min{1, c−1}), define R̂ε =
[ε+max{0, 1−c−1}, 1]. For each ρ ∈ (max{0, 1−c−1

N }, 1],
let ĈN (ρ) be the unique solution to

ĈN (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ĈN (ρ)−1xi

+ ρIN .

Then, as N →∞,

sup
ρ∈R̂ε

∥∥∥ĈN (ρ)− ŜN (ρ)
∥∥∥ a.s.−→ 0

where

ŜN (ρ) =
1

γ̂(ρ)

1− ρ
1− (1− ρ)c

1

n

n∑
i=1

ziz
∗
i + ρIN

and γ̂(ρ) is the unique positive solution to the equation in γ̂

1 =

∫
t

γ̂ρ+ (1− ρ)t
ν(dt).

The function ρ 7→ γ̂(ρ) thus defined is continuous on (0, 1].
Proof: The proof can be found in [10, Section 5.1].

Theorem 2 (Chen Estimate): Let Assumptions 1 and 2
hold. For ε ∈ (0, 1), define Řε = [ε, 1]. For each ρ ∈ (0, 1],
let ČN (ρ) be the unique solution to

ČN (ρ) =
B̌N (ρ)

1
N tr B̌N (ρ)

where

B̌N (ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ČN (ρ)−1xi

+ ρIN .

Then, as N →∞,

sup
ρ∈Řε

∥∥ČN (ρ)− ŠN (ρ)
∥∥ a.s.−→ 0

where

ŠN (ρ) =
1− ρ

1− ρ+ Tρ

1

n

n∑
i=1

ziz
∗
i +

Tρ
1− ρ+ Tρ

IN

in which Tρ = ργ̌(ρ)F (γ̌(ρ); ρ) with, for all x > 0,

F (x; ρ) =
ρ− c(1− ρ)

2
+

√(
ρ− c(1− ρ)

2

)2

+
1− ρ
x

and γ̌(ρ) is the unique positive solution to the equation in γ̌

1 =

∫
t

γ̌ρ+ 1−ρ
(1−ρ)c+F (γ̌;ρ) t

ν(dt).

The function ρ 7→ γ̌(ρ) thus defined is continuous on (0, 1].
Proof: The proof is available in [10, Section 5.2].

Theorem 1 and Theorem 2 show that, as N,n → ∞
with N/n → c, the matrices ĈN (ρ) and ČN (ρ), defined
as the non-trivial solution of fixed-point equations, behave
similar to matrices ŜN (ρ) and ŠN (ρ), respectively, whose
characterization is well-known and much simpler than that
of ĈN (ρ) and ČN (ρ) themselves. Indeed, ŜN (ρ) and ŠN (ρ)
are random matrices of the sample covariance matrix type
thoroughly studied in e.g., [11].

Technically speaking, the proof of both Theorem 1 and
Theorem 2 unfold from the same technique as developed in
[8]. However, while the proof of Theorem 1 comes with no
major additional difficulty compared to [8], due to the scale
normalization imposed in the definition of ČN (ρ), the proof
of Theorem 2 requires a more elaborate approach than used
in [8]. The readers are invited to find the detailed proofs in
[10]. Another difference to previous works lies here in that,
unlike Maronna’s estimator that only attenuates the effect of
the scale parameters τi, the proposed Tyler-based estimators
discard this effect altogether. Also, the technical study of
Maronna’s estimator can be made under the assumption that
CN = IN (from a natural variable change) while here,
because of the regularization term ρIN , CN does intervene
in an intricate manner in the results.

As a side remark, it is shown in [2] that for each N,n
fixed with n ≥ N + 1, ĈN (ρ) → ĈN (0) as ρ → 0 with
ĈN (0) defined (almost surely) as one of the (uncountably
many) solutions to

ĈN (0) =
1

n

n∑
i=1

xix
∗
i

1
N x
∗
i ĈN (0)−1xi

. (1)



In the regime where N,n → ∞ and N/n → c, this result
is difficult to generalize as it is challenging to handle the
limit ‖ĈN (ρN ) − ŜN (ρN )‖ for a sequence {ρN}∞N=1 with
ρN → 0. The requirement that ρN → ρ0 > 0 on any such
sequence is indeed at the core of the proof of Theorem 1.
This explains why the set R̂ε in Theorem 1 excludes the
region [0, ε). Similar arguments hold for ČN (ρ).
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Fig. 1. Histogram of the eigenvalues of ĈN (Abramovich–
Pascal type) for n = 2048, N = 256, CN =
1
3 diag(I128, 5I128), ρ = 0.2, versus limiting eigenvalue
distribution.
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Fig. 2. Histogram of the eigenvalues of ČN (Chen type) for
n = 2048, N = 256, CN = 1

3 diag(I128, 5I128), ρ = 0.2,
versus limiting eigenvalue distribution.

Figure 1 and Figure 2 depict the histogram of the eigen-
values of ĈN (ρ) and ČN (ρ) for ρ = 0.2, N = 256,

n = 2048, CN = diag(I128, 5I128), versus the limiting
distributions of the eigenvalues of ŜN (ρ) and ŠN (ρ) for
c = 1/8, respectively.

A corollary of Theorem 1 and Theorem 2 is the joint
convergence (over both ρ and the eigenvalue index) of the
individual eigenvalues of ĈN (ρ) to those of ŜN (ρ) and of
the individual eigenvalues of ČN (ρ) to those of ŠN (ρ), as
well as the joint convergence over ρ of the moments of the
empirical spectral distributions of ĈN (ρ) and ČN (ρ). These
joint convergence properties are fundamental in problems of
optimization of the parameter ρ as discussed in Section III.

Corollary 1 (Joint convergence properties): Under the
settings of Theorem 1 and Theorem 2,

sup
ρ∈R̂ε

max
1≤i≤n

∣∣∣λi(ĈN (ρ))− λi(ŜN (ρ))
∣∣∣ a.s.−→ 0

sup
ρ∈Řε

max
1≤i≤n

∣∣λi(ČN (ρ))− λi(ŠN (ρ))
∣∣ a.s.−→ 0.

This result implies

lim sup
N

sup
ρ∈R̂ε

‖ĈN (ρ)‖ <∞

lim sup
N

sup
ρ∈Řε

‖ČN (ρ)‖ <∞.

almost surely. This in turn induces that, for each ` ∈ N,

sup
ρ∈R̂ε

∣∣∣∣ 1

N
tr
(
ĈN (ρ)`

)
−Mµ̂ρ,`

∣∣∣∣ a.s.−→ 0

sup
ρ∈Řε

∣∣∣∣ 1

N
tr
(
ČN (ρ)`

)
−Mµ̌ρ,`

∣∣∣∣ a.s.−→ 0

where we recall that Mµ,` =
∫
t`µ(dt) ∈ (0,∞] for any

probability measure µ with support in R+; in particular,
Mµ̂ρ,1 = 1

γ̂(ρ)
1−ρ

1−(1−ρ)c + ρ and Mµ̌ρ,1 = 1.
Proof: The proof is found in [10, Section 5.3].

III. APPLICATION TO OPTIMAL SHRINKAGE
We now apply Theorems 1 and 2 to the problem of

optimal linear shrinkage, originally considered in [4] for the
simpler sample covariance matrix model. The optimal linear
shrinkage problem consists in choosing ρ to be such that
a certain distance metric between ĈN (ρ) (or ČN (ρ)) and
CN is minimized, therefore allowing for a more appropriate
estimation of CN via ĈN (ρ) or ČN (ρ). The metric selected
here is the squared Frobenius norm of the difference between
the (possibly scaled) robust estimators and CN , which has
the advantage of being a widespread matrix distance (e.g.,
as considered in [4]) and a metric amenable to mathematical
analysis.1 In [1], the authors studied this problem in the
specific case of ČN (ρ) but did not find an expression for

1Alternative metrics (such as the geodesic distance on the cone of
nonnegative definite matrices) can be similarly considered. The appropriate
choice of such a metric heavily depends on the ultimate problem to
optimize.



the optimal theoretical ρ due to the involved structure of
ČN (ρ) for all finite N,n and therefore resorted to solving
an approximate problem, the solution of which is denoted
here ρ̌O. Instead, we show that for large N,n values the
optimal ρ under study converges to a limiting value ρ̌? that
takes an extremely simple explicit expression and a similar
result holds for ĈN (ρ) for which an equivalent optimal ρ̂?

is defined.
Our first result is a lemma of fundamental importance

which demonstrates that, up to a change in the variable
ρ, ŜN (ρ)/Mµ̂ρ,1 and ŠN (ρ) (constructed from the samples
x1, . . . , xn) are completely equivalent to the original Ledoit–
Wolf linear shrinkage model for the (non observable) sam-
ples z1, . . . , zn.

Lemma 1 (Model Equivalence): For each ρ ∈ (0, 1], there
exist unique ρ̂ ∈ (max{0, 1 − c−1}, 1] and ρ̌ ∈ (0, 1] such
that

ŜN (ρ̂)

Mµ̂ρ̂,1
= ŠN (ρ̌) = (1− ρ)

1

n

n∑
i=1

ziz
∗
i + ρIN .

Besides, the maps (0, 1] → (max{0, 1 − c−1}, 1], ρ 7→ ρ̂
and (0, 1] → (0, 1], ρ 7→ ρ̌ thus defined are continuously
increasing and onto.

Proof: The proof is found in [10, Section 5.4].

Along with Theorem 1 and Theorem 2, Lemma 1 indicates
that, up to a change in the variable ρ, ĈN (ρ) and ČN (ρ)
can be somewhat viewed as asymptotically equivalent (but
there is no saying whether they can be claimed equivalent
for all finite N,n). As such, thanks to Lemma 1, we now
show that the optimal shrinkage parameters ρ for both
ĈN (ρ)/( 1

N tr ĈN (ρ)) and ČN (ρ) lead to the same asymp-
totic performance, which corresponds to the asymptotically
optimal Ledoit–Wolf linear shrinkage performance but for
the vectors z1, . . . , zn.

Proposition 1 (Optimal Shrinkage): For each ρ ∈ (0, 1],
define2

D̂N (ρ) =
1

N
tr

( ĈN (ρ)
1
N tr ĈN (ρ)

− CN

)2


ĎN (ρ) =
1

N
tr
((
ČN (ρ)− CN

)2)
.

Also denote D? = c
Mν,2−1
c+Mν,2−1 , ρ? = c

c+Mν,2−1 , and ρ̂? ∈
(max{0, 1− c−1}, 1], ρ̌? ∈ (0, 1] the unique solutions to

ρ̂?

1
γ̂(ρ̂?)

1−ρ̂?
1−(1−ρ̂?)c + ρ̂?

=
Tρ̌?

1− ρ̌? + Tρ̌?
= ρ?.

Then, letting ε < min(ρ̂?−max{0, 1− c−1}, ρ̌?), under the
setting of Theorem 1 and Theorem 2,

inf
ρ∈R̂ε

D̂N (ρ)
a.s.−→ D?, inf

ρ∈Řε
ĎN (ρ)

a.s.−→ D?

2Recall that, for A Hermitian, 1
N

tr(A2) = 1
N

tr(AA∗) = 1
N
‖A‖2F

with ‖ · ‖F the Frobenius norm for matrices.

and

D̂N (ρ̂?)
a.s.−→ D?, ĎN (ρ̌?)

a.s.−→ D?.

Moreover, letting ρ̂N and ρ̌N be random variables such that
ρ̂N

a.s.−→ ρ̂? and ρ̌N
a.s.−→ ρ̌?,

D̂N (ρ̂N )
a.s.−→ D?, ĎN (ρ̌N )

a.s.−→ D?.

Proof: The proof is provided in [10, Section 5.5].

The last part of Proposition 1 states that, if consistent
estimates ρ̂N and ρ̌N of ρ̂? and ρ̌? exist, then they have
optimal shrinkage performance in the large N,n limit. Such
estimates may of course be defined in multiple ways. We
present below a simple example based on ĈN (ρ) and ČN (ρ).

Proposition 2 (Optimal Shrinkage Estimate): Under the
setting of Proposition 1, let ρ̂N ∈ (max{0, 1− c−1}, 1] and
ρ̌N ∈ (0, 1] be solutions (not necessarily unique) to

ρ̂N
1
N tr ĈN (ρ̂N )

=
cN

1
N tr

[(
1
n

∑n
i=1

xix∗i
1
N ‖xi‖2

)2
]
− 1

G(ρ̌N )

1− ρ̌N +G(ρ̌N )
=

cN

1
N tr

[(
1
n

∑n
i=1

xix∗i
1
N ‖xi‖2

)2
]
− 1

where

G(ρ) = ρ
1

n

n∑
i=1

x∗i ČN (ρ)−1xi
‖xi‖2

.

and defined arbitrarily when no such solutions exist. Then

ρ̂N
a.s.−→ ρ̂? and ρ̌N

a.s.−→ ρ̌?

so that

D̂N (ρ̂N )
a.s.−→ D? and ĎN (ρ̌N )

a.s.−→ D?.

Proof: The proof can be found in [10, Section 5.6].

Figure 3 illustrates the performance in terms of the metric
ĎN of the empirical shrinkage coefficient ρ̌N introduced in
Proposition 2 versus the optimal value infρ∈(0,1]{ĎN (ρ)},
averaged over 10 000 Monte Carlo simulations. We also
present in this graph the almost sure limiting value D? of
both ĎN (ρ̌N ) and infρ∈Řε{ĎN (ρ)} for some sufficiently
small ε, as well as ĎN (ρ̌O) of ρ̌O defined in [1, Equa-
tion (12)] as the minimizing solution of E[ 1

N tr(ČO(ρ) −
CN )2] with ČO(ρ) the so-called “clairvoyant estimator”

ČO(ρ) = (1− ρ)
1

n

n∑
i=1

xix
∗
i

1
N x
∗
iC
−1
N xi

+ ρIN .

We consider in this graph N = 32 constant, n ∈ {2k, k =
1, . . . , 7}, and CN = [CN ]Ni,j=1 with [CN ]ij = r|i−j|, r =
0.7, which is the same setting as considered in [1, Section 4].

It appears in Figure 3 that a significant improve-
ment is brought by ρ̌N over ρ̌O, especially for small n,



which translates the poor quality of ČO(ρ) as an ap-
proximation of ČN (ρ) for large values of cN (obviously
linked to 1

N x
∗
iC
−1
N xi being then a bad approximation for

1
N x
∗
i ČN (ρ)−1xi). Another important remark is that, even for

so small values of N,n, infρ∈(0,1] ĎN (ρ) is extremely close
to the limiting optimal, suggesting here that the limiting
results of Proposition 1 are already met for small practical
values. The approximation ρ̌N of ρ̌?, translated here through
ĎN (ρ̌N ), also demonstrates good practical performance at
small values of N,n.

We additionally mention that we produced similar curves
for ĈN (ρ) in place of ČN (ρ) which happened to show
virtually the same performance as the equivalents curves
for ČN (ρ). This is of course expected (with exact match)
for infρ∈(0,1] D̂N (ρ) which, up to the region [0, ε), matches
infρ∈(0,1] ĎN (ρ) for large enough N,n, and similarly for
D̂N (ρ̂N ) since ρ̂N was designed symmetrically to ρ̌N .

Associated to Figure 3 is Figure 4 which provides the
shrinkage parameter values, optimal and approximated, for
both the Abramovich–Pascal and Chen estimates, along with
the clairvoyant ρ̌O of [1]. Recall that the (̂·) values must
only be compared to one another, and similarly for the (̌·)
values (so in particular ρ̌O only compares against the (̌·)
values). It appears here that ρ̌O is a rather poor estimate
for argminρ∈(0,1] ĎN (ρ) for a large range of values of n. It
tends in particular to systematically overestimate the weight
to be put on the sample covariance matrix.
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Fig. 3. Performance of optimal shrinkage averaged over
10 000 Monte Carlo simulations, for N = 32, various values
of n, [CN ]ij = r|i−j| with r = 0.7; ρ̌N is given in
Proposition 2; ρ̌O is the clairvoyant estimator proposed in
[1, Equation (12)]; D? taken with c = N/n.
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Fig. 4. Shrinkage parameter ρ averaged over 10 000 Monte
Carlo simulations, for N = 32, various values of n,
[CN ]ij = r|i−j| with r = 0.7; ρ̂N and ρ̌N given in
Proposition 2; ρ̌O is the clairvoyant estimator proposed
in [1, Equation (12)]; ρ?, ρ̂?, and ρ̌? taken with c =
N/n; ρ̂◦ = argmin{ρ∈(max{0,1−c−1

N },1]}{D̂N (ρ)} and ρ̌◦ =

argmin{ρ∈(0,1]}{ĎN (ρ)}.

IV. CONCLUDING REMARKS

The article shows that, in the large dimensional random
matrix regime, the Abramovich–Pascal and Chen estimators
for elliptical samples x1, . . . , xn are (up to a variable change)
asymptotically equivalent, so that both can be used inter-
changeably. They are also equivalent to the classical Ledoit–
Wolf estimator for the samples z1, . . . , zn or, as can be easily
verified, for the samples

√
Nx1/‖x1‖, . . . ,

√
Nxn/‖xn‖.

This means that for elliptical samples, at least as far as first
order convergence is concerned, the Abramovich–Pascal and
Chen estimators perform similar to a normalized version of
Ledoit–Wolf.

Recalling that robust estimation theory aims in particular
at handling sample sets corrupted by outliers, the perfor-
mance of the Abramovich–Pascal and Chen estimators given
in this paper (not considering outliers) can be seen as a
base reference for the “clean data” scenario which paves
the way for future work in more advanced scenarios. In the
presence of outliers, it is expected that the Abramovich–
Pascal and Chen estimates exhibit robustness properties
that the normalized Ledoit–Wolf scheme does not possess
by appropriately weighting good versus outlying data. The
study of this scenario is currently under investigation. Also,
the extension of this work to second order analysis, e.g.,
to central limit theorems on linear statistics of the robust
estimators, is a direction of future work that will allow to
handle more precisely the gain of robust versus non-robust



schemes in the not-too-large dimensional regime.
In terms of applications, Proposition 2 allows for the

design of covariance matrix estimators, with minimal Frobe-
nius distance to the population covariance matrix for im-
pulsive i.i.d. samples but in the absence of outliers, and
having robustness properties in the presence of outliers.
This is fundamental to those scientific fields where the
covariance matrix is the object of central interest. More
generally though, Theorems 1 and 2 can be used to design
optimal covariance matrix estimators under other metrics
than the Frobenius norm. This is in particular the case in
applications to finance where a possible target consists in
the minimization of the risk induced by portfolios built
upon such covariance matrix estimates, see e.g., [12], [13],
[14]. The possibility to let the number of samples be less
than the population size (as opposed to robust estimators
of the Maronna-type [15]) is also of interest to applications
where optimal shrinkage is not a target but where robustness
is fundamental, such as array processing with impulsive
noise (e.g., multi-antenna radar) where direction-of-arrival
estimates are sought for (see e.g., [16], [7]). These consid-
erations are also left to future work.
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