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Abstract—In this paper, a deterministic approximation for the
rate region of multiple access channels is provided when base
station and users have a large number of antennas, and when
the transmission bandwidth is divided into several independent
subbands. An explicit formulation is also given to the transmit
covariance matrices, at each frequency, that reach the boundary
of the rate region. From the compact expression of these matrices,
suboptimal iterative algorithms emerge that allow the multiple
access users to derive autonomously the transmit covariance
matrices. This comes at the sole expense of a short signalling
overhead, which is constant irrespectively of the number of
antennas. Simulations confirm the validity of the theoretical
derivations and suggest rather good behaviour obtained by the
suboptimal self-organization algorithms.

I. INTRODUCTION

It was proved in [1]-[2] that using multiple antennas in
transmit and receive wireless communication devices could
lead to significant improvement in terms of achievable trans-
mission rates. Spurred by that promise, the interest in multiple-
input multiple-output (MIMO) systems has exploded and many
recent technologies for short-to-medium range communica-
tions now embed multiple antennas. However, MIMO tech-
nologies provide worthwhile gains in performance only at high
signal-to-noise ratios (SNRs); such high SNRs are rarely found
in outdoor multi-cellular communications, unless the different
cells are coordinated and cooperate tightly with each other.
Unfortunately, this poses the problem of the large amount
of feedback data to be exchanged within cells and between
adjacent cells to share the multidimensional frequency-space-
user-cell channel information. This is why the idea of self-
organization, i.e. local decisions that lead to optimal or close-
to-optimal global decisions, has gained interest in fields such
as cognitive radios [3].

In this paper, we focus on the particular case of a single-
cell multiple access channel (MAC) in which a potentially
large number of users, each equipped with many antennas,
wish to share a large-band spectrum in a way that maximizes
the uplink sum-rate. The general problem is non-trivial and, if
solved, would require the base station to feedback to all users
the optimal transmit covariance matrices for each subband
every time the channel changes. Needless to say, this would
be impractical in networks with high mobility. In [4] and [5],
Tse and Hanly give an information-theoretic solution of the

spectrum sharing problem in the single-antenna case for slow
fading and fast fading channels, i.e. they provide an expression
of the achievable MAC sum rate as well as an iterative algo-
rithm for the users to reach the optimal transmit (frequency)
variance profile. The multi-antenna case is more involved.
However, when the number of antennas used at every device
is large, it turns out that the sum rate-achieving covariance
matrices are asymptotically independent of the local channel
variations but depend essentially on the covariance structure of
the channel matrix model. This was proven for point-to-point
MIMO in Ricean channels, modelled as A+X where A is a
deterministic (line-of-sight component) matrix and X has zero
mean independent entries with a variance profile [6], and for
multiple access channels when user k-to-base station channels
are modelled as Kronecker channels R

1
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kXkT
1
2

k , where Xk is
Gaussian, and Rk and Tk are deterministic for every k [7].

In this work, we shall describe the rate region of fast fading
MACs for wideband MIMO communications when the number
of antennas per user and at the base station are large and follow
a Kronecker model, and when the transmission bandwidth is
divided into multiple independent subbands. We then provide
a self-organization method for the users to determine their own
optimal transmit signal covariance matrices for every subband,
at the sole expense of a scalar feedback to the base station and
to the neighboring users, irrespectively of the potentially large
number of transmit and receive antennas. When the receive
channel correlation matrix at the base station is close to the
identity matrix, we will show that the base station does not
need to intervene in the self-organization process.

The remainder of this paper is structured as follows: in
Section II, we recall the mathematical results from random
matrix theory needed here. In Section III, we introduce the
MAC MIMO model and derive the optimal users’ transmit
covariance matrices. In Section IV, the algorithm for self-
organization is proposed. In Section V, numerical simulations
are carried out. Finally, in Section VI, we draw our conclu-
sions.

Notation: Capital boldface characters denote matrices (IN is
the N×N identity matrix). Hermitian transpose is denoted by
(·)H. The operator detX represents the determinant of matrix
X. The symbol tr(X) denotes the trace of matrix X. The norm



‖X‖ denotes the matrix spectral norm.

II. PRELIMINARIES

We deal in this article with channel models of the type

BN (K) =
∑
k∈K

R
1
2

kXkTkXkR
1
2

k (1)

for a certain set K ⊂ N. Each term in (1) originates from a
Kronecker channel R

1
2

kXkT
1
2

k ∈ CN×nk , i.e. a random matrix
Xk ∈ CN×nk with independent and identically distributed
(i.i.d.) entries with zero mean and variance 1/nk, with left
and right correlations Rk ∈ CN×N and Tk ∈ Cnk×nk , both
Hermitian nonnegative definite of bounded normalized trace.
As will be shown in Section III, we are interested in the
following functional IN (x) of BN :

IN (x) =
1

N
log det

(
IN +

1

x
BN (K)

)
. (2)

We have shown in [7] that, as N and the elements {nk, k ∈ K}
grow large, with N/nk → ck, such that 0 < ck <∞,

IN (x)− I◦N (x)→ 0 (3)

almost surely, where I◦N (x) is deterministic and defined as

I◦N (x) =
1

N

∑
k∈K

log det (IN + ckekTk)

+
1

N
log det

(
IN +

∑
k∈K

δkRk

)
− x

∑
k∈K

δkek (4)

with ei and δi satisfying the joint implicit equation{
ei = 1

N trRi

(
x
[
IN +

∑
k∈K δkRk

])−1
δi = 1

ni
trTi (x [Ini

+ cieiTi])
−1
.

(5)

The value I◦N (x) is called a deterministic equivalent of
IN (x).1

Despite its involved nature, (4) is easily numerically evalu-
able thanks to a standard fixed-point algorithm to solve (5).
When Tk is replaced by TkPk, where Pk is an Hermitian
nonnegative definite matrix with trace tr(Pk) = Pk, we also
derived in [7] an explicit expression for the Pk, k ∈ K, which
maximizes I(x)◦. We will need to generalize this previous
result to the case of multiple frequency bands.

III. SYSTEM MODEL

A. Transmission model

Consider a wideband multiple access fast fading channel
composed of a single base station and of K user terminals.
The base station is equipped with N antennas, while user k is
equipped with nk antennas. The communication spectrum is
assumed to be shared in F narrow bands sufficiently spaced
in frequency, as in cognitive radio resource allocation settings,

1This can be contrasted with the traditional “asymptotic limit of” found in
random matrix theory; the latter does not apply here since, even if all Tk

and Rk have limiting eigenvalue distributions, IN (x) does not necessarily
converge.

see e.g. [8]. The uplink channel Hk,f ∈ CN×nk from user k
to the base station in the frequency band f ∈ {1, . . . , F} is
assumed to be flat and is modelled as

Hk,f = R
1
2

k,fXk,fT
1
2

k,f (6)

where R
1
2

k,f and T
1
2

k,f are the unique nonnegative square
roots of the deterministic Hermitian nonnegative matrices
Rk,f and Tk,f respectively, and Xk,f is a random matrix
with independent and identically distributed (i.i.d.) Gaussian
entries of zero mean and variance 1/nk. The aforementioned
independence of the channels is taken in the sense that the
KF matrices Xk,f , 1 ≤ k ≤ K, 1 ≤ f ≤ F , are taken to be
independent. In addition, we allow user k to use a maximum
total power Pk, distributed over the space-frequency domain;
that is, we consider F covariance matrices Pk,1, . . . ,Pk,F ,
Pk,f ∈ Cnk×nk being the transmit signal covariance matrix
of user k over frequency band f , satisfying the constraint

F∑
f=1

trPk,f = Pk. (7)

Finally, we assume that the base station is affected by additive
white Gaussian noise of variance σ2 on every antenna.

B. MAC rate region

The fast fading MAC rate region is defined [10] as the union
R of all K-dimensional vectors (R1, . . . , Rk), such that, for
every subset K of {1, . . . ,K},

∑
k∈K

Rk ≤ E

 1

N

F∑
f=1

log det

(
IN +

1

σ2

∑
k∈K

HH
k,fPk,fHk,f

)
(8)

where the Pk,f satisfy (7) and the expectation is taken over
the random Xk,f matrices.

Thanks to the results introduced in Section II, we have that,
as the number of antennas N and nk grow large,

1

N

F∑
f=1

log det

(
IN +

1

σ2

∑
k∈K

HH
k,fPk,fHk,f

)
−R◦(K)→ 0

(9)
almost surely, where we define

R◦(K) =
1

N

F∑
f=1

∑
k∈K

log det (IN + ckek,fPk,fTk,f )

+

F∑
f=1

1

N
log det

(
IN +

∑
k∈K

δk,fRk,f

)
− σ2

F∑
f=1

∑
k∈K

δk,fek,f

(10)

with ek,f and δk,f satisfying{
ek,f = 1

N trRk,f

(
σ2
[
IN +

∑
k′∈K δk′,fRk′,f

])−1
δk,f = 1

nk
trTk,f

(
σ2 [Ink

+ ckek,fPk,fTk,f ]
)−1

.
(11)

Our first objective is to define the boundary of the poly-
matroid R, i.e. to find, for every K ⊂ {1, . . . ,K}, those



matrices Pk,l, k ∈ K, which optimize the sum rate (8). More
exactly, we will find the Pk,l matrices that maximize the
deterministic equivalent (10) of the right-hand side of (8); a
reasoning similar to [6] ensures that both ergodic capacity and
deterministic equivalent coincide asymptotically.

This was pursued in [7] for the particular case F = 1. How-
ever, we cannot straightforwardly apply these results because
(7) introduces a dependence in the power allocation on the
different subbands. We need instead to solve the constrained
optimization problem

max
{Pk,f}

R◦(K) under constraints

∀(k, f), Pk,f ≥ 0, and ∀k,
F∑
f=1

tr(Pk,f ) = Pk. (12)

For this, first consider (10) as the image of the following
function

V : ({Pk,f}k,f , {ek,f}k,f , {δk,f}k,f ) 7→ R◦(K) (13)

in the 3F |K| variables ek,f , δk,f and Pk,f . We then have

∂R◦(K)

∂Pk,f
=
∑
k′,f ′

(
∂V

∂ek′,f ′

∂ek′,f ′

∂Pk,f
+

∂V

∂δk′,f ′

∂δk′,f ′

∂Pk,f

)
+

∂V

∂Pk,f

(14)
where

∂V

∂ek,f
=

F∑
f=1

[
1

N
trTk,f (Ink

+ ckek,fPk,fTk,f )
−1 − σ2δk,f

]
(15)

and

∂V

∂δk,f
=

F∑
f=1

[
1

nk
trRk,f (IN +

∑
k′∈K

δk′,fRk′,f )
−1 − σ2ek,f

]
.

(16)
Going back to our initial problem, ek,f and δk,f are defined

by the implicit equation (11). This implies that the above
derivatives equal zero. As a consequence,

∂R◦(K)

∂Pk,f
=

∂V

∂Pk,f
. (17)

The dependence on Pk,f in V is reduced to the term
1
N

∑F
f=1 log det(IN+ckek,fPk,fTk,f ). Noticing that V , as a

function of the joint variable {Pk,f}k,f is concave, optimizing
along {Pk,f}k,f is equivalent to optimizing independently
along each Pk,f . The optimal Pk,f for all k, f are then solu-
tions of a standard water-filling algorithm. For ease of reading,
we add the superscript ‘?’ to the parameters linked to the
solution that maximizes the deterministic equivalent for the er-
godic capacity; e.g. P?k,f denotes the transmit covariance Pk,f
which maximizes (10). We then have P?k,f = Uk,fQ

?
k,fU

H
k,f ,

where Uk,f ∈ Cnk×nk is a matrix whose columns are the nk
eigenvectors of Tk,f and Q?

k,f is diagonal with ith diagonal
entry q?k,f,i satisfying

q?k,f,i =

(
µk −

1

cke?k,f tk,f,i

)+

(18)

where tk,f,i is the ith eigenvector of Tk,f and µk > 0 is such
that

∑
f,i q

?
k,f,i = Pk.

The main consequence of (18) is the surprising fact that,
for sufficiently large N , nk, the optimal power allocation
strategy depends on the transmit correlation eigenvalues tk,f,i
weighted by a unique scalar e?k,f for every frequency f . This
means that, if user k is embedded with a large number of
antennas, then user k can determine on its own the transmit
matrices P?k,1, . . . ,P

?
k,F if it is provided with the F scalars

e?k,1, . . . , e
?
k,F . The next section is dedicated to determining

algorithms for every user to obtain these e?k,f ’s parameters.

IV. SELF-ORGANIZED MIMO MAC

A. Base station-supported iterative water-filling

We shall present in the following a method for user k to
autonomously identify the F optimal nk×nk signal covariance
matrices P?k,1, . . . ,P

?
k,F . Obviously, if the base station is

aware of all Rk,f and Tk,f , then it can process the water-
filling formula (18) and broadcast the FK optimal power
matrices to the users; this however demands F

∑K
k=1 n

2
k scalar

transmissions, which may form a large signalling overhead, if
K and the nk’s are large. As previously mentioned though,
from the viewpoint of user k, the entries q?k,f,i for all (f, i)
in (18) depend on the tk,f,i, for all (f, i) which user k
might be aware of, and of the e?k,f , for all f , which user
k cannot compute unless it knows all the Rk′,f , Tk′,f and
Pk′,f for all (k′, f) from the other users. We wish therefore to
design a cooperative process between the base station and the
users for the latter to obtain their respective values e?k,f ; this
process must be minimal in terms of peer-to-peer signalling.
We will in fact show that only O(FK) scalar values need
to be successively exchanged throughout the network for a
good approximation of the optimal covariance matrices to be
recovered by every user.

First, we recall from [7] that, if all Rk,f and Tk,f are
known (say, at the base station), then an iterative water-filling
algorithm can be implemented which, upon convergence,
converges surely to the optimal Pk,f matrices.

The iterative algorithm consists in (i) initializing the values
for ek,f and δk,f to given constants, and (ii) successively
computing (until convergence),
• for fixed ek,f and δk,f , the entries qk,f,i (and therefore

the Pk,f ) that solve (18), and
• for fixed qk,f,i, the updated ek,f and δk,f that satisfy (11).
Based on the above iterative water-filling algorithm, we

propose a self-organizing scheme for which we make the
reasonable assumptions that the base station knows at least
the Rk,f matrices, for all (k, f), and that user k knows at
least its own matrices Tk,f , for all f . Our scheme basically
lets the base station first update the e1,f , for all f , and transmit
the updated values to user 1. Upon reception, user 1 updates
the q1,f,i for all (f, i), for all f, i, and updates the δ1,f for all
f . These are transmitted back to the base station which now
computes the updated e2,f for all f , transmitted back to user
2; the process continues up to user K, and then back to user 1



until convergence is reached. Formally, the algorithm unfolds
as in Algorithm 1.

Algorithm 1 Base station-aided iterative water-filling
Initialization: for all k, f , δk,f = 1. Define convergence
threshold ε > 0.
while maxk,f ‖Pk,f −P?k,f‖ > ε do

for k ∈ {1, . . . ,K} do
for f ∈ {1, . . . , F} do

The base station computes ek,f from (11)
end for
The base station transmits (ek,1, . . . , ek,F ) to user k
for f ∈ {1, . . . , F} do

Based on ek,f , user k computes Pk,f from (18)
Based on ek,f and Pk,f , user k computes δk,f

end for
User k transmits (δk,1, . . . , δk,F ) to the base station

end for
end while

The steps of Algorithm 1 do not follow those of the iterative
water-filling process proposed in [7] when the knowledge
on the Rk,f and Tk,f for all f is centralized at the base
station; the convergence to the correct solution cannot as a
consequence be ensured, unless the ek,f and δk,f are passed
along on several loops before updating the Pk,f . It is indeed
shown in [6] that, under this condition, if the algorithm
converges, then it converges to the correct solution. This
requires more processing delay though and, as simulations
confirm, barely leads to significant improvement unless the
transmit correlation pattern is strong.

B. Self-organized iterative water-filling

Now, observe that, when there is no correlation at the base
station, i.e. for all (k, f), Rk,f = IN , then the K users
can autonomously determine the P?k,f , without the need for
feedbacks to and from the base station. Indeed, (11) becomes{

e−1f = σ2
(
1 +

∑K
k′=1 δk′,f

)
δk,f = 1

nk
trTk,f

(
σ2 [Ink

+ ckefPk,fTk,f ]
)−1 (19)

where ef replaces ek,f , which is now independent of k.
Assume all ef are initialized to constants known to user

1. Now the situation is the following: user 1 computes all
P1,f , then computes the resulting δ1,f and finally updates the
ef . Those ef are transmitted directly to user 2. User 2 now
computes the P2,f based on the ef received by user 1, call
them e

(old)
f , then updates the δ2,f stored in memory, call them

δ
(old)
2,f , into new δ2,f . The ef are finally updated as

e−1f = e
(old)
f + σ2(δ2,f − δ(old)2,f ) (20)

This new ef is then transmitted to user 3 and the algorithm
goes on until convergence. This can be written in the form of
Algorithm 2.

Once again, if Algorithm 2 converges, convergence to the
correct solution is not true in general but simulations will

Algorithm 2 Self-organized iterative water-filling
Initialization: for all k, f , δk,f = 1. Define convergence
threshold ε > 0.
while maxk,f ‖Pk,f −P?k,f‖ > ε, do

for k ∈ {1, . . . ,K} do
for f ∈ {1, . . . , F} do

Based on ef , user k computes Pk,f from (18)
Based on {ef ,Pk,f}, user k computes δk,f from
(19)
Based on δk,f , user k updates ek,f from (19)

end for
User k transmits (ek,1, . . . , ek,F ) to user k +
1 (mod K)

end for
end while

suggest a close-to-optimal behaviour. Asynchronous signalling
techniques are currently being studied for faster convergence
of Algorithms 1 and 2.

Notice that this message passing approach may require
several loops over all users to converge, in which case the
signaling overhead incurred is not beneficial compared to di-
rect feedback from the base station. However, from a position
of equilibrium, users that experience new channel correlation
patterns can initiate on their own the transmission of their
updated ef to neighboring users. The updating process is then
necessarily fast converging, timely, and is consistent with the
current cognitive radio incentive, which aims at transferring
part of the network intelligence burden to terminal users.

V. SIMULATIONS AND RESULTS

In this section, we present numerical simulations of the
theoretical results and algorithms presented before. Our case
study is that of a two-user MAC, each user equipped with
n1 = n2 = 8 antennas while the base station has N = 8
antennas. The number F of subbands is F = 2, and the
SNR is 20 dB. The matrices Tk,f and Rk,f originate from
both the contribution of (i) a particular antenna spacing of the
linear antenna array model, and (ii) a particular solid angle
of energy arrival/departure. From these features, we consider
Jake’s model to compute the entries of the covariance matrices.
For instance, the (a, b)th entry of any Tk,f has the form∫ θmax

θmin

exp

(
2πi

dab
λ

cos(θ)

)
dθ (21)

where dab denote the distance between antennas a and b, i.e.
|b− a| times the wavelength λ; and where θmin and θmax are
the minimum and maximum energy spreading angles, whose
absolute difference is π/2.

In Figure 1, we first compute the optimal P?k,f and com-
pare (i) the effective rate region, evaluated from a similar
descent algorithm as in [9] and averaged over 1, 000 channel
realizations, (ii) the theoretical deterministic equivalent (10),
(iii) the region obtained from Algorithm 1 with stopping time
threshold ε = 10−2, and (iv) the rate region for uniform power
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Fig. 1. Rate region of a two-user MAC, N = 8, n1 = n2 = 8, SNR = 20
dB, F = 2, Tk,f and Rk,f determined by inter-antenna distance and solid
angle of energy departure/arrival, P1 = P2 = 1. Top: case (a), low transmit
antenna correlation, bottom: case (b), high transmit antenna correlation.

allocation across transmit antennas. Denote λ the transmit
signal wavelength. We consider two cases: (a) low correlation,
for which the distance between adjacent transmit antennas is
10λ at the base station and λ at both users, and (b) high
correlation, for which the distance between transmit antennas
is λ at the base station and 0.1λ at both users. The solid angles
of signal arrival/departure are limited to π/2 in the horizontal
plane at both the receiver and the transmitters for varying θmin

and θmax. We observe that, even for these small values of N ,
nk, the approximated rate region is extremely close to the
true averaged rate region. As for the suboptimal Algorithm 1,
it shows a surprisingly accurate performance, either in low or
high correlation.

Note additionally that, in both for cases (a) and (b), the
number of iterations required for Algorithm 1 to converge
were of order 4 to 5 iterations only. The total number of
signalling feedback in these cases amounts to approximately
20 real scalar values to be exchanged. If the base station
were to broadcast the full covariance matrices to the users,
it would require 64 real values per user per subband to be
transmitted, so a total of 256 real values to be exchanged. This
eventually corresponds to a ten-fold division of the feedback
overhead, when all users start from a uniform power allocation

policy. Further simulations for N = n1 = n2 = 32 show that
Algorithm 1 still converges in a maximum of 5 iterations; in
this case the corresponding feedback gain is 20 reals against
4096 reals for full matrix transmission, hence a 200-fold gain.

Note finally that those simulations assume rather random
initial values for ek,f , δk,f etc. When Algorithm 1 is employed
on field, it must be run any time some user enters or leaves the
network or when the long-term correlation coherence time has
expired. In any of these situations, initializing Algorithm 1 to
the previously optimal ek,f , δk,f etc. should reduce the number
of iterations required for convergence, making the feedback
gain even more dramatic.

VI. CONCLUSION

We have provided a deterministic equivalent to the rate
region of correlated MIMO wideband MACs, when the wide-
band channel is subdivided into several independent subbands.
We have determined the transmit space-frequency covariance
matrices that maximize the uplink sum rate, under a per-
user power constraint. Additionally, we have provided two
suboptimal algorithms for the users to determine their opti-
mum power allocations in a decentralized manner, either (i) by
exchanging feedback signals with the base station or, (ii) under
limited antenna correlation at the base station, by exchanging
signals with the neighboring users. Both strategies have been
shown to generate very little transmission overhead compared
to the centralized approach, and have also been shown by
simulations to converge rapidly to a solution which, although
theoretically suboptimal, is indistinguishable from the optimal
power allocation.
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