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1CentraleSupélec, University Paris-Saclay and 2GIPSA-lab, University of Grenoble-Alpes

ABSTRACT

The recent work [1] shows that in the big data regime (i.e., nu-
merous high dimensional data), the popular semi-supervised
graph regularization, known as semi-supervised Laplacian
regularization, fails to effectively extract information from
unlabelled data in high dimensions. In response to this prob-
lem, we propose in this article an improved approach based on
a simple yet fundamental update of the classical method. The
effectiveness of the former is supported by both asymptotic
results and simulations on finite data samples.

Index Terms— semi-supervised learning, large dimen-
sional statistics, random matrix theory.

1. INTRODUCTION

Semi-supervised learning (SSL) [2] is a learning approach
that employs both labelled and unlabelled data. As data la-
belling process is often quite expensive both in time and hu-
man resources, SSL aims particularly to improve learning ac-
curacy by using a large amount of unlabelled data, in con-
junction with a small set of labelled data. The SSL problem
is however theoretically intriguing. Indeed, while combin-
ing both labelled and unlabelled data should logically allow
SSL to consistently outperform supervised and unsupervised
learning, it has repeatedly been observed that most conven-
tional SSL methods fail to meet this basic requirement in
practice [3, 4, 5]. In this article, as a follow up of the study [1],
we claim that this important inconsistency is rooted in a fun-
damentally erroneous “finite dimensional intuition”, which is
however naturally resolved when taking a large dimensional
perspective on the SSL problem.

Among the popular SSL methods known to suffer from
the aforementioned impairment, semi-supervised Laplacian
regularization [6, 7] is a graph-based approach with under-
lying connections to label propagation [8], random walk [9]
and electrical network analogs [10]. Although driven by
a straightforward, natural reasoning to learn from the data
graph in a semi-supervised manner (as presented in Subsec-
tion 2), the Laplacian regularization was shown in [1] to have
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a negligible unlabelled data learning rate in high dimensions,
as a direct consequence of a key distance concentration phe-
nomenon in large dimensions [11, 12, 13]. The inefficiency
of the Laplacian regularization with respect to unlabelled
data causes it to be outperformed by its purely unsupervised
counterpart, spectral clustering [14], on the same high dimen-
sional datasets with abundant unlabelled data. On account of
this crucial remark, we introduce in this paper a fundamental
improvement of the methods via a mere update of the Lapla-
cian regularization matrix. This in turn allows for recovering
asymptotic consistency as the number of either labelled or
unlabelled data increases. The proposed updated algorithm
is shown in passing always to surpass spectral clustering,
irrespective of the number of unlabelled data, as opposed to
the classical Laplacian regularization.

In this introductory paper, for lack of space and for read-
ability, we focus on presenting the updated algorithm and on
proving its advantage under a basic large dimensional data
model, along with validating simulations, leaving the detailed
discussions and advanced data modelling to a longer version.
The remainder of the article is precisely organized as follows:
Section 2 starts by introducing the classical graph-based semi-
supervised learning approach, where we recall the essential
results of [1] demonstrating a negligible contribution from
unlabelled data in high dimensional classification with Lapla-
cian regularization. We then introduce the new regularization
approach in Section 3, along with the theoretical basis justify-
ing its usage. Experimental results on finite datasets are also
provided to confirm the theoretical analysis in Section 4, ev-
idencing the performance gain of the proposed method over
Laplacian regularization as well as over spectral clustering.

2. BACKGROUND

2.1. Semi-Supervised Laplacian regularization

Consider a set of n data vectors X = [x1, . . . , xn] ∈ Rp×n
of dimension p, belonging to one of the similarity classes C1
or C2. The dataset is further divided in two subsets X =[
X[l] X[u]

]
with ‘l’ and ‘u’ respectively standing for ‘la-

belled’ and ‘unlabelled’. That is, we dispose of a labeling
vector y[l] ∈ {−1, 1}n[l] (−1 if xi ∈ C1, 1 if xi ∈ C2) for the
data vectors xi composing X[l], while the classes of the data



in X[u] remain to be determined. There are n[l] elements in
X[l] and n[u] in X[u].

The data vectors xi are viewed as nodes on a graph, con-
nected by non-negative weights reflecting their closeness (i.e.,
similarity), thus giving rise to a weight matrix W of the form

W = {wij}ni,j=1 =

{
h

(
1

p
‖xi − xj‖2

)}n
i,j=1

(1)

for some decreasing non-negative function h.
Graph-based learning methods are built upon a smooth-

ness assumption, stating that data points xi, xj connected
with a large weightwij tend to belong to the same group. This
suggests the existence of a target class function f that little
varies between highly connected data points. The smooth-
ness condition over the graph is usually incorporated in a
smoothness penalty term:

Q(f) =
1

2

n∑
,ij=1

wij(fi − fj)2 = fTLf (2)

where L = D − W . The matrix L is referred to as the
graph Laplacian, or more precisely the unnormalized Lapla-
cian, to be distinguished from the normalized Laplacian Ls =
In−D−1/2WD−1/2, the random walk normalized Laplacian
Lr = In−D−1W , etc. Substituting L with Ls or Lr inQ(f)
gives rise to differently normalized smoothness penalties.

Noting thatQ(f) is minimized to zero at the meaningless
solution f = 1n, the unsupervised graph learning method,
spectral clustering, consists in finding the smoothest f orthog-
onal to 1n, leading to the optimization

min
f∈Rn

fTLf s.t. ‖f‖ = 1 and fT1n = 0 (3)

the solution of which is easily shown to be the eigenvector
associated with the second smallest eigenvalue of L. In the
semi-supervised setting, part of data samples are pre-labelled,
indicating a prior knowledge on the labelled part f[l] of the tar-
get function f , if we write f =

[
f[l] f[u]

]
. Semi-supervised

Laplacian regularization consists in filling the unlabelled f[u]
by maximizing the overall smoothness in f as

min
f∈Rn

fTLf s.t. f[l] = y[l]. (4)

As the wij’s are non-negative, the optimization problem is
strongly convex with unique solution

f[u] = −L−1[uu]L[ul]f[l]. (5)

The final decision step determines the class of unlabelled data
xi according to the sign of fi (C1 if fi < 0, C2 otherwise).

2.2. Failure in high dimensions

As shown above, the Laplacian regularization approach seems
to be a perfectly natural way of learning from the graph in a
semi-supervised manner, although the non-linear form of (1)
prevents formal analysis. The latter difficulty is bypassed in
the random matrix-based analysis of [1] which reveals that
for comparably large n, p, the classification performance is
only driven by the labelled data, implying the inefficiency of
Laplacian regularization in utilizing unlabelled data. To fo-
cus on the message of the inefficient unlabelled data learning
without distracting notations, we recall the results of [1] for
a simplified, yet sufficiently expressive, model and refer the
interested readers to [1] for further details.

Assumption 1. Data samples x1, . . . , xn are i.i.d. obser-
vations from a generative model such that, for k ∈ {1, 2},
P(xi ∈ Ck) = 1/2, and

xi ∈ Ck ⇔ xi ∼ N (µk, Ip).

with ‖µ2 − µ1‖ = O(1) (with respect to p).
The ratios c0 = n

p , c[l] =
n[l]

p and c[u] =
n[u]

p are uni-
formly bounded in (0,+∞) for arbitrarily large p.

Theorem 1. Let h be three-times continuously differentiable
in a neighborhood of 2. For k = {1, 2}, i > n[l] (xi unla-
belled), define Pi as the probability of correctly classifying xi
with Laplacian regularization. Then, under Assumption 1,

Pi − Φ

(
1
√
rlap

)
= oP (1)

where Φ(u) = 1
2π

∫ u
−∞ e−

t2

2 dt and

rlap =
4

‖µ1 − µ2‖2
+

1

‖µ1 − µ2‖4c[l]
. (6)

Theorem 1 states that the classification accuracy of the
Laplacian regularization decreases with rlap, given by (6).
But, while rlap decreases with c[l], it does not with c[u], imply-
ing a vanishing unlabelled data learning in high dimensions.

The reason behind this impairment is that, under Assump-
tion 1 that ensures a non-trivial large dimensional classifica-
tion problem, all wij converge to h(2), a manifestation of the
well-known distance concentration phenomenon in large data.
As all wij are asymptotically close, the solution f[u] obtained
by minimizing the smoothness penalty

∑n
i,j=1 wij(fi − fj)2

is a vector of constant values, up to small fluctuations. In fact,
thanks to the existence of class-structured information in the
small fluctuations of f[u], the classification has a non-trivial
performance. But then the vanishingly small amplitude of
the class ‘signal’ on unlabelled data, insignificant when com-
pared to the labelled data ‘signal’ f[l], causes the asymptotic
performance not to depend on the unlabelled data ratio c[u]
(unlike the labelled data ratio c[l]). To cope with this prob-
lem, an appropriate correction is proposed in the next section.



3. PROPOSED METHOD

3.1. Regularization with centered similarities

The proposed method aims to update the semi-supervised
Laplacian regularization. As subsequently discussed in Sub-
section 3.2, this update enables the use of the full set of
labelled and unlabelled (large dimensional) data.

Our approach can be interpreted as following the same
reasoning as the Laplacian regularization, however with a
centered similarity matrix Ŵ ∈ Rn×n of the form

Ŵ = PWP with P ≡ In −
1

n
1n1Tn. (7)

Note that the centering operation preserves the distance
between the inner- and inter-class similarities in the previous
graph, in the sense that the average inner-class similarity mi-
nus the average inter-class similarity is unchanged after cen-
tering. While the relative information between data points
remains intact, using Ŵ as a similarity measure does a pri-
ori generate a problem: since Ŵ has positive and negative
elements, the optimization of the smoothness penalty is not
necessarily convex and might admit no finite solution. This
issue is settled by fixing ‖f‖, so that the optimization reads

min
f[u]∈R

n[u]
−fTŴf s.t. ‖f[u]‖2 = n[u]e

2. (8)

This can be solved by introducing a Laplacian multiplier α to
the norm constraint ‖f[u]‖2 = n[u]e

2, leading up to

f[u] =
(
αIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l] (9)

where α is determined by α > ‖Ŵ[uu]‖ and ‖f[u]‖2 = n[u]e
2.

Considering α as the tuning parameter for implementation
convenience, the method is summarized in Algorithm 1.

Algorithm 1 Semi-Supervised Graph Regularization with
Centered Similarities

1: Input: Labelled dataset X[l] with labels y[l] and unla-
belled dataset X[u]; Parameter α > ‖Ŵ[uu]‖.

2: Output: Classification of unlabelled dataset X[u].
3: Compute the similarity matrix W by (1).
4: Compute the centered similarity matrix Ŵ by (7).
5: Set f[l] = y[l] and compute the target class scores f[u] of

unlabelled data by (9).
6: Classify unlabelled dataset X[u] by the signs of f[u].

3.2. Performance Analysis

To compare the learning efficiency of the proposed algorithm
to the classical Laplacian approach, we now study the large
dimensional performance of the centered similarities regular-
ization, analogous to the results given in Theorem 1 on Lapla-
cian regularization.

Theorem 2. Let h be three-times continuously differentiable
in a neighborhood of 2. For k = {1, 2}, i > n[l] (xi un-
labelled), let Pi be the probability of correctly classifying
xi with centered similarities regularization. Then, under As-
sumption 1,

Pi − Φ

(
1
√
rctr

)
= oP (1)

where Φ(u) = 1
2π

∫ u
−∞ e−

t2

2 dt and rctr > 0 is the solution of
the fixed-point equation

rctr =

(
1− g2

‖µ1 − µ2‖4c[u]

)−1 [
4

‖µ1 − µ2‖2

+
g2

‖µ1 − µ2‖4c[u]
+

(1− g)2

‖µ1 − µ2‖4c[l]

]
(10)

with

g =
c[u]e

√
1/(1 + rctr)

c[u]e
√

1/(1 + rctr) + c[l]
. (11)

As observed from (11), g ∈ (0, 1). Note in particular that
g → 0 as e → 0, and we have rctr = rlap by taking g = 0 in
(10), indicating that the performance of Laplacian regulariza-
tion is retrieved by the centered similarities regularization in
the limit e→ 0.

Observe now from (10) that g reflects the sensibility of
the classification performance with respect to c[l], c[u]: a large
g implying an emphasized impact of the unlabelled data and
a reduced effect of the labelled data. It can then be shown
that g is an increasing function of e; the influence of labelled
and unlabelled data is thus adjustable through the tuning of
e, at the two extremes of which the purely supervised and
purely unsupervised learning performances are respectively
recovered. Using α as a direct parameter as in Algorithm 1,
note that large values of α correspond to small e.

Computing the derivative of rctr with respect to g in the
limits of g → +∞ and g → 0, we next find that r′ctr > 0
as g → 0 and r′ctr < 0 in the limit g → +∞. The op-
timal performance is therefore achieved at a bounded value
of g, where the algorithm realizes a genuine semi-supervised
learning, allowing for a performance gain over the Laplacian
regularization (which we recall is asymptotically equivalent
to supervised learning in the large dimensional regime) and
over spectral clustering (i.e., unsupervised learning).

Deducing from (10) that a well defined rctr > 0 exists
for any g ∈ [0, gsup) where gsup = min{‖µ1 − µ2‖4c[u], 1},
the admissible set of g can only enlarge as the number of data
samples grows. Adding this to the obvious fact that rctr is a
strictly decreasing function of both c[l], c[u] at any fixed value
of g, we conclude that with an appropriately chosen e, the
performance of the centered similarities regularization is con-
sistently improved as more data sample, whether labelled or
unlabelled, are included in the learning process.



4. EXPERIMENTAL VALIDATION

This section provides experimental evidence supporting the
proposition of the centered similarities regularization. All
versions of Laplacian matrices in Subsection 2.1 are tested
for Laplacian regularization and spectral clustering, the opti-
mal α for the centered similarities regularization is searched
within the admissible range, so as to report the best results.
We first verify the validity of the asymptotic results on fi-
nite, not-so-large (p = 80), datasets. Figure 4 shows that
the empirical accuracy closely matches the theoretical one.
As predicted by the theoretical analysis, the performance of
the Laplacian regularization barely moves when more unla-
belled data are used, demonstrating an inconsequential unla-
belled data learning rate. For sufficient unlabelled data, the
Laplacian regularization is even surpassed by spectral clus-
tering, which, being unsupervised, treats labelled data as if
unlabelled. Meanwhile, the accuracy of the proposed algo-
rithm consistently improves as the number of unlabelled data
increases, resulting in a growing performance gap over the
classical Laplacian approach, with a maintained advantage
over spectral clustering as a benefit of utilizing labelled data.
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Fig. 1. Empirical and theoretical classification accuracy as
a function of c[u] with c[l] = 2, ‖µ1 − µ2‖2 = 2, p = 80.
Graph constructed with wij = e−‖xi−xj‖2/p. Averaged over
50000/n[u] iterations.

To compare the proposed method and the traditional
approach beyond synthetic data, simulations on real world
datasets, here the MNIST database [15], are provided. For
a more comprehensive comparison, we perform experiments
on commonly used graphs including KNN graphs with vari-
ous numbers of neighbors k = {21, · · · , 2q}, for q the largest
integer such that 2q < n, and graphs constructed by RBF
kernels, i.e., wij = e−‖xi−xj‖2/σ2

, with bandwidth σ set to
the average data vectors distance. The algorithms accura-
cies are respectively given for their best performing graph in
Figure 4, where a clear advantage is observed for the pro-
posed method. However, the simulation on original MNIST

data (top of Figure 4) seems to contradict the statement of
negligible unlabelled data contribution for the Laplacian reg-
ularization, as the performance of both methods grows with
the number of unlabelled data. We conjecture that it is due
to the MNIST data being quite easy to separate, without the
problem of distance concentration which, we recall, is the
main cause behind the unlabelled data learning inefficiency
of Laplacian regularization. When the distance concentration
phenomenon is noticeable, as in the presence of additional
white noise, the predicted insignificance of unlabelled data
learning is once again observed (bottom of Figure 4).

100 200 300 400

0.9

0.92

0.94

Centered regularization
Laplacian regularization

100 200 300 400

0.65

0.7

0.75

0.8

n[u]

Fig. 2. Classification accuracy on MNIST data (6,9) as a func-
tion of n[u] with n[l] = 10. Top: pure data. Bottom: noisy
data with SNR= −10dB. Averaged over 1000 iterations

5. CONCLUDING REMARKS

By identifying and carefully analysing a fundamental ‘curse
of dimensionality phenomenon’ arising on realistic (not nec-
essarily so large) data – here due to the convergence of all
data distances –, this work provides for the first time an
explanation as well as an elementary corrective answer to
the long-standing problem of unlabelled data inefficiency in
graph-based semi-supervised learning methods, with com-
pelling simulation evidence on real-world data.

This, along with parallel contributions on large dimen-
sional spectral clustering, simple random neural nets and
other supervised learning tools, forcefully suggests that large
dimensional statistics, and notably random matrix theory, are
major key enablers to future machine learning understanding
and design in the big data era.
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