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Abstract—In this paper, we derive a deterministic equivalent different types of decoders when power optimization is per-
of the Shannon-transform of certain type of large unitary formed at the transmitter. Most of these studies derivelt®su
random matrices. This approximation is exploited to evaluée ,qer the assumption that the number of users per cell is,larg

the uplink channel capacity of clustered orthogonal CDMA . . L . .
network. When non-uniform power allocation among the users since simpler derivations are possible using the theorgrofe

of each cluster is allowed, we derive an explicit iterative ater- random matrices [6].
filling algorithm which, upon convergence, achieves the mti In this paper we derive results for the uplink capacity of
user decoding capacity. In particular, we show that, in a s 3 clustered CDMA self-organizing network when the CDMA

organizing clustered orthogonal CDMA network, each clustecan .., yo matrices are large and isometriEhose results are based
optimize its power allocation policy independently of the ther

clusters at the expense of a small feedback overhead. Simtitms O t00Is from random matrix theory [6] and free probability

corroborate the theoretical derivations. [7], [8]. We will in particular derive two theorems which eté
respectively thej-transform and the Shannon-transform (see
. INTRODUCTION definitions hereafter) of such a channel model to detertignis

approximations independent of the code matrix realization

Previous releases of the universal mobile telecommuniganother deterministic equivalent of thetransform has been
tions system (UMTS) aimed to ensure quality of service faonsidered recently in the frequency selective case bydekac
all users in the cells. The recent developments of 3G prdgocet al. [1] using a different approach, referred to as “inczatal
however push more and more towards the maximization @fatrix expansions”. However, the form of their determikist
the user sum rates in the cell. 3G systems are based on caggroximations does not allow for a trivial calculus of the
division multiple access (CDMA) which use random i.i.dShannon-transform, which is provided here. Up to the asthor
codes in the uplink and incur interference among the useggderstanding, both our and Peacock’s results are ditferen
Orthogonal codes (which reduce drastically the interfeegn though they are shown to tend to the same asymptotic expres-
are unfortunately not used as it would require some impbrtagion. Our result on the Shannon-transform allows us first to
overhead signaling to synchronize the users. One way d¥rive explicit expressions for the uplink clustered ogwal
dealing with this issue, which is part of the recent cogritivCDMA capacity and more importantly to produce an iterative
radio incentive [2], proposes to allow users to self-orgarin water-filling algorithm for the cell users to achieve networ
small clusters (e.g. here CDMA-based clusters) or coaltiocapacity under per-cluster sum power constraint (where the
[11], [12] to optimize their uplink communications to a cealt power within a cluster is seen as a long term exchangeable
base station [13], [14]. Due to the very short distance betweutility, see [12] for more justifications). We will also proge
the users within the cluster, non-interfering transmissioan an algorithm for each cluster to automatically reconfighiesrt
be performed through the use of orthogonal codes per clusigwer allocations, independently of the other clustersemé
Those networks are referred to aslf-organizingnetworks, yser connects or disconnects to the cell.
which we shall consider in the following. The remainder of this paper unfolds as follows: in Section

Among the past contributions in the multi-cell CDMA||, the fundamental mathematical results of this paper are
case, a performance study of multi-cell orthogonal CDM#yrovided. In Section IlI, the clustered CDMA self-organigi
networks in frequency selective channels was carried awtwork model is introduced. In Section IV, the capacity
in [3]. The authors suggest that frequency selectivity hasaghieving power allocation algorithm is presented. In Bect
stronger negative impact on CDMA performance than the pagh numerical simulations are carried out. Finally, in Seaoti
loss; therefore multiple small CDMA cells might turn outy|, we draw our conclusions.

more advantageous than a large single CDMA cell. The sameyotation: Capital boldface characters denote matrices (
conclusions were given in a similar uplink random CDMA

§tudy in [4] In [5]' the Performance of single-cell CDMA lpy isometric, we mean a non-necessarily square matrix withogonal
in flat-fading channels with random codes was analyzed fasumns.



is the NV x N identity matrix). Hermitian transpose is denotedavhich is exactly (3).
()H. The operatordet X represents the determinant of the Now, sinceR = Zszl Ry, using (4), this gives
matrix X. The functioné(x) is the Kronecker Dirac function 1

1 _
such that’(z) = 1 if z = 0 and equal$ otherwise. The first i i
derivative of the functiory is denotedf’. n(w) = <1 T kz: Bi(=am) | = {1+ kZ: B (8)
=1 =1

Il. MATHEMATICAL PRELIMINARIES which completes the proof. -

Our main results rely on tools of random matrix theory They-transform is of no direct practical use in our current
analysis, then-transform and the Shannon-transform, whiclnalysis (though it might be essential in the analysis of NEMS

we introduce in the following. decoders for CDMA downlink, see e.g. [1]). To establish
Definition 1 ¢-transform): Let 1z be a probability density the capacity of uplink transmissions in CDMA networks, we
function. Then-transformn(z) of x is defined as need a deterministic approximation of the so-called Shanno
1 transform, defined as follows.
n(z) = / 1+ Zt”(dt) @) Definition 2 (Shannon-transform):-et ;. be some probabil-
ity density function. We define the Shannon-transfdf(n:)

Note that the)-transform is linked to the better known StieltjesI f
transformS(x) via the relationS(—1/z) = an(x). ot as
Theorem 1l:Let K, N be positive integers{W,};—1. x V(z) = /log(l + xt)p(dt) 9)

be K independentV x N Haar distributed complex random

matrices andD; },=1, ...k be K diagonalN x N non-negative The Shannon-transform is intimately linked to the capauity
matrices. Denotgy; the empirical distribution of the entriesmulti-dimensional channel whose matrix empirical eigénga
of D,. Then, forN large, K fixed, and for some: > 0, the density function isu. Note also that the Shannon-transform is

n-transformy(z) of the empirical eigenvalue distribution ofan integral of1/xz(1 — n(x)). From this observation, equiv-
By = ZkK_l W, D, W satisfies approximately alently to Theorem 1, we derive in the following theorem a

. deterministic approximation fa¥(z).
K Theorem 2:Let By be anN x N matrix as defined in the
n(z) = (1 + mzﬁk(x)> (2)  conditions of Theorem 1. We have the following asymptotic
k=1 approximation of the Shannon-transfottiz) of By as
where the functiongs;(x), k € {1,...,K} satisfy the K

. . . K
fixed-point equations V(z) =log (1 L Zﬁk(ﬂi)>
k=1

t
50 = [ T T @ A
Proof: The proof relies mostly on the asymptotic freeness +y / log (1 +an(x)[t — Br(2)]) pe(dt)  (10)
[6] of the matricesW ; D, W! when N grows to infinity. In k=1
this case, th&k-transformR(z) of B is asymptotically equal where g (xz) andn(xz) are given by (2) and (3).

to the sum of thek-transformRy, (z) of W, D, WH. This R- Proof: The Shannon-transform satisfies [6]
transform is defined with respect to thetransform a$ @ q
Lo V)= [ (1= )
R(=an) = ——(1- =) (4) 0 u
K we therefore seek an integral form for theransform. Note
n(—R n %) =zR+1 (5) first that
1 1 K K
Denoter;, and R, the n- and R-transform of W, D, WH. —l-n)==1-QQ+2) B) =D 6n (11
Then, from (1) and (5), we have r r k=1 k=1
1
cRy + 1= / 1 (i) Also note from (3) that
 Ritg 1 —anfB
’ 1—2z = | ——————ui(dt 12
which leads to " / 1 —znf + ﬂfﬂtuk( ) (12)
1 t
Ri(z) = _/ _u(dr) ©6) and therefore that
) Rp(x)+ 5 —t 1
: : . 1= / ———————u(dt) (13)
and, in particular, defining(z) = Ry (—xn), we have 1 —anBk + ant
t Now, for any k, the derivative along: of C}, = [log(1 —
= [ —————ux(dt 7 .
Be() / 1—anf + mnt“k( ) D 0y + ety (de) is

2for readability, we will use the shortcut notatioh = f(z) when no Ol = (=08, — 20/ B — anfBy] + [n + xn']t (dt) (14)
confusion is possible. k= 1 —xnBk + xnt Hi



A1 A3z Denoting uux(t) = % 25:1 0(t — AenPrn), from Theorem
X31 2, whenN is large, we have approximatély

A21 23

C(c?) =

K
+3 [1og (1407200 e~ o)) )

Fig. 1. Self-organizing clustered CDMA network k=1 (18)

[t

) o with n(z) and §i(x) satisfying the implicit Equation (3). We
Recalling now (13) and (3), this yields therefore have an expression of the uplink capacity which
e ooia /. N / only depends on the path losses,, £t € {1,...,K},
Cr = (=nBk—zn Bu—anBy) 1+n+an’)-Br = —anB;, (15) n € {1,...,N}. This suggests that the choice of the spreading
We also have codesWy’s has asymptotically no impact on the achievable

, uplink sum rate. We will now seek a power allocation strategy
which maximizes the capacity under cluster power conggain
<1og(1 +x E ﬂk)> =1 E B+ § 1B (16)
k=1 k=1 k=1

IV. SELF-ORGANIZED POWER ALLOCATION

Adding th;(S last expression ), C;, we end up with the |n the following, based on relative fairness among clusters
desired)_",_, 3xn. Verifying thatV(0) = 0, we finally obtain and on individual mobile terminal capabilities, clusteris
(10). B allocated a total allowed transmit,; therefore>"" | py,, =
P.
I1l. SYSTEM MODEL
A. Optimal power allocation

A. Model
) ) To maximize the system capacity with respect to fié&/
Consider a network composed &f cluster$ and a single scalarspy,,, we shall first show the following lemma,
base station, each cluster being composed of a maximum of Lemma 1:The power allocation policyy,, = pf,, optimiz-
users each. The users of clustee {1...., K} are assigned ,q e geterministic capacity approximation (18) satisfier
orthogonal spreading codes forming the columns of a unitagy k. n,
N x N Haar distributed matrixW ;. Each cluster operates o2 — g\t
independently regarding the allocation of spreading codes Dien = (ak — 777*’“> (29)
and therefore théW, matrices are considered independent. Aen]
Depending on its position in clustdr, usern € {1,...,N} wheren*, 3; are the respective values gfand 3, whenC
induces a path-lossy, in the uplink transmission to the achieves its maximum, ang, is such thaty", pr, = Pr.
base statioh The path-losses in clustér are gathered in Proof: To prove this lemma, we follow Prop. 4 in [10].
the diagonal matrib, = diag(Ak1, ..., Akn). Moreover we \We need to ensure successively that, denoiih@?) =
assume that the transmission channel is frequency flat, &&p,,. ... pxn, B1...., Bk, n).°
the propagation channel fade is constant over the trangmiss () dV/9B, = OV/dn = 0.
bandwidth. Usern in cluster & transmits with powerpy,, (i) C is strictly concave in they,.
. . . . . kn
the collection of which is gathered in the matricBs = . ) . . .
diag(pe, - -, pen ). We additionally assume the base statiopart (ii) is in fact obvious once (i) is shown. Indeed, in this

experiences a background noise distribute@X0, 02). This ¢3S€: the successive derivatives(falong px, equal those
situation is depicted in Figure 1 of V' alongpy,, plus other terms (the derivatives df along

n and §;) which are null. Therefore, sinc¥ is the sum of
strictly concave functions of thgy,,, C is strictly concave.

. ] . To show (i), we simply differentiate and observe that
DenotingD;, = APy, the uplink (per-time sample) capac-

B. Uplink capacity

ity C reads a_v _ / to™2 — Bo2 o 2
K on zk: 1*775k0*2+n0*2tuk( ) (20)
1 1
C(0%) = — logdet (IN + = ZWkaW;'> (17) ov _2 / —po~2
a2 = dt) = 21
N o k=1 aﬁk no + 1 —nﬂkO'_Q +770__2ﬁﬂk( ) 0 ( )

Swe assume that the clusters are formed in a self-organizethendased both equa“tles stemming from the remarks (13) and (3).

on the distance, see [12]
4when there are less thal users in a specific cluster, we can freely write  °note that the capacity is the Shannon-transforneof and not ofo2.
Akn, = 0 for the virtual users. 6V can be seen as a function @V + 1)K + 1 independenvariables.



From (ii), C admits a Unique maximum and from (i), when - &~ Simulation, uniform power allocatior s
B, andn have reached this maximum, the power allocation of 6 | |-~ Simulation, Monte Carlo allocation /
the pkn,S reduces to maximizing —o— Theory, uniform power allocation ,(/

K % E —+— Theory, optimal power allocation / g

—2 72 _ g //

log <1 +o Zﬁk> +Z/log (1+ o *nlt — Br]) pu(dt) 2 /s

k=1 k=1 — 4 7

(22) 4 s

independently ofy and theg,’s. This is, for eachk, it re- [ /
duces to maximizing log (1 + o ~2n[t — B4]) ke (dt), whose % A /
solution is the water-filling solution (19). [ ] s 9 A

To achieve the capacity optimizing power allocation pglicy © _ >
similarly to [10], we propose the following iterative water /
filling algorithm, =

S P B B
At !n|t|al|zat|on, forall k, ppn = F, n =1, Br = L. 075 0 5 10 5 20 25 20
while the p;,,’s have not convergedo

for ke {1,...,K} do SNR [dB]

Set(n, Bx) as solution of (2), (3)

Fig. 2. Uplink capacity of ak = 3-clustered orthogonal CDMA, uniform
forn=1...,N do g P pacty g

and optimal power allocationN- = 8. For usern in cluster k, Ay, =

Set prn = (g — %7%)+’ with oy such that —ag([n —1]/[N —1]) dB, a1 = 10 dB, a2 = 20 dB, a3 = 30 dB.
> n Pkn = Pr.
end for At initialization, in clusterk, setpy, = L&, n = 1 and
end for N
. Br = 1.
end while while n has not convergedo
This algorithm cannot be proved to converge. However, for clusterk € {1,..., K} do
from the proof of Lemma 1 and following the arguments in Computey as in (2).
[10], upon convergence, the algorithm is proved to converge  Setg3, as solution of (3), from the updated
to the optimal solution. forn=1...,N do
'I_'he_ power allocation algorith_m allows n_ow_the base station Set p, — (ak 7 az_nﬁk)Jr with oy, such that
to indicate to all users the uplink transmission powers; pro " Ak '
vided that it is aware of all thé,,'s. We will show in the >n Phn = P
following that such a centralized approach is unnecessary t end for _
achieve optimal power allocation; precisely, we will shdwtt Transmit the updated valug to clusterk + 1 (with

each clusterk can independently perform power allocation conventionl « K +1).

regardless of the\,,, j # k, provided that each cluster ~ €nd for

feedbacks a single real parameter to a neighboring cluftezr a  €nd while

the individual optimization process. This algorithm only requires for the clusters to transmé th

updated value off at each step. Note that computingequires

= ) only to know the updated value 9f, 5. This value does not
The main interest of the system model under consideratigaed be additionally transmitted if we assume that eachezlus

lies in the independence of every cluster in terms of codgyres the last value efand infers from it the update}t, 5.

allocation: each cluster can behave autonomously, withhi@it — This way, when a new user registers or a current user

need for the base station to intervene in the code allocatigigconnects from a cluster, all the transmitted powers @n b

policy. Now, in order to achieve the optimal uplink capacityjyickly updated throughout the network at a low feedback

throughoutthd{ CIUSterS, usen in clusterk must be allocated cost. Moreover’ as will be observed in Section V’ the con-

a transmit powempy, = pj,. Thosepy,’s can be computed yergence time of the algorithm is in general so fast that a

explicitly at the base station or by any central entity awakgngle round of optimization over th& clusters is sufficient

of all the Ax,’'s. However, this requires a large amount ofand therefore the outavhile loop is not needed) to achieve

overhead data to be transferred back and forth through &atisfying uplink rate.

network; this comes at a non-negligible cost and goes agains|n the next section, the theoretical results discussed 1so fa

B. Self-organized capacity optimization

the phllOSOphy of Self'organized networks. are Confronted to Simu'ations_
It is actually possible to circumvent this issue by per-
forming successive local optimizations in every clusted an V. SIMULATION AND RESULTS

by successively transmitting single parameter to the other In this section, we verify the theoretical formula derived
clusters: this parameter is the updated evaluation ofrthe in Theorem 2, the power allocation algorithm derived from
transform ofBy. More explicitly, we consider the following Lemma 1 and the self-organizing successive power alloca-
algorithm, tion proposed in Section IV-B. Throughout this section, we
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Fig. 3.

—ag([n —1]/[N —1]) dB, a1 = 10 dB, a2 = 20 dB, a3 = 30 dB.

consider aK = 3-cluster self-organizing orthogonal CDMA
network with N = 8 users per cluster. The uplink signal

Uplink capacity of aK = 3-cluster orthogonal CDMA, iterative
water-filling power allocation,N = 8. For usern in cluster k, A\, =

by each cluster as though it were alone in the network, which
is maximized by the classical water-filling solution, i.eittw

powers
0'2 +
/
o= (2
" ( )\kn

whereq;, ensures thad  pr, = P,. We observe that, while

in the low SNR region, this local strategy is reasonables it i
no longer the case in the high SNR regime. Since the cost
of the transmission of the datumis obviously very low in

this regime, the self-organizing power allocation polisyeven
more interesting.

(23)

VI. CONCLUSION

In this paper, we provided two novel theorems relating
the uplink capacity of a large clustered orthogonal fregyen
flat CDMA network communicating to a single base station
to deterministic capacity approximations. Those actuadigy
accurate approximations only depend on the path losses of
the users’ uplink signals. Moreover, we provided an efficien
algorithm for the clusters to perform local power allocatio
in order to maximize the system throughput at the cost of a
single datum exchange in the network. Simulation resultsvsh
a perfect fit between Monte Carlo and theoretical results eve

from usern in cluster k experiences a path loss,, =
—ag([n — 1)/[N —1]) dB, with a; = 10 dB, ay = 20 dB,
asz = 30 dB; this allows to have in each cluster a linear range
(in dB) of users with relative path losses varying frondB  [1]
to (704]@) dB.

In Figure 2, we present simulation results based on the
averaging of 100 Monte Carlo simulations when uniform [2]
power allocation is applied or when the allocated powers are
issued from random Monte Carlo trials (but satisfy the poweps)
constraints); for the latter, for each of tH€0 simulations,
we define the system capacity as the maximal rate achievé
over 10,000 random realizations of vectori1,...,pxn}
ordered in such a way thaj;; < pk7j+1.7 Those are compared [5]
against the solutions given by Theorem 2 with uniform power
allocation and the iterative water-filling algorithm, resp [g]
tively. We observe a perfect fit, even for this loN = 8
value, between the simulated and theoretical results in tH8
uniform power allocation case. As for the optimal powerg)
allocation, we observe an almost perfect fit, which will $yire
be more accurate if one increases the number of random povJ
allocations of the Monte Carlo method. [10]

In Figure 3, we apply the self-organizing power allocation
algorithm under the same constraints as in Figure 3, when
1 or an infinite number of rounds (at least a sufficient numben;
of rounds to ensure convergence f are performed). We
observe surprisingly enough that a single round is enou Ia]
to already achieve the optimal capacity limit of the comple
algorithm. As a consequence, the algorithm is extremely fas
at providing high performance power allocation among t
K clusters. For the sake of comparison, we also propose In

Figure 3 the so-called ‘local power allocation’ policy aiepl (14
14
“this allows to significantly reduce the number of requireuiidations by
discarding obviously wrong solutions.

when the system dimension is not very large.
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