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Abstract—In this paper, we derive a deterministic equivalent
of the Shannon-transform of certain type of large unitary
random matrices. This approximation is exploited to evaluate
the uplink channel capacity of clustered orthogonal CDMA
network. When non-uniform power allocation among the users
of each cluster is allowed, we derive an explicit iterative water-
filling algorithm which, upon convergence, achieves the multi-
user decoding capacity. In particular, we show that, in a self-
organizing clustered orthogonal CDMA network, each cluster can
optimize its power allocation policy independently of the other
clusters at the expense of a small feedback overhead. Simulations
corroborate the theoretical derivations.

I. I NTRODUCTION

Previous releases of the universal mobile telecommunica-
tions system (UMTS) aimed to ensure quality of service for
all users in the cells. The recent developments of 3G protocols
however push more and more towards the maximization of
the user sum rates in the cell. 3G systems are based on code
division multiple access (CDMA) which use random i.i.d.
codes in the uplink and incur interference among the users.
Orthogonal codes (which reduce drastically the interference)
are unfortunately not used as it would require some important
overhead signaling to synchronize the users. One way of
dealing with this issue, which is part of the recent cognitive
radio incentive [2], proposes to allow users to self-organize in
small clusters (e.g. here CDMA-based clusters) or coalitions
[11], [12] to optimize their uplink communications to a central
base station [13], [14]. Due to the very short distance between
the users within the cluster, non-interfering transmissions can
be performed through the use of orthogonal codes per cluster.
Those networks are referred to asself-organizingnetworks,
which we shall consider in the following.

Among the past contributions in the multi-cell CDMA
case, a performance study of multi-cell orthogonal CDMA
networks in frequency selective channels was carried out
in [3]. The authors suggest that frequency selectivity has a
stronger negative impact on CDMA performance than the path
loss; therefore multiple small CDMA cells might turn out
more advantageous than a large single CDMA cell. The same
conclusions were given in a similar uplink random CDMA
study in [4]. In [5], the performance of single-cell CDMA
in flat-fading channels with random codes was analyzed for

different types of decoders when power optimization is per-
formed at the transmitter. Most of these studies derive results
under the assumption that the number of users per cell is large,
since simpler derivations are possible using the theory of large
random matrices [6].

In this paper we derive results for the uplink capacity of
a clustered CDMA self-organizing network when the CDMA
code matrices are large and isometric.1 Those results are based
on tools from random matrix theory [6] and free probability
[7], [8]. We will in particular derive two theorems which relate
respectively theη-transform and the Shannon-transform (see
definitions hereafter) of such a channel model to deterministic
approximations independent of the code matrix realization.
Another deterministic equivalent of theη-transform has been
considered recently in the frequency selective case by Peacock
et al. [1] using a different approach, referred to as “incremental
matrix expansions”. However, the form of their deterministic
approximations does not allow for a trivial calculus of the
Shannon-transform, which is provided here. Up to the authors’
understanding, both our and Peacock’s results are different,
though they are shown to tend to the same asymptotic expres-
sion. Our result on the Shannon-transform allows us first to
derive explicit expressions for the uplink clustered orthogonal
CDMA capacity and more importantly to produce an iterative
water-filling algorithm for the cell users to achieve network
capacity under per-cluster sum power constraint (where the
power within a cluster is seen as a long term exchangeable
utility, see [12] for more justifications). We will also propose
an algorithm for each cluster to automatically reconfigure their
power allocations, independently of the other clusters, when a
user connects or disconnects to the cell.

The remainder of this paper unfolds as follows: in Section
II, the fundamental mathematical results of this paper are
provided. In Section III, the clustered CDMA self-organizing
network model is introduced. In Section IV, the capacity
achieving power allocation algorithm is presented. In Section
V, numerical simulations are carried out. Finally, in Section
VI, we draw our conclusions.

Notation: Capital boldface characters denote matrices (IN

1by isometric, we mean a non-necessarily square matrix with orthogonal
columns.



is theN ×N identity matrix). Hermitian transpose is denoted
(·)H. The operatordetX represents the determinant of the
matrix X. The functionδ(x) is the Kronecker Dirac function
such thatδ(x) = 1 if x = 0 and equals0 otherwise. The first
derivative of the functionf is denotedf ′.

II. M ATHEMATICAL PRELIMINARIES

Our main results rely on tools of random matrix theory
analysis, theη-transform and the Shannon-transform, which
we introduce in the following.

Definition 1 (η-transform): Let µ be a probability density
function. Theη-transformη(x) of µ is defined as

η(x) =

∫

1

1 + xt
µ(dt) (1)

Note that theη-transform is linked to the better known Stieltjes
transformS(x) via the relationS(−1/x) = xη(x).

Theorem 1:Let K, N be positive integers,{Wi}i=1,...,K

be K independentN × N Haar distributed complex random
matrices and{Di}i=1,...,K beK diagonalN×N non-negative
matrices. Denoteµi the empirical distribution of the entries
of Di. Then, forN large,K fixed, and for somex ≥ 0, the
η-transformη(x) of the empirical eigenvalue distribution of
BN =

∑K

k=1
WkDkW

H

k satisfies approximately

η(x) =

(

1 + x
K
∑

k=1

βk(x)

)−1

(2)

where the functionsβk(x), k ∈ {1, . . . , K} satisfy theK
fixed-point equations

βk(x) =

∫

t

1− xη(x)βk(x) + xη(x)t
µi(dt) (3)

Proof: The proof relies mostly on the asymptotic freeness
[6] of the matricesWkDkW

H

k whenN grows to infinity. In
this case, theR-transformR(x) of BN is asymptotically equal
to the sum of theR-transformRk(x) of WkDkW

H

k . This R-
transform is defined with respect to theη-transform as2

R(−xη) = −
1

x
(1−

1

η
) (4)

η(−
1

R + 1

x

) = xR + 1 (5)

Denoteηk andRk the η- andR-transform ofWkDkW
H

k .
Then, from (1) and (5), we have

xRk + 1 =

∫

1

1− t
Rk+

1

x

µk(dt)

which leads to

Rk(x) =
1

x

∫

t

Rk(x) + 1

x
− t

µk(dt) (6)

and, in particular, definingβk(x) = Rk(−xη), we have

βk(x) =

∫

t

1− xηβk + xηt
µk(dt) (7)

2for readability, we will use the shortcut notationf = f(x) when no
confusion is possible.

which is exactly (3).
Now, sinceR =

∑K
k=1

Rk, using (4), this gives

η(x) =

(

1 + x

K
∑

k=1

Rk(−xη)

)−1

=

(

1 + x

K
∑

k=1

βk

)−1

(8)

which completes the proof.
The η-transform is of no direct practical use in our current

analysis (though it might be essential in the analysis of MMSE
decoders for CDMA downlink, see e.g. [1]). To establish
the capacity of uplink transmissions in CDMA networks, we
need a deterministic approximation of the so-called Shannon-
transform, defined as follows.

Definition 2 (Shannon-transform):Let µ be some probabil-
ity density function. We define the Shannon-transformV(x)
of µ as

V(x) =

∫

log(1 + xt)µ(dt) (9)

The Shannon-transform is intimately linked to the capacityof a
multi-dimensional channel whose matrix empirical eigenvalue
density function isµ. Note also that the Shannon-transform is
an integral of1/x(1 − η(x)). From this observation, equiv-
alently to Theorem 1, we derive in the following theorem a
deterministic approximation forV(x).

Theorem 2:Let BN be anN ×N matrix as defined in the
conditions of Theorem 1. We have the following asymptotic
approximation of the Shannon-transformV(x) of BN as

V(x) = log

(

1 + x

K
∑

k=1

βk(x)

)

+

K
∑

k=1

∫

log (1 + xη(x)[t − βk(x)]) µk(dt) (10)

whereβk(x) andη(x) are given by (2) and (3).
Proof: The Shannon-transform satisfies [6]

V(x) =

∫ x

0

1

u
(1− η(u))du

we therefore seek an integral form for theη-transform. Note
first that

1

x
(1− η) =

1

x
(1− (1 + x

K
∑

k=1

βk)−1) =

K
∑

k=1

βkη (11)

Also note from (3) that

1− xηβk =

∫

1− xηβk

1− xηβk + xηt
µk(dt) (12)

and therefore that

1 =

∫

1

1− xηβk + xηt
µk(dt) (13)

Now, for any k, the derivative alongx of Ck =
∫

log(1 −
xηβk + xηt)µk(dt) is

C′

k =

∫

[−ηβk − xη′βk − xηβ′

k] + [η + xη′]t

1− xηβk + xηt
µk(dt) (14)
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Fig. 1. Self-organizing clustered CDMA network

Recalling now (13) and (3), this yields

C′

k = (−ηβk−xη′βk−xηβ′

k)·1+(η+xη′)·βk = −xηβ′

k (15)

We also have
(

log(1 + x

K
∑

k=1

βk)

)′

= η

K
∑

k=1

βk + x

K
∑

k=1

ηβ′

k (16)

Adding this last expression to
∑

k C′

k, we end up with the
desired

∑K
k=1

βkη. Verifying thatV(0) = 0, we finally obtain
(10).

III. SYSTEM MODEL

A. Model

Consider a network composed ofK clusters3 and a single
base station, each cluster being composed of a maximum ofN
users each. The users of clusterk ∈ {1, . . . , K} are assigned
orthogonal spreading codes forming the columns of a unitary
N × N Haar distributed matrixWk. Each cluster operates
independently regarding the allocation of spreading codes,
and therefore theWk matrices are considered independent.
Depending on its position in clusterk, usern ∈ {1, . . . , N}
induces a path-lossλkn in the uplink transmission to the
base station4. The path-losses in clusterk are gathered in
the diagonal matrixΛk = diag(λk1, . . . , λkN ). Moreover we
assume that the transmission channel is frequency flat, i.e.
the propagation channel fade is constant over the transmission
bandwidth. Usern in cluster k transmits with powerpkn,
the collection of which is gathered in the matricesPk =
diag(pk1, . . . , pkN ). We additionally assume the base station
experiences a background noise distributed asCN(0, σ2). This
situation is depicted in Figure 1.

B. Uplink capacity

DenotingDk = ΛkPk, the uplink (per-time sample) capac-
ity C reads

C(σ2) =
1

N
log det

(

IN +
1

σ2

K
∑

k=1

WkDkW
H

k

)

(17)

3we assume that the clusters are formed in a self-organized manner based
on the distance, see [12]

4when there are less thanN users in a specific cluster, we can freely write
λkn = 0 for the virtual users.

Denotingµk(t) = 1

N

∑N

n=1
δ(t − λknpkn), from Theorem

2, whenN is large, we have approximately5

C(σ2) = log

(

1 +
1

σ2

K
∑

k=1

βk(σ−2)

)

+

K
∑

k=1

∫

log
(

1 + σ−2η(σ−2)[t− βk(σ−2)]
)

µk(dt)

(18)

with η(x) andβk(x) satisfying the implicit Equation (3). We
therefore have an expression of the uplink capacity which
only depends on the path lossesλkn, k ∈ {1, . . . , K},
n ∈ {1, . . . , N}. This suggests that the choice of the spreading
codesWk’s has asymptotically no impact on the achievable
uplink sum rate. We will now seek a power allocation strategy
which maximizes the capacity under cluster power constraints.

IV. SELF-ORGANIZED POWER ALLOCATION

In the following, based on relative fairness among clusters
and on individual mobile terminal capabilities, clusterk is
allocated a total allowed transmitPk; therefore

∑N

n=1
pkn =

Pk.

A. Optimal power allocation

To maximize the system capacity with respect to theKN
scalarspkn, we shall first show the following lemma,

Lemma 1:The power allocation policypkn = p⋆
kn optimiz-

ing the deterministic capacity approximation (18) satisfies, for
all k, n,

p⋆
kn =

(

αk −
σ2 − η⋆β⋆

k

λknη⋆

)+

(19)

whereη⋆, β⋆
k are the respective values ofη and βk when C

achieves its maximum, andαk is such that
∑

k p⋆
kn = Pk.

Proof: To prove this lemma, we follow Prop. 4 in [10].
We need to ensure successively that, denotingC(σ2) =
V (p11, . . . , pKN , β1, . . . , βK , η),6

(i) ∂V/∂βk = ∂V/∂η = 0.
(ii) C is strictly concave in thepkn.

Part (ii) is in fact obvious once (i) is shown. Indeed, in this
case, the successive derivatives ofC along pkn equal those
of V alongpkn plus other terms (the derivatives ofV along
η and βk) which are null. Therefore, sinceV is the sum of
strictly concave functions of thepkn, C is strictly concave.

To show (i), we simply differentiate and observe that

∂V

∂η
=
∑

k

∫

tσ−2 − βkσ−2

1− ηβkσ−2 + ησ−2t
µk(dt) = 0 (20)

∂V

∂βk

= ησ−2 +

∫

−ησ−2

1− ηβkσ−2 + ησ−2t
µk(dt) = 0 (21)

both equalities stemming from the remarks (13) and (3).

5note that the capacity is the Shannon-transform ofσ−2 and not ofσ2.
6V can be seen as a function of(N + 1)K + 1 independentvariables.



From (ii), C admits a unique maximum and from (i), when
βk andη have reached this maximum, the power allocation of
the pkn’s reduces to maximizing

log

(

1 + σ−2

K
∑

k=1

βk

)

+

K
∑

k=1

∫

log
(

1 + σ−2η[t− βk]
)

µk(dt)

(22)
independently ofη and theβk ’s. This is, for eachk, it re-
duces to maximizing

∫

log
(

1 + σ−2η[t− βk]
)

µk(dt), whose
solution is the water-filling solution (19).

To achieve the capacity optimizing power allocation policy,
similarly to [10], we propose the following iterative water-
filling algorithm,

At initialization, for all k, pkn = Pk

N
, η = 1, βk = 1.

while the pkn’s have not convergeddo
for k ∈ {1, . . . , K} do

Set (η, βk) as solution of (2), (3)
for n = 1 . . . , N do

Set pkn =
(

αk −
σ2

−ηβk

λknη

)+

, with αk such that
∑

n pkn = Pk.
end for

end for
end while
This algorithm cannot be proved to converge. However,

from the proof of Lemma 1 and following the arguments in
[10], upon convergence, the algorithm is proved to converge
to the optimal solution.

The power allocation algorithm allows now the base station
to indicate to all users the uplink transmission powers, pro-
vided that it is aware of all theλkn ’s. We will show in the
following that such a centralized approach is unnecessary to
achieve optimal power allocation; precisely, we will show that
each clusterk can independently perform power allocation
regardless of theλjn, j 6= k, provided that each cluster
feedbacks a single real parameter to a neighboring cluster after
the individual optimization process.

B. Self-organized capacity optimization

The main interest of the system model under consideration
lies in the independence of every cluster in terms of code
allocation: each cluster can behave autonomously, withoutthe
need for the base station to intervene in the code allocation
policy. Now, in order to achieve the optimal uplink capacity
throughout theK clusters, usern in clusterk must be allocated
a transmit powerpkn = p⋆

kn. Thosepkn’s can be computed
explicitly at the base station or by any central entity aware
of all the λkn ’s. However, this requires a large amount of
overhead data to be transferred back and forth through the
network; this comes at a non-negligible cost and goes against
the philosophy of self-organized networks.

It is actually possible to circumvent this issue by per-
forming successive local optimizations in every cluster and
by successively transmitting asingle parameter to the other
clusters: this parameter is the updated evaluation of theη-
transform ofBN . More explicitly, we consider the following
algorithm,
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Fig. 2. Uplink capacity of aK = 3-clustered orthogonal CDMA, uniform
and optimal power allocation,N = 8. For usern in cluster k, λkn =
−αk([n− 1]/[N − 1]) dB, α1 = 10 dB, α2 = 20 dB, α3 = 30 dB.

At initialization, in clusterk, set pkn = Pk

N
, η = 1 and

βk = 1.
while η has not convergeddo

for clusterk ∈ {1, . . . , K} do
Computeη as in (2).
Setβk as solution of (3), from the updatedη.
for n = 1 . . . , N do

Set pkn =
(

αk −
σ2

−ηβk

λknη

)+

, with αk such that
∑

n pkn = Pk.
end for
Transmit the updated valueη to clusterk + 1 (with
convention1← K + 1).

end for
end while
This algorithm only requires for the clusters to transmit the

updated value ofη at each step. Note that computingη requires
only to know the updated value of

∑

k βk. This value does not
need be additionally transmitted if we assume that each cluster
stores the last value ofη and infers from it the updated

∑

k βk.
This way, when a new user registers or a current user

disconnects from a cluster, all the transmitted powers can be
quickly updated throughout the network at a low feedback
cost. Moreover, as will be observed in Section V, the con-
vergence time of the algorithm is in general so fast that a
single round of optimization over theK clusters is sufficient
(and therefore the outerwhile loop is not needed) to achieve
a satisfying uplink rate.

In the next section, the theoretical results discussed so far
are confronted to simulations.

V. SIMULATION AND RESULTS

In this section, we verify the theoretical formula derived
in Theorem 2, the power allocation algorithm derived from
Lemma 1 and the self-organizing successive power alloca-
tion proposed in Section IV-B. Throughout this section, we
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consider aK = 3-cluster self-organizing orthogonal CDMA
network with N = 8 users per cluster. The uplink signal
from user n in cluster k experiences a path lossλkn =
−αk([n − 1]/[N − 1]) dB, with α1 = 10 dB, α2 = 20 dB,
α3 = 30 dB; this allows to have in each cluster a linear range
(in dB) of users with relative path losses varying from0 dB
to (−αk) dB.

In Figure 2, we present simulation results based on the
averaging of100 Monte Carlo simulations when uniform
power allocation is applied or when the allocated powers are
issued from random Monte Carlo trials (but satisfy the power
constraints); for the latter, for each of the100 simulations,
we define the system capacity as the maximal rate achieved
over 10, 000 random realizations of vectors{p11, . . . , pKN}
ordered in such a way thatpkj < pk,j+1.7 Those are compared
against the solutions given by Theorem 2 with uniform power
allocation and the iterative water-filling algorithm, respec-
tively. We observe a perfect fit, even for this lowN = 8
value, between the simulated and theoretical results in the
uniform power allocation case. As for the optimal power
allocation, we observe an almost perfect fit, which will surely
be more accurate if one increases the number of random power
allocations of the Monte Carlo method.

In Figure 3, we apply the self-organizing power allocation
algorithm under the same constraints as in Figure 3, when0,
1 or an infinite number of rounds (at least a sufficient number
of rounds to ensure convergence ofη) are performed). We
observe surprisingly enough that a single round is enough
to already achieve the optimal capacity limit of the complete
algorithm. As a consequence, the algorithm is extremely fast
at providing high performance power allocation among the
K clusters. For the sake of comparison, we also propose in
Figure 3 the so-called ‘local power allocation’ policy applied

7this allows to significantly reduce the number of required simulations by
discarding obviously wrong solutions.

by each cluster as though it were alone in the network, which
is maximized by the classical water-filling solution, i.e. with
powers

pkn =

(

α′

k −
σ2

λkn

)+

(23)

whereα′

k ensures that
∑

n pkn = Pk. We observe that, while
in the low SNR region, this local strategy is reasonable, it is
no longer the case in the high SNR regime. Since the cost
of the transmission of the datumη is obviously very low in
this regime, the self-organizing power allocation policy is even
more interesting.

VI. CONCLUSION

In this paper, we provided two novel theorems relating
the uplink capacity of a large clustered orthogonal frequency
flat CDMA network communicating to a single base station
to deterministic capacity approximations. Those actuallyvery
accurate approximations only depend on the path losses of
the users’ uplink signals. Moreover, we provided an efficient
algorithm for the clusters to perform local power allocation
in order to maximize the system throughput at the cost of a
single datum exchange in the network. Simulation results show
a perfect fit between Monte Carlo and theoretical results even
when the system dimension is not very large.
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