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ABSTRACT

Stochastic Neighbour Embedding methods (SNE, t-SNE)
aim at finding a faithful low-dimensional representation of
a high-dimensional dataset. Despite their popularity, being
solution to a non-convex optimization, the behavior of these
tools is not well understood. This work provides first answers
by leveraging a large dimensional statistics approach, where
the number n and dimension p of the large-dimensional data
are of the same magnitude. We derive and study the canoni-
cal equation verified by the critical points of this non-convex
optimization problem. The study notably reveals that, in a
simple setup, the achievable SNE solutions correspond to a
subset of those critical points. In particular, when the clusters
composing the dataset are balanced in size, these solutions are
symmetrical and assume closed-form expressions.

As a major conclusion, the analysis rigorously proves a
long-standing heuristic statement on the “proper normaliza-
tion” of the symmetric SNE: out of two natural normalization
choices, only the claimed proper one leads to non-trivial so-
lutions.

Index Terms— dimensionality reduction, high-dimension,

non-convex, random matrix theory, machine learning

1. INTRODUCTION

Stochastic Neighbor Embeddings (SNE) [I] and its vari-
ant t-SNE[2] are dimensionality reduction methods used for
visualization purposes (usually in 2 or 3 dimensions) as a
pre-analysis tool for data scientists to get a grasp on their
(usually numerous and large dimensional) data. The low-
dimensional representations achieved by those algorithms
stem from a non-convex optimization problem, traditionally
solved via gradient-descent. As such, it is far from trivial
to predict the resulting solution, let alone to interpret the
associated visualization. Concretely, the following natural
concern arises: considering 3 equidistant vectors in R? with
p > 2E| how would SNE or t-SNE represent those points
when projected in R? The equidistant property cannot hold
in R and it is unclear which representation SNE will retain.
The subject of the present article is precisely to cast a first
light on this riddle.

Despite the underlying non-convex optimization from
which SNE solutions arise, recent tractable analyses of SNE
algorithms emerged in the machine learning literature. Using
dynamical system techniques, [3] highlights a “shrinkage”
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1Say for instance 3 canonical basis vectors of RP.

property of the low-dimensional representations: under mild
assumptions, within each cluster, the data point projections
converge to each other as the gradient descent progresses.
This is however not sufficient to ensure consistent cluster-
ing as different clusters are not guaranteed not to merge.
The analysis of [4] then builds on [3] and shows that the
cluster centroids in the low-dimensional representation space
remain separated; combined with [3], this ensures that the
representations form well-separated clusters.

While those articles establish the consistency of the SNE
methods, they do not provide an accurate view on the solu-
tion landscape: how many solutions exist? With which asso-
ciated cost? Is gradient descent guaranteed to fall in a global
minimum? The present work addresses some of these aspects.
This however demands to break the problems of non-linearity
and non-convexity of the cost function to be minimized. To
this end, we use a large n, p data assumption and exploit large
dimensional asymptotics. For simplicity of exposition and for
the sake of retrieving insightful results, the n data follow a
mixture of k large dimensional Dirac masses in R?.

Our main results may be summarized as follows:

e we obtain a limiting vector equation as, n,p grow large
at the same rate, satisfied by the critical points of
the underlying SNE optimization problem, and analyze
their stability;

e the limiting equation appears to slightly but fundamen-
tally differ depending on the specific normalization of
the symmetric SNE method initially introduced by [2]:
as a result, we reach a first rigorous argument in fa-
vor for the SNE normalization effectively used today
in practice;

e the observed low-dimensional outputs are shown to be
severely biased by the number of components of each
class, thereby disrupting the original SNE objective;

e in a balanced class-size setting, the limiting vector
equation assumes a closed-form expression, which re-
veals the surprising presence of a continuum of saddle
points and, as a result, a very slow convergence of SNE,
when compared to faster convergence in unbalanced
scenarios.

The remainder of the article presents the symmetric SNE
algorithm and the large-dimensional setup used for our anal-
ysis (Section , before introducing our main results under
the form of the limiting vector equation satisfied by the sym-
metric SNE critical points (Section |3) which is analyzed in a
simple setting and turned into a closed-form expression. For
readability, in what follows, “SSNE” will refer to the sym-
metric SNE [2].



2. PROBLEM FORMULATION

Let z1,...,z, € R? be input high-dimensional data vectors,
and X = [z1,...,2,]" € R"*P. The goal of SNE is to asso-
ciate with each z; € RP a vector y; € R, for d < p (in general
d € {2, 3}, but we shall subsequently also consider d = 1 for
simplicity), such that Y = [y1,...,yn]? € R"*? preserves as
much of the significant structure of X in R? as possible.

2.1. The SSNE algorithm

The idea of SSNE as devised by [2] is to build two joint prob-
ability distributions P and @ € R™*" for the data points X
and their (yet to be found) low-dimensional representations
Y, respectively. Starting from some initialization point, the
representations Y are then iteratively tuned in order for the
density @ to accurately approximate P.

Precisely, for some positive and non-increasing functions
f:R—=Rand g:R — R, the density matrix @ is defined as
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where MN stands for “matrix normalization” and RMNS for
“row-matrix normalization and symmetrization”, discussed
in [I] as two normalization procedures for P. The authors
in [I] empirically claim that the RMNS solution yields better
visualizations, as it is likely more robust to outliers. One ob-
jective of the article is to theoretically support this statement.
In the original SNE algorithm [2], both f and g are taken to
be f(t) = g(t) = exp(—t/2), thereby mimicking a Gaussian
distribution for both low and high dimensional data repre-
sentations. The t-SNE approach rather relies on a Student-t
modification of the method in which g(t) = 1/(1 + t), the
justification of which is also heuristic rather than based on
theoretical supports.

For simplicity of exposition, in the sequel, we restrict our-
selves to the case where g(t) = exp(—t/2).
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The low-dimensional representation matrix Y is then cho-
sen in such a way to minimize the Kullback-Leibler divergence
between P and @

C(X,Y) = KL(P||Q) = 3 P, log ( SZ_) LW

Not being a convex problem in Y, a local minimum is
then determined using a mere gradient descent proce-
dure. A pleasant advantage of this formulation is that,
for g(t) = exp(—t/2) as considered here, the gradient at
running point Y is simply defined as [2]

aC - .
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The solutions of the SNE problem, which correspond to
the local minima of C(X,Y’), are therefore associated with
some of the solutions of the set {0C/dy; =0, i =1,...,n},
i.e., the critical points of C. The objective of the article is
to precisely characterize these critical points, under a statis-
tically convenient setting. To this end, it is convenient to
provide an expression of the Hessian matrix H(Y') at any
given point Y. Specifically, we find that
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where v, = Zk#l G is the normalization constant ensuring
that @ is a probability distribution, 1,, is the vector of ones
of size n, ® is the Kronecker product, D(v) is the diagonal
matrix with vector v on the diagonal, and matrices S and T'
of size nd x nd and nd X n respectively defined block-wise as
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2.2. The large dimensional setting

As the purpose of SNE is to visualize large dimensional data
of R? in the low dimensional space R?, the article considers
the setting where p,n are arbitrarily large and of the same
order of magnitude, while d is fixed, i.e., n,p — oo with
p/n — v > 0. We further assume the z;’s drawn from

k
ﬁ = Z C(g(sue,
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that is, a mixture of k masses located at ui,...,ur € RP.
Moreover, as p — o0, ||pe]| = O(1) for each €E| We may write

k

Cly...,Ck >0, 2015:1

=1

X = Jp", =] €RPE T = [jr, ..., ji] € NP
where [je]i = 0{z;=u,} is the indicator vector of class £. In
particular, denoting n¢ = |{z; = we¢}|, by the law of large
numbers, n;/n — c¢¢ almost surely.

As shall be seen, this simple setup already allows one to

retrieve interesting insights on the SSNE algorithm behavior.

3. MAIN RESULTS

A few notations need be defined before introducing our main
results. Since all identical z; € R? (say z; = ue¢) are expected
to have the same representation y; € R?, Y must be of the
form Y = JY, where Y € R**?, We similarly denote é €
RF** the matrix such that Q = JQJT — %In, where the

diagonal centering is needed since @ has a null diagonal.

3.1. Critical points

With these notations and the assumptions of the previous
section at hand, we have the following result.

2This condition is crucial and mimics the non-trivial setting of
machine learning classification of e.g., [5] where z; ~ N (yq,0%1p)
with ||ua|, 72 = O(1), but here in the limit where o2 = 0.



Theorem 1 (Asymptotic null gradient condition). Asn,p —
o0, every solution Y of satisfies

||L?H - 07 L= D(]l"o)AD(]l"o) - D(]lno )D(A]lno) (3)
where
A =117 — (M) = n(n —1)Q
/(0)
2pn f(0)
y { 297 M1,,1,17 — 2nM, P = Pyy

h(M) =

MD, 141} + 1,1{ D, M — 2nM, P = Pruns

for Tny =[n1, ..., k)", M = {[|pa — po|*}h y=1 € R"* and
D, is the diagonal matriz with vector v on the diagonal.

Sketch of Proof. Exploiting ||ue] = O(1) so that %sz —

z;||> — 0 for all i,j, following the ideas of [5], a Taylor
expansion on the entries of P is performed in the large n,p
limit which, along with the symmetry of the problem, reduces

g—; =0, 1 <¢<n} from an n- to a k-dimensional equation

with f only involved through f(0) and f'(0). O

It is interesting to observe that Theorem [1| holds identi-
cally under both MN and RMNS normalizations, but for the
expression of the function h(M) which contains the structural
information about the data statistics w1, ..., pk.

According to Theorem [T} for large n,p, determining the
critical points of the SSNE problem boils down to solving
the k-dimensional equation LY = 0 in which the non-linear
function f appearing in P is now reduced to its derivatives
f(0) and f’(0). Unlike f though, since d is small, the non-
linear function g, intervening in @Q;;, remains encapsulated
within Q and cannot be simplified. Equation LY = 0 thus
remains difficult to analyze due to the involved non-linear

relation between Y and Q.

3.2. Simplified setting

For readability and ease of interpretation, we consider from
now on the case where k =3, d =1, and pq = me,, for e, €
R? the a-th canonical vector of R” and m > 0. By a common
shift-invariance of the entries of Y solution to LY =0, Y
may be parametrized only with (say) g1 — g2 and §1 — 3.

Under this simplified setting, the MN approach can be
shown to provide trivial solutions:

Proposition 1. In the MN case, any Y € R® such that
§: = §; for at least one combination of i # j € {1,2,3} is a
critical point of C(Y).

Sketch of Proof. The result follows from direct calculus, fun-
damentally exploiting the (here quite unfavorable) symmet-
rical nature of Pun (unlike for Prmns, in this setting, Puvn,ij
is constant for all 4 # j and all ¢ = j). O

The MN critical points raised in Proposition [I] are highly
undesirable as they “merge” distinct clusters of R? together
in R? according to the cardinality of the classes. Figure [2]
which reports the landscape of ||LY| under both MN and
RMNS settings in a unbalanced cluster-size scenario, effec-
tively pinpoints those critical points in the MN setting and
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Fig. 1: Visualization of SSNE solutions ¥ = [§j1, g2, §3]” , for

d=1,k=3,p=1024 and ps = me, (e, the a-th canonical
vector of RP) with m = 5. (Top) Any of the 6 symmetrical
solutions in the balanced setting (n1 = n2 = ng = 500).
(Bottom) Most typical solution for the unbalanced setting
with ny = 300, ngy = 700, nz = 500.

shows that a symmetrical pair of them are indeed local min-
ima. This is quite unlike the RMNS method which does not
lead to trivial solutions, suggesting that RMNS is always a
preferred method. This is quite at odds with the seemingly
“more natural” MN approach to minimizing the Kullbach-
Liebler divergence in ; as pointed out in the proof sketch
of Proposition [I,, RMNS here paradoxically benefits from its
being “less symmetrical” than MN.

Figure [2| provides extra empirical information. In partic-
ular, it identifies a total of seven MN but only five RMNS
critical points. Excluding the trivial §1 = g2 = @3 solution,
the other critical points in fact reduce to symmetrical pairs
(changing the signs of all §;’s in a solution brings the other).
Among the two RMNS pairs, only one asymptotically corre-
sponds to a minimum (green bullets in the figure), which we
empirically observed to be associated with the scenario where,
in the visualization of dimension d = 1, the central cluster §;
is the one with lowest c; value (see Figure 2}(bottom)); this
local minimum is here global.

A complete understanding of all critical points remains
nonetheless tedious, unless the clusters have balanced sizes
c1 =...= ¢k, which the next section is devoted to explore.

3.3. Balanced mixture (¢; =...=¢;) for k=3,d=1

In the setting of the previous section, let now ¢1 = c2 = c3. It
is easy to observe that MN and RMNS now coincide; indeed,

we have in this case 1,, = (n/k)1y so that
zllf.Mlln, 1,17 = MD, 1,1} + 141% D, M.
n

What is less obvious though is that this balanced cluster size
scenario triggers a strongly degenerate behavior of the solu-
tions Y.

Theorem 2. Under the above assumptions, for both MN and
RMNS, the set of points Y satisfying LY = 0 is the union of
the singleton {§1 = §J2 = §3} and of the points parametrized
by the ellipse

U1 — Yz = %}:((ggm(Bcost—ﬁsint),
Y1 — G2 = %Jz(ggm(iicost—l—\/gsint), t e R.
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Fig. 2: Value of log (||L§~/H2) for MN versus RMNS; n; =
300,n2 = 700,n3 = 500, m = 5,p = 1024. Local minima
in green bullets. Saddle points in black crosses. Gradient
descent sample path in red dotted line.

As such, Theorem [2] states that there asymptotically is
an infinity of critical points. Figure [3] corroborates the result
and numerically suggests, through the local evaluation of the
Hessian H(Y'), that the ellipse of critical points is the suc-
cessive union of saddle-point and local-minimum contiguous
regions.

The presence of contiguous critical points has a severe
impact on convergence, as depicted by the red paths in
Figures for which we use the same initialization points
and the same gradient descent hyperparameters. While the
isolated minima in the unbalanced cluster-size scenario is a
strong attractor (Figure [2) and is ultimately reached at the
end of the descent, in the balanced cluster-size scenario gra-
dient descent first reaches an arbitrary point of the limiting
ellipse (Figure before slowly moving towards one of the
symmetrical solutions where |§1 — §2| = |J2 — 3| (or any
recombination of indices); these symmetrical solutions are
symbolized in red diamonds in Figure [3] and correspond to
the scenario depicted in Figure (top))‘ After reaching the
ellipse though, as n,p — oo, gradient descent slows down
significantly, to the point of barely progressing as soon as
n,p are of the order of a few thousands: therefore, in this
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Fig. 3: Value of log (||L)7||2) for n1 = ny = n3z = 500,m =
5,p = 1024. Local minima in green bullets. Saddle points
in black crosses. Gradient descent sample path in red dots.
Symmetrical solutions achieved at finite n,p values in red
diamonds.

scenario, SSNE, even in the RMNS flavor, dramatically fails.

4. CONCLUDING REMARKS

The article demonstrates that, despite the non-convex nature
of the stochastic neighborhood embeddings algorithm, large
dimensional statistics is able to capture its dominant behav-
ior. This behavior is largely non-trivial and quite counter-
intuitive: (i) the most symmetrical scenario suffers from de-
generacy and failure to converge efficiently, (ii) the stable R?
visual outputs do not appropriately translate the distances
between clusters in the original space R” but are impacted by
cluster sizes, an undesirable feature, and (iii) the advocated
RMNS approach, preferred over the nonetheless “more natu-
ral” MN flavor, only relies in a favorable asymmetrical behav-
ior of the distribution matrix P of the affinities f(z—l7 lzi—xz; %)
of the data in ambient space.

The work yet only scratches the surface of a more com-
plete understanding of SNE methods: many questions remain
open as to the behavior under more realistic noisy data in-
puts, the extension to the utmost popular (and even more
asymmetrical) t-SNE method, and as to “what real data vi-
sualizations really tell?”.
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