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ABSTRACT

Based on recent random matrix advances in the analysis of
kernel methods for classification and clustering, this paper
proposes the study of large kernel methods for a wide class
of random inputs, i.e., concentrated data, which are more
generic than Gaussian mixtures. The concentration assump-
tion is motivated by the fact that one can use generative
models to design complex data structures, through Lipschitz-
ally transformed concentrated vectors (e.g., Gaussian) which
remain concentrated vectors. Applied to spectral clustering,
we demonstrate that our theoretical findings closely match the
behavior of large kernel matrices, when considering the fed-
in data as CNN representations of GAN-generated images
(i.e., concentrated vectors by design).

Index Terms— Kernel methods, spectral clustering, ran-
dom matrix theory, concentration of measure, GANs.

1. INTRODUCTION

The big data paradigm involves the ability of performing clas-
sification or regression tasks on large dimensional and numer-
ous datasets (i.e., the so-called “large p”, “large n” regime
of random matrix theory). Generally, the used methods for
achieving these tasks are based on non-linear approaches in-
cluding neural networks [1, 2] and algorithms that are based
on kernel methods, such as kernel-based support vector ma-
chines [3], semi-supervised classification [4], kernel-based
PCA [5] and spectral clustering [6, 7]. Due to their non-
linear design, these methods are particularly difficult to an-
alyze theoretically. For practical large and numerous data,
the study of kernel-based methods relies on the characteriza-
tion of kernel matrices K ∈ Rn×n in the large dimensional
regime (i.e., p/n → c0 as n → ∞). Under asymptotically
non-trivial growth rate assumptions on the data statistics (i.e.,
maintaining a feasible get not too easy problem), the entries
Kij = f(xᵀ

i xj/p) or Kij = f(‖xi − xj‖2/p) of K tend
to a limiting constant independently of the data classes – the
between and within class vectors are “equidistant” in high-
dimension. This observation allows one to study K through

Couillet’s work is supported by the GSTATS UGA IDEX Datascience
chair and the ANR RMT4GRAPH (ANR-14-CE28-0006).

a Taylor expansion, thereby giving access to the character-
ization of functionals of K or its (informative) eigenvalue-
eigenvector pairs in the large dimensional regime.

Indeed, such an analysis was initiated in [8] where it has
been shown that K has a linear behavior in the large p, n
asymptotics. Under a k-class Gaussian mixture model, it has
been shown in [7] that the normalized Laplacian matrix as-
sociated with K behaves asymptotically as a so-called spiked
random matrix, where some of the isolated eigenvalues and
eigenvectors contain clustering information. In particular,
the authors in [7] demonstrated that the obtained theoretical
model agrees with empirical results using the popular MNIST
dataset [9], thereby suggesting a sort of universality of spec-
tral clustering regarding the underlying data distribution.

The aim of this article is to confirm this observation by
relaxing the Gaussianity assumption to a wide range of distri-
butions. In fact, most of real world data (e.g., images or CNN
representations that are commonly used in computer vision
[10]) belong to complex manifolds, and therefore are unlikely
close to Gaussian. However, due to recent advances in gener-
ative models since the arrival of Generative Adversarial Net-
works [11], it is now possible to generate complex data struc-
tures by applying successive Lipschitz operations to Gaus-
sian vectors. On the other hand, the concentration of measure
phenomenon tells us that Lipschitz transformations of Gaus-
sian vectors satisfy a concentration property [12, Thm 2.1.12].
Precisely, defining a concentrated vector X ∈ E through
the real concentration of F(X), for any Lipschitz function
F : E → R, defines a larger class of distributions [13]. This
suggests that making the aforementioned concentration as-
sumption on data is a suitable model for real world data.

In this paper, we analyze the kernel matrix K under a k-
class concentration mixture model [13]. Precisely, we prove
that K behaves (up to centering) asymptotically as a spiked
random matrix in the large p large n regime, thereby general-
izing the results of [7] to a broader class of distributions. We
particularly confirm our theoretical findings by considering
the input data as CNN representations of images generated
by a GAN, where the latter is trained to fit the manifold dis-
tribution of the well-known CIFAR-10 dataset [14].

Notation: Vectors are denoted by boldface lowercase let-
ters and matrices by boldface uppercase letters. The notation
‖ · ‖ stands for the Euclidean norm for vectors and the op-



erator norm for matrices. The vector 1n ∈ Rn denotes the
vector filled with ones. For an integer k, [k] stands for the
set {1, . . . , k}. [x1, . . . ,xn] ∈ Rp×n denotes the concatena-
tion of the vectors x1, . . . ,xn ∈ Rp. Given a normed space
(E, ‖ · ‖E) and a real q, an element X ∈ E is said to be
q-exponentially concentrated if for any 1-Lipschitz function
F : E → R, P{|F(X) − EF(X)| ≥ t} ≤ Ce−ct

q

for all
t > 0, and we shall write X ∈ O(e−·

q

) in (E, ‖ · ‖E).

Remark 1. LetX ∈ O(e−·
q

) in (E, ‖·‖E) and Fn : E → F
un-Lipschitz, where un depends on some asymptotic variable
n. Then, the concentration property on X is transferred to
Fn(X), precisely Fn(X) ∈ O(e−(·/un)q ) in (F, ‖ · ‖F ).

2. MODEL SETTING AND ASSUMPTIONS

Consider n independent random vectors x1, . . . ,xn ∈ Rp
distributed in k < ∞ classes represented by k distributions
µ1, . . . , µk supposedly all distinct. We consider the hypoth-
esis of q-exponential concentration, meaning that there exists
q ≥ 2 such that for all m ∈ N, any ` ∈ [k] and any family
of independent vectors y1, . . . ,ym following the distribution
µ`, we have the concentration

[y1, . . . ,ym] ∈ O(e−·
q

) in (Rp×m, ‖ · ‖F ). (1)

For ` ∈ [k], we denote by m` the mean of the distribution
µ`, C` denotes its covariance matrix and n` stands for the
number of vectors among the xi’s following µ`. Let m ∈ Rp
and C ∈ Rp×p be respectively defined as

m ≡
k∑
`=1

n`
n

m`, C ≡
k∑
`=1

n`
n

C` (2)

We further denote m̄` ≡m` −m and C̄` ≡ C` −C.
We shall consider the following set of assumptions on the

data statistics and the kernel function in the large dimensional
regime, meaning that both p and n grow at controlled joint
rate. These assumptions notably guarantee the non-triviality
of spectral clustering under the considered regime.

Assumption 1 (Growth rate). As n → ∞, consider the fol-
lowing conditions:

i. For c0 ≡ p
n ; 0 < lim infn c0 ≤ lim supn c0 <∞.

ii. For each ` ∈ [k], define c` ≡ n`

n and c ≡ {c`}k`=1;
0 < lim infn c` ≤ lim supn c` <∞.

iii. lim supp max` ‖m̄`‖ <∞, lim supp
E‖xi‖√

p <∞.

iv. lim supp max` ‖C̄`‖ <∞, lim supp max`
tr C̄`√
p <∞.

Assumption 2 (Kernel function). Let τ ≡ 2
p tr C and let

f : R+ → R+ be a three-times continuously differentiable
function in a neighborhood of the values taken by τ and such
that lim infn f(τ) > 0.

Without loss of generality, for each ` ∈ [k], we arrange the
xi’s as xn1+···+n`−1+1, . . . ,xn1+···+n`

∼ µ`. and define the
kernel matrix K as the translation-invariant random matrix

K ≡
{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

. (3)

3. MAIN RESULTS

Our first and fundamental result states that the between and
within class vectors are “equidistant” in the high-dimensional
regime. Namely, we have the following lemma under the q-
exponential concentration hypothesis and Assumption 1.

Lemma 1. Denote τ ≡ 2
p tr C and let Assumption 1 hold.

Then for any δ > 0, we have with probability at least 1− δ

max
1≤i 6=j≤n

∣∣∣∣1p‖xi − xj‖2 − τ
∣∣∣∣ = O

(
log( n√

δ
)1/q

√
n

)
. (4)

From this observation, all the off-diagonal entries of the
kernel matrix K tend to the same quantity f(τ) asymptoti-
cally. Therefore, K can be Taylor expanded entry-wise and
we show in the following that it asymptotically has (up to
centering) the same behavior as a spiked random matrix.

Before introducing this asymptotic equivalent and for sub-
sequent use, we introduce the following quantities

M = [m̄1, . . . , m̄k] ∈ Rp×k, t =

{
tr C̄`√
p

}k
`=1

∈ Rk

J = [j1, . . . , jk] ∈ Rn×k, T =

{
tr C̄aC̄b

p

}k
a,b=1

∈ Rk×k

Z = [z1, . . . , zn] ∈ Rp×n, P = In −
1

n
1n1ᵀ

n ∈ Rn×n

where j` ∈ Rn stands for the canonical vector of the class
represented by µ`, defined by (j`)i = δxi∼µ`

. The vectors zi
are defined as zi ≡ (xi − m̄`)/

√
p for each ` ∈ [k].

Our main technical result states that there exists a matrix
K̂ such that ‖PKP− K̂‖ → 0 asymptotically, where K̂ has
a tractable behavior from a mathematical standpoint.

Theorem 1 (Asymptotic Random Matrix Equivalent). Let
Assumptions 1 and 2 hold and let K̂ be defined as

K̂ = −2f ′(τ) [PZᵀZP + UAUᵀ] + F (τ)P

A =

 A11 Ik − f ′′(τ)
2f ′(τ)t

Ik 0k×k 0k×1

− f ′′(τ)
2f ′(τ)t

ᵀ 01×k − f ′′(τ)
2f ′(τ)


A11 = MᵀM−Ξ− f ′′(τ)

2f ′(τ)
[ttᵀ + 2T]

U =

[
J− 1nc

ᵀ

√
p

,PΦ,Pψ

]
, Ξ =

{
‖m̄a‖2 + ‖m̄b‖2

2

}k
a,b=1



Φ = ZᵀM− {Zᵀ
` m̄`1

ᵀ
k}
k

`=1

ψi = ‖zi‖2 − E‖zi‖2 = ‖zi‖2 −
1

p
tr C`

F (τ) = (f(0)− f(τ) + τf ′(τ))

For δ > 0, there exists Cδ > 0 such that for all γ > 0

‖PKP− K̂‖ ≤ Cδ n−1/2+γ log(n)γ with proba. 1− δ.

Theorem 1 shows that, up to centering, the kernel ma-
trix K has asymptotically the same behavior as K̂. In par-
ticular, the obtained approximation in operator norm implies
that K and K̂ share the same eigenvalues (by Weyl’s inequal-
ity [15, Thm 4.1]) and same isolated eigenvectors asymptot-
ically. Therefore, the asymptotic spectral properties of K
(i.e., the classification performance of algorithms involving
K) may be studied through its equivalent K̂.

Indeed, note that K̂ is made of a sum of a random ma-
trix PZᵀZP and a maximum (k − 1)-rank matrix contain-
ing linear combinations of the class-wise canonical vectors j`
weighted by the inner-products between class means MᵀM
and class covariance-products and traces (through t and T).
The matrix K̂ can then be identified as a so-called spiked ran-
dom matrix model [16]. Note however that, unlike the stan-
dard spiked random matrices, the low-rank part of K̂ depends
statistically on the noise part and the latter is a mixture be-
tween random matrices made of concentrated vectors [13].

Random matrix theory offers a wide range of tools to an-
alyze such spiked models. Importantly, authors in [13] have
characterized the spectrum of a sample covariance matrix of
concentrated vectors, and more precisely the bulk of eigen-
values of the random matrix PZᵀZP. The spectrum of K̂
is then composed of a bulk along with up to k − 1 isolated
eigenvalues, and the associated eigenvectors are aligned with
the eigenvectors in U, therefore with linear combinations of
the class canonical vectors j1, . . . , jk. Consequently, char-
acterizing the asymptotic performance of spectral clustering
relies on the characterization of the isolated eigenvectors of
K̂. In fact, these eigenvectors are informative if their associ-
ated eigenvalues are far away from the main eigenvalue bulk.
In the following, we provide the conditions under which the
informative eigenvalues become visible in the spectrum of K̂.
Before introducing this phase transition phenomenon, let us
introduce the following lemma which characterizes the spec-
trum of the random matrix PZᵀZP.

Lemma 2 (Deterministic equivalent). Let Assumption 1 hold.
Let z ∈ C r S with S introduced subsequently and de-
fine the resolvent matrix Qδ ≡ (

∑k
`=1 c`

C`

1+δ`(z) − zIp)
−1

where δ`(z) is the unique solution of the fixed point equa-
tion δ`(z) = 1

n tr(C`Qδ). Then the spectral distribution
νn = 1

n

∑n
i=1 δλi

almost surely converges to a probabil-
ity measure ν defined on a compact support S and having
Stieltjes1 transform the limit of 1

p tr Qδ as p→∞.

1Defined as m(z) =
∫ ν(dt)

t−z , for z ∈ C+.

Having Lemma 2 we can now determine the conditions
under which the spikes can be visible outside the main bulk
of PZᵀZP, and the result concerning the isolated eigenvec-
tors. We however need the following technical assumption on
the class-wise covariances to ensure that PZᵀZP does not
produce non-informative isolated eigenvalues.

Assumption 3 (Spikes control). Denote λ`1, . . . , λ
`
p the eigen-

values of C`, for each ` ∈ [k]. As n→∞, 1
p

∑p
i=1 δλ`

i

D−→ ρ`

with support S`, and max1≤i≤p dist(λ`i ,S`)→ 0.

Now we can state the theorem that ensures the presence of
informative eigenvalues in the spectrum of K̂, and gives the
characterization of the corresponding isolated eigenvectors,
which results from standard random matrix techniques [16].

Theorem 2 (Spikes and isolated eigenvectors). Let Assump-
tions 1-3 hold and z ∈ C r S . There exists a matrix
Λz ∈ Ck×k and a complex-valued function ατ (z) both
depending on the data statistics such that, if λ∗ ∈ RrS with
ατ (λ∗) 6= 0 and Λλ∗ having a zero eigenvalue of multiplicity
m∗, then PKP produces m∗ spikes asymptotically close to
ρ∗ = −2f ′(τ)λ∗ + F (τ). Furthermore, the eigenspace pro-
jector corresponding to the (asymptotically converging to ρ∗)
isolated eigenvalues of PKP has a non-vanishing projection
onto span(j1, . . . , jk).

Theorem 2 gives the conditions under which the spikes
can be observed in the spectrum of K̂, and states that the
corresponding eigenvectors are aligned to some extent to
the class canonical vectors j1, . . . , jk, which is important for
spectral clustering. Note that, for lack of space, the explicit
formulas of Λz and ατ (z) shall be given in an extended
version of the present paper. We refer the reader to [7] for
a detailed statement of Theorem 2 in the k-class Gaussian
mixture model case.

4. APPLICATION TO GAN-GENERATED IMAGES

As hinted at the introduction, the k-class concentration mix-
ture model is motivated by the fact that data generated by
GANs belong to this category of random vectors. To highlight
this aspect, we evaluate our theoretical findings by consid-
ering x1, . . . ,xn as CNN representations of GAN-generated
images and we further consider real images for comparison.

GAN architecture and training: We train a conditional
GAN [17] on the whole CIFAR-10 train set. Precisely, the
generator G takes as input a Gaussian vector of dimension
100 and a one-hot-encoder vector corresponding to a given
class, and outputs an image of size 32 × 32 × 3. In particu-
lar, the considered architecture for G is a deep convolutional
network [18] composed of four convolutional layers each one
followed by batch-normalization and ReLU activation except
for the last layer where tanh is used as recommended by [18].
Examples of the generated images are shown in top of Fig. 1.
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Fig. 1: Spectral clustering on CNN representations of GAN-generated images (top) and CIFAR-10 images (bottom) at different
training phases of the representations. The performance clustering is notably predictable through random matrix theory.

CNN representations: In order to build CNN represen-
tations as commonly used in computer vision [10], we train
two CNNs with a 10-class classification problem. A network
Ng to classify a set of 50000 generated images (by G), and
a network Nr to classify the CIFAR-10 train set. The two
networks have the same architecture: Six convolutional lay-
ers with ReLU activation, followed by a dense layer of 1024
units ReLU activated and a 10-units classification layer. CNN
representations (denoted NR

i for i ∈ {g, r}) are-before-last
layers which correspond to vectors of dimension p = 1024.

The xi’s are therefore set as xi = NR
g ◦ G(ωi) for the

generated images, and as xi = NR
r (Ii) for the real images,

where the ωi’s are random Gaussian vectors in R100 and the
Ii’s denote images from the CIFAR-10 test set. Importantly,
the mapping NR

g ◦ G is Lipschitz since it is constructed from
successive convolutions, activations (ReLU and tanh) and
batch-normalizations, which are all Lipschitz operations [19].
Therefore, by Remark 1, the xi’s are random concentrated
vectors by design for the generated images.

In Fig. 1 we consider the spectral clustering of n = 3 ×
1000 vectors xi of size p = 1024 belonging to k = 3 classes
(Airplane, Automobile and Bird). In particular, we consider
the clustering of these vectors at different training phases of
the networksNg andNr (0, 5 and 40 epochs), with the gener-
ated images (top) and the CIFAR-10 testset images (bottom).
Means and covariances for K̂ are computed empirically and
K is obtained using f(x) = exp(−x).

It is important to note, from the different histograms, that
the spectrum of K is quite close to our theoretical approxima-

tion K̂ given by Theorem 1, mainly in the cases (b) and (c)
for the generated images, and even for real images in (e) and
(f). Another important aspect concerns the match between
the spikes and the almost perfect match between the corre-
sponding eigenvectors, which provide clustering information
as predicted by Theorem 2. These observations notably show
the universality aspect of spectral clustering, thereby confirm-
ing the observations of [7] under the concentration assump-
tion. Beyond this result, we have shown through this paper,
for the first time, that the processing of real world data (e.g.,
GAN-generated images ≈ real images) can be theoretically
analyzed through random matrix theory, this being made pos-
sible thanks to the concentration of measure phenomenon and
the Lipschitz character of now generative methods and there
impressive performances to generate complex data structures.

5. CONCLUSION

In this paper, we have analyzed large kernel matrices un-
der a k-class concentration mixture model. The presented
findings notably extend the results of [7] to a wide class of
distributions on the data vectors, including Lipschitz-ally
transformed Gaussian vectors. Our results notably confirm
a side of universality of spectral clustering as suggested in
[7]. More importantly, we have demonstrated, through this
paper, that real data are like concentrated vectors and random
matrix theory (RMT) allows for the theoretical understanding
of machine learning (ML) methods for concentrated vectors,
thereby demonstrating the relevance of RMT tools for ML.
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