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Abstract
Relying on recent advances in statistical estima-
tion of covariance distances based on random
matrix theory, this article proposes an improved
covariance and precision matrix estimation for a
wide family of metrics. The method is shown
to largely outperform the sample covariance ma-
trix estimate and to compete with state-of-the-
art methods, while at the same time being com-
putationally simpler. Applications to linear and
quadratic discriminant analyses also demonstrate
significant gains, therefore suggesting practical
interest to statistical machine learning.

1. Introduction
Covariance and precision matrix estimation is a fundamen-
tal and simply posed, yet still largely considered, key prob-
lems of statistical data analysis, with countless applications
in statistical inference. In machine learning, it is notably
at the core of elementary methods as linear (LDA) and
quadratic discriminant analysis (QDA) (McLachlan, 2004).

Estimation of the covariance matrix C ∈ Rp×p based on
n independent (say zero mean) samples x1, . . . , xn ∈ Rp
is conventionally performed using the sample covariance
matrix (SCM) Ĉ ≡ 1

n

∑n
i=1 xix

T
i (and its inverse using

Ĉ−1). The estimate is however only consistent for n � p
and only invertible for n ≥ p. Treating the important prac-
tical cases where n ∼ p and even n � p has recently
spurred a series of parallel lines of research. These direc-
tions rely either on structural constraints, such as “toeplitz-
ification” procedures for Toeplitz covariance models (par-
ticularly convenient for time series) (Bickel et al., 2008; Wu
& Pourahmadi, 2009; Vinogradova et al., 2015), on sparse
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constraints with LASSO and graphical LASSO-based ap-
proaches (Friedman et al., 2008) or, more interestingly for
the present article, on exploiting the statistical indepen-
dence in the entries of the vectors xi.

(Ledoit & Wolf, 2004) proposes to linearly “shrink” Ĉ as
Ĉ(ρ) ≡ ρIp +

√
1− ρ2Ĉ for ρ > 0 chosen to minimize

the expected Frobenius distance E[‖C − Ĉ(ρ)‖F ] in the
asymptotic p, n → ∞ limit with p/n → c > 0. Basic
results from random matrix theory (RMT) are used here
to estimate ρ consistently. This procedure is simple and
quite flexible and has been generalized in various directions
(e.g., in (Couillet & McKay, 2014) with a robust statistics
approach). However, the method only applies a naive ho-
mothetic map to each λi(Ĉ) of Ĉ in order to better esti-
mate λi(C). A strong hope to recover a better approxi-
mation of the λi(C)’s then arose from (Silverstein & Bai,
1995; Silverstein & Choi, 1995) that provide a random ma-
trix result relating directly the limiting eigenvalue distri-
butions of C and Ĉ. Unfortunately, while estimating the
λi(Ĉ)’s from the λi(C)’s is somewhat immediate, estimat-
ing the λi(C)’s backward from the λi(Ĉ)’s is a difficult
task. (El Karoui et al., 2008) first proposed an optimiza-
tion algorithm to numerically solve this problem, however
with little success as the method is quite unstable and has
rarely been efficiently reproduced. (Mestre, 2008) later of-
fered a powerful idea, based on contour integral, to consis-
tently estimate linear functionals 1

n

∑n
i=1 f(λi(C)) from

the λi(Ĉ)’s. But f is constrained to be very smooth (com-
plex analytic) which prevents the estimation of the individ-
ual λi(C)’s. Recently, Ledoit and Wolf took over the work
of El Karoui, which they engineered to obtain a more ef-
ficient numerical method, named QuEST (Ledoit & Wolf,
2015). Rather than inverting the Bai–Silverstein equations,
the authors also proposed, with the same approach, to esti-
mate the λi(C)’s by minimizing a Frobenius norm distance
(Ledoit & Wolf, 2015) (named QuEST1 in the present arti-
cle) or a Stein loss (Ledoit et al., 2018) (QuEST2 here).

These methods, although more stable than El Karoui’s ini-
tial approach, however suffer several shortcomings: (i) they
are still algorithmically involved as they rely on a series
of fine-tuned optimization schemes, and (ii) they are only
adaptable to few error metrics (Frobenius, Stein).

Inspired by Mestre’s approach and the recent work (Couil-
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let et al., 2018), this article proposes a different pro-
cedure consisting in (i) writing C as the solution to
argminM�0 δ(M,C) for a wide range of metrics δ (Fisher,
Batthacharyya, Stein’s loss, Wasserstein, etc.), (ii) based
on (Couillet et al., 2018), using the fact that δ(M,C) −
δ̂(M,X)→ 0 for some consistent estimator δ̂, valid for all
deterministic M and samples X = [x1, . . . , xn] ∈ Rp×n
having zero mean and covariance C, and (iii) proceeding to
a gradient descent on δ̂ rather than on the unknown δ itself.
With appropriate adaptations, the estimation ofC−1 is sim-
ilarly proposed by solving instead argminM�0 δ(M,C−1).

While only theoretically valid for matrices M independent
ofX , and thus only in the first steps of the gradient descent,
the proposed method has several advantages: (i) it is easy
to implement and technically simpler than QuEST, (ii) it
is adaptable to a large family of distances and divergences,
and, most importantly, (iii) simulations suggest that it sys-
tematically outperforms the SCM and is competitive with,
if not better than, QuEST.

The remainder of the article is organized as follows. Sec-
tion 2 introduces preliminary notions and concepts on
which are hinged our proposed algorithms, thereafter de-
scribed in Section 3. Section 4 provides experimental vali-
dations and applications, including an improved version of
LDA/QDA based on the proposed enhanced estimates.

Reproducibility. Matlab codes for the proposed estima-
tion algorithms are available as supplementary materials
and are based on Manopt, a Matlab toolbox for optimiza-
tion on manifolds (Boumal et al., 2014).

2. Preliminaries
Let n random vectors x1, . . . , xn ∈ Rp be of the form
xi = C

1
2 zi for some positive definite matrixC ∈ Rp×p and

z1, . . . , zn ∈ Rp independent random vectors of indepen-
dent entries with E[[zi]j ] = 0 and E[|[zi]j |2] = 1. We
further assume the following large dimensional regime for
n and p.

Assumption 1 (Growth Rate). As n → ∞,
p/n→ c ∈ (0, 1) and lim supp max{‖C−1‖, ‖C‖} < ∞
for ‖ · ‖ the matrix operator norm.

Our objective is to estimate C and C−1 based on
x1, . . . , xn under the above large p, n regime. For simplic-
ity of exposition and readability, we mostly focus on the
estimation of C and more briefly discuss that of C−1.

Our approach relies on the following elementary idea:

C ≡ argminM�0 δ(M,C)

where, for some function f ,

δ(M,C) ≡ 1

p

p∑
i=1

f(λi(M
−1C)) (1)

is a divergence (possibly a squared distance δ = d2) be-
tween the positive definite matrices M and C, depending
only on the eigenvalues of M−1C. Among divergences
satisfying this condition, we find the natural Riemannian
distance d2

R (Bhatia, 2009), which corresponds to the Fisher
metric for the multivariate normal distribution (Skovgaard,
1984); the Battacharyya distance d2

B (Sra, 2013), which is
close to the natural Riemannian distance while numerically
less expensive; the Kullback-Leibler divergence δKL, linked
to the likelihood and studied for example in (Moakher,
2012); the Rényi divergence δαR for Gaussian xi’s (Van Er-
ven & Harremos, 2014); etc.1 Table 1 reports the explicit
values of f for these divergences.

Since δ(M,C) is not accessible as C is unknown, our ap-
proach exploits an estimator for δ(M,C) which is consis-
tent in the large n, p regime of Assumption 1.

To this end, our technical arguments are fundamentally
based on random matrix theory, and notably rely on the so-
called Stieljes transform of eigenvalue distributions. For an
arbitrary real-supported probability measure θ, the Stieltjes
transform mθ : C \ supp(θ)→ C is defined as

mθ(z) =

∫
θ(dt)

t− z
.

The key interest of the Stieltjes transform in this article is
that it allows one to relate the distributions of the eigenval-
ues of C and Ĉ as p, n → ∞ (Silverstein & Bai, 1995).
More specifically here, for arbitrary deterministic matrices
M , Stieltjes transform relations connect the empirical spec-
tral (i.e., eigenvalue) distribution νp of M−1C to the em-
pirical spectral distribution µp of M−1Ĉ (Couillet et al.,
2018), defined as

µp ≡
1

p

p∑
i=1

δλi(M−1Ĉ) and νp ≡
1

p

p∑
i=1

δλi(M−1C).

The connecting argument goes as follows: first,
from Cauchy’s integral formula (stating that f(t) =

1
2πı

∮
Γ
f(z)/(t−z)dz for Γ a complex contour enclosing t),

the metric δ(M,C) in (1) relates to the Stieltjes transform
mνp(z;M) through

δ(M,C) =
1

2πı

∮
Γ

f(z)mνp(z;M)dz (2)

1The Frobenius distance does not fall into this setting but has
already largely been investigated and optimized.
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Divergences f(z)

d2
R log2(z)
d2

B − 1
4 log(z) + 1

2 log(1 + z)− 1
2 log(2)

δKL
1
2z −

1
2 log(z)− 1

2
δαR

−1
2(α−1) log(α+ (1− α)z) + 1

2 log(z)

Table 1. Distances d and divergences δ, and their corresponding
f(z) functions.

for Γ ⊂ C a (positively oriented) contour surrounding the
eigenvalues of M−1C. The notation mνp(z;M) reminds
the dependence of mνp(z) in the matrix M .

Then, by exploiting the relation between the Stieltjes trans-
forms µνp and mµp

, it is shown in (Couillet et al., 2018)
that, under Assumption 1, for all deterministic M of
bounded operator norm,

δ(M,C)− δ̂(M,X)→ 0 (3)

almost surely, where X = [x1, . . . , xn] and

δ̂(M,X) ≡ 1

2πıc

∮
Γ̂

G
(
−mµ̃p(z;M)

)
dz (4)

with G such that G′(z) ≡ g(z) = f(1/z), Γ̂ a contour
surrounding the support of the almost sure limiting eigen-
value distribution of M−1Ĉ and µ̃p = p

nµp + (1 − p
n )δ0

(and thus mµ̃p
(z) = cmµp

(z) + (1− p
n )/z). Note that, by

the linearity of G in (4), it is sufficient in practice to eval-
uate δ̂(M,X) for elementary functions (such as f(z) = z,
f(z) = log(z), etc.) in order to cover most distances and
metrics of interest (see again Table 1). Table 2 reports the
values of G for such atomic functions f .

Our main idea is to estimate C by minimizing the approx-
imation δ̂(M,X) of δ(M,C) over M . However, it is im-
portant to note that, as discussed in (Couillet et al., 2018),
the random quantity δ̂(M,X) may be negative with non-
zero probability. As such, minimizing δ̂(M,X) over M
may lead to negative solutions. Our proposed estimation
method therefore consists in approximating C by the solu-
tion to the optimization problem

argminM�0{hX(M)}, where hX(M) ≡ (δ̂(M,X))2.
(5)

3. Methodology and Main Results
3.1. Estimation Method

We solve (5) via a gradient descent algorithm in the Rie-
mannian manifold S++

n of positive definite n×n matrices.

To evaluate the gradient ∇hX(M) of hX at M ∈ S++
n ,

recall that on S++
n the differential DhX(M)[ξ] of the func-

tional hX : S++
n → R+, at position M ∈ S++

n and in the

f(z) G(z)

log2(z) z
(
log2(z)− 2 log(z) + 2

)
log(z) −z log(z) + z
log(1 + sz) s log(s+ z) + z log

(
s+z
z

)
z log(z)

f(z) F (z)

log2(z) z
(
log2(z)− 2 log(z) + 2

)
log(z) z log(z)− z
log(1 + sz)

(
1
s + z

)
log(1 + sz)− z

z 1
2z

2

Table 2. Values of G(z) and F (z) for “atomic” f(z) functions
used in most distances and divergences under study; here s > 0
and z ∈ C.

direction of ξ ∈ Sn (the Riemannian manifold of symmet-
ric n× n matrices), is given by (Absil et al., 2009)

DhX(M)[ξ] = 〈∇hX(M), ξ〉S
++
n

M

where 〈·, ·〉S++
n
. is the Riemannian metric defined through

〈η, ξ〉S
++
n

M = tr
(
M−1ηM−1ξ

)
.

Differentiating δ̂2(M,X) at M in the direction ξ yields:

DhX(M)[ξ]

=
−δ̂(M,X)

πic

∮
Γ

g(−mµ̃p
(z,M))Dmµ̃p

(z,M) [ξ]dz.

By using the fact that

Dmµ̃p (z,M) [ξ]

=
c

p
Dtr

([
M−1Ĉ − zIp

]−1
)

[ξ]

=
c

p
tr

(
M−1Ĉ

[
M−1Ĉ − zIp

]−2

M−1ξ

)
=

〈
c

p
sym

(
Ĉ
[
M−1Ĉ − zIp

]−2
)
, ξ

〉S++
n

M

where sym(A) = 1
2 (A+AT) is the symmetric part of A ∈

Rp×p, we retrieve the gradient of hX(M) as

− ıπp∇hX(M)

δ̂(M,X)

=

∮
Γ̂

g
(
−mµ̃p

(z;M)
)

sym
(
Ĉ(M−1Ĉ − zIp)−2

)
dz

(6)

(recall that the right-hand side still depends onX implicitly
through µ̃p and Ĉ).
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Once ∇hX estimated, every gradient descent step in S++
n

corresponds to a small displacement on the geodesic start-
ing at M and towards −∇hX(M), defined as the curve

R+ → S++
n

t 7→M
1
2 exp

(
−tM− 1

2∇hX(M)M−
1
2

)
M

1
2

where, for A = UΛUT ∈ S++
n in its spectral decompo-

sition, exp(A) ≡ U exp(Λ)UT (with exp understood here
applied entry-wise on the diagonal elements of Λ).

That is, letting M0,M1, . . . and t0, t1, . . . be the successive
iterates and step sizes of the gradient descent, we have, for
some given initialization M0 ∈ S++

n ,

Mk+1 = M
1
2

k exp
(
−tkM

− 1
2

k ∇hX(Mk)M
− 1

2

k

)
M

1
2

k .

(7)

Our proposed method is summarized as Algorithm 1.

Algorithm 1 Proposed estimation algorithm.
Require M0 ∈ C++

n .

Repeat M ← M
1
2 exp

(
−tM− 1

2∇hX(M)M−
1
2

)
M

1
2

with t either fixed or optimized by backtracking line search.
Until Convergence.
Return M .

We conclude this section by an important remark on the
fundamental limitations of the proposed algorithm.

Remark 1 (Approximation of δ(Mk, C) by δ̂(Mk, X)). It
is fundamental to understand the result from (Couillet et al.,
2018) at the heart of the proposed method. There, it is pre-
cisely shown that, for every deterministic sequence of ma-
trices {M (p), p = 1, 2, . . .} and {C(p), p = 1, 2, . . .},
with M (p), C(p) ∈ Rp×p and max(‖C(p)‖, ‖M (p)‖) < K
for some constant K independent of p, we have that, for
X(p) = [x

(p)
1 , . . . , x

(p)
n ] with x(p)

i = C(p) 1
2 z

(p)
i and z(p)

i

i.i.d. vectors of i.i.d. zero mean and unit variance entries,

δ(M (p), C(p))− δ̂(M (p), X(p))→ 0

almost surely as n, p → ∞ and p/n → c ∈ (0, 1). This
result seems to suggest that δ̂(Mk, X) in our algorithm is
a good approximation for the sought for δ(Mk, C). This
however only holds true so long that Mk is independent of
X which clearly does not stand when proceeding to suc-
cessive gradient descent steps in the direction of∇hX(M)
which depends explicitly on X . As such, while initializa-
tions with, say, M0 = Ip, allow for a close approximation
of δ(Mk, C) in the very first steps of the descent, for larger
values of k, the descent is likely to drive the optimization
in less accurate directions.

Remark 1 is in fact not surprising. Indeed, finding the min-
imum of δ(M,C) over M � 0 would result in finding C,
which cannot be achieved for unconstrained matricesC and
for non vanishing values of p/n. Figure 1 provides a typ-
ical evolution of the distance δ(Mk, C) versus its approx-
imation δ̂(Mk, X) at the successive steps k = 1, 2, . . . of
Algorithm 1, initialized at M0 = Ip. As expected, the dif-
ference |δ̂(Mk, X) − δ(Mk, C)|, initially small (at k = 1,
δ̂(Ip, X) ' δ(Ip, C)), increases with k, until the gradient
vanishes and the divergence δ(Mk, C) converges.

3.2. Practical Implementation

In order to best capture the essence of Algorithm 1, as well
as its various directions of simplification and practical fast
implementation, a set of important remarks are in order.

First note that the generic computation of Mk+1 in Equa-
tion (7) may be numerically expensive, unless Mk and
∇hX(M) share the same eigenvectors. In this case, let-
ting Mk = UΩkU

T and ∇Xh(Mk) = U∆kU
T, we have

the recursion

[ωk+1]i = [ωk]i exp

(
−t [δk]i

[ωk]i

)
(8)

where δk = diag(∆k) and ωk = diag(Ωk).

In particular, if M0 = αIn +
√

1− α2Ĉ is a linear shrink-
age for some α ∈ [0, 1], we immediately find that, for all
k ≥ 0,

Mk = ÛΩkÛ
T

where Û ∈ Rp×p are the eigenvectors of Ĉ (i.e., in its spec-
tral decomposition, Ĉ = Û Λ̂ÛT) and Ωk is recursively de-
fined through (8).

This shows that, initialized as such, the ultimate limiting
estimate M∞ (i.e., the limit of Mk) of C shares the same
eigenvectors as Ĉ, and thus reduces to a “non-linear shrink-
age” procedure, similar to that of (Ledoit & Wolf, 2015).
Extensive simulations in fact suggest that, if initialized ran-
domly (say with M0 a random Wishart matrix), after a few
iterates, the eigenvectors of Mk do converge to those of Ĉ
(see further discussions in Section 4). As such, for com-
putational ease, we suggest to initialize the algorithm with
M0 = Ip or with M0 a linear shrinkage of Ĉ.

A further direction of simplification of Algorithm 1 relates
to the fact that, for generic values of M0 (notably hav-
ing eigenvectors different from those of Ĉ), Equation (7)
is computationally expensive to evaluate. A second-order
simplification for small t is often used in practice (Jeuris
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algorithm step k

δ̂(Mk, X)

δ(Mk, C)
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algorithm step k

δ(Mk, C)− δ̂(Mk, X)

Figure 1. (left) Evolution of the Fisher distance δ(Mk, C) versus
δ̂(Mk, X) for k = 1, 2, . . ., initialized to M0 = Ip,. (right)
Evolution of δ(Mk, C)− δ̂(Mk, X).

et al., 2012), as follows

Mk+1 = Mk − t∇hX(Mk)

+
t2

2
∇hX(Mk)M−1

k ∇hX(Mk) +O(t3).

Simulations with this approximation suggest almost no dif-
ference in either the number of steps until convergence or
accuracy of the solution.

3.3. Estimation of C−1

In our framework, estimating C−1 rather than C can be
performed by minimizing δ(M,C−1) instead of δ(M,C).
In this case, under Assumption 1, (3) now becomes

δ(M,C−1)− δ̂inv(M,X)→ 0

almost surely, for every deterministic M of bounded oper-
ator norm and X = [x1, . . . , xn], where

δ̂inv(M,X) ≡ 1

2πıc

∮
Γ̂

F
(
−mµ̃inv

p
(z;M)

)
dz

for F such that F ′(z) ≡ f(z), Γ̂ a contour surrounding the
support of the almost sure limiting eigenvalue distribution
of MĈ and µ̃inv

p = p
nµ

inv
p + (1 − p

n )δ0, where µinv
p ≡

1
p

∑p
i=1 δλi(MĈ). The cost function to minimize under this

setting is now given by hinv(M) ≡ (δ̂inv(M,X))2 with
gradient ∇hinv

X (M) satisfying

ıπp
∇hinv

X (M)

δ̂inv(M,X)

=

∮
Γ̂

f
(
−mµ̃inv

p
(z;M)

)
sym

(
MĈ(MĈ − zIp)−2M

)
dz.

With these amendments, Algorithm 1 can be adapted to the
estimation of C−1. Table 2 provides the values of F for the
atomic functions f of interest.

3.4. Application to Explicit Metrics

Algorithm 1 is very versatile as it merely consists in a gra-
dient descent method for various metrics f through adapt-

able definitions of the function hX(M) = δ̂(M,X)2 and
its resulting gradient. Yet, because of the integral form as-
sumed by the gradient (Equation (6)), a possibly computa-
tionally involved complex integration needs to be numeri-
cally performed at each gradient descent step.

In this section, we specify closed-form expressions for the
gradient for the atomic f functions of Table 2 (which is
enough to cover the list of divergences in Table 1).

3.4.1. ESTIMATION OF C

Let us denote

∇hX(M) ≡ 2δ̂(M,X) · sym
(
Ĉ · V Λ∇V

−1
)

where V are the eigenvectors of M−1Ĉ and we will de-
termine Λ∇ for each function f . Again, we recall from the
discussion in Section 3.2, that V = Û the eigenvectors of Ĉ
if M shares the same eigenvectors as Ĉ (which thus avoids
evaluating the eigenvectors V of M−1

k Ĉ at each step k of
the algorithm).

For readability in the following, let us denote λi ≡
λi(M

−1Ĉ), i ∈ {1, . . . , p}, the eigenvalues of the matrix
M−1Ĉ and ξ1, . . . , ξp the eigenvalues of

Λ− 1

n

√
λ
√
λ
T

with Λ = diag(λ1, . . . , λp) and λ = (λ1, . . . , λp)
T. Fi-

nally, for s > 0, let κs ∈ (−1/(s(1 − p/n)), 0) be the
unique negative number t solution of the equation (see
(Couillet et al., 2018) for details)

mµ̃p
(t) = −s.

With these notations at hand, following the derivations in
(Couillet et al., 2018) (detailed in supplementary material),
we have the following determinations for Λ∇.

Proposition 1 (Case f(t) = t). For f(t) = t,

[Λ∇]kk = −1

c
+

1

p

p∑
i=1

1

m′µ̃p
(ξi) (λk − ξi)2

with m′µ̃p
the derivative of mµ̃p .

Proposition 2 (Case f(t) = log(t)). For f(t) = log(t),

[Λ∇]kk =
−1

pλk
.

Proposition 3 (Case f(t) = log(1 + st)). For s > 0 and
f(t) = log(1 + st),

[Λ∇]kk =
−1

p(λk − κs)
.
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Proposition 4 (Case f(t) = log2(t)). For f(t) = log2(t),

[Λ∇]kk =
2

p
log (λk)

 p∑
i=1

1

λk − ξi
−

p∑
i=1
i 6=k

1

λk − λi
− 1

λk


− 2

p

p∑
i=1

log(ξi)

λk − ξi
+

2

p

p∑
i=1
i 6=k

log(λi)

λk − λi
− 2− 2 log(1− c)

pλk
.

These results are mostly achieved by residue calculus
for entire analytic functions f or by exploiting more ad-
vanced complex integration methods (in particular branch-
cut methods) for more challenging functions (involving
logarithms in particular).

Combining these formulas provides an analytical expres-
sion for the gradient of all aforementioned divergences and
square distances, for the estimation of C.

3.4.2. ESTIMATION OF C−1

Similarly, for the problem of estimating C−1, recalling Re-
mark 3.3, we may denote

∇hinv
X (M) ≡ 2δ̂inv(M,X) · sym

(
M · VinvΛinv

∇ V −1
inv

)
with Vinv the eigenvectors of MĈ.

We redefine in this section λi ≡ λi(MĈ), and

ξ1, . . . , ξp the eigenvalues of Λ − 1
n

√
λ
√
λ
T

with Λ =
diag(λ1, . . . , λp) and λ = (λ1, . . . , λp)

T. Again, for
s > 0, let κs < 0 be the only negative real number t solu-
tion of

mµ̃inv
p

(t) = −1

s
.

With the same approach as in the previous section, we here
obtain the following values for Λinv

∇ .

Proposition 5 (Case f(t) = t). For f(t) = t,

[Λinv
∇ ]kk = −1− c

pλk
.

Proposition 6 (Case f(t) = log(t)). For f(t) = log(t),

[Λinv
∇ ]kk = −1

Proposition 7 (Case f(t) = log(1 + st)). For s > 0 and
f(t) = log(1 + st),

[Λinv
∇ ]kk =

λk
λk − κs

− 1

Proposition 8 (Case f(t) = log2(t)). For f(t) = log2(t),

[Λinv
∇ ]kk = −2

p
log (λk)

 p∑
i=1
i 6=k

λk
λk − ξi

−
p∑
i=1
i 6=k

λk
λk − λi

− 1


+

2

p

p∑
i=1

λk log(ξi)

λk − ξi
− 2

p

p∑
i=1
i 6=k

λk log(λi)

λk − λi
+

2

p
− 2

p
log(1− c).

4. Experimental Results
This section introduces experimental results on the direct
application of our proposed method to the estimation of
C and C−1 as well as on its use as a plug-in estimator in
more advanced procedures, here in the scope of linear and
quadratic discriminant analyses (LDA/QDA).

4.1. Validation on synthetic data

In this first section, we provide a series of simulations on
the estimation of C and C−1 based on the Fisher distance
and for several examples of genuine matrices C. Similar
results and conclusions were obtained for the other metrics
discussed above (the KL divergence and the square Bat-
tacharrya distance especially) which are thus not explicitly
reported here. The interested reader can refer to the code
provided by the authors for self experimentation as supple-
mentary material.

Our preference for the Fisher distance for fair comparisons
lies in the fact that it is the “natural” Riemannian distance
to compare covariance matrices in S++

n , therefore in entire
agreement with the proposed estimation strategy through
gradient descents in S++

n . Besides, for this specific case,
Theorem 4 in (Smith, 2005) establishes an exact and very
straightforward formula for the Cramer-Rao bound (CRB)
on unbiased estimators of C. Although the compared esti-
mators of C are likely all biased and that M0 initializations
may by chance bring additional information disrupting a
formally fair CRB comparison, the CRB at least provides
an indicator of relevance of the estimators.

The examples of covariance matrix C under consideration
in the following are:
(i) [Wishart] a random (p-dimensional) standard Wishart
matrix with 2p degrees of freedom,
(ii) [Toeplitz a] the Toeplitz matrix defined by Cij =
a|i−j|,
(iii) [Discrete] a matrix C with uniform eigenvector distri-
bution and eigenvalues equal to .1, 1, 3, 4 each with multi-
plicity p/4.

Figure 2 (for the estimation of C) and Figure 3 (for C−1)
report comparative performances on the aforementioned C
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Figure 2. Fisher distance of estimates of C, initialized at linear-
shrinkage. From top-left to bottom-right: Wishart, Toeplitz 0.1,
Toeplitz 0.9, Discrete. “SCM th” defined in Remark 2. Averaged
over 100 random realizations of X , p = 200.

matrices for the SCM, QuEST1, QuEST2, and our pro-
posed estimator, the latter three being initialized at M0 the
shrinkage estimation from (Ledoit & Wolf, 2004) (consis-
tent with the choice made for QuEST1, QuEST2 in (Ledoit
& Wolf, 2015; Ledoit et al., 2018)). In the figures, “SCM
th” refers to the asymptotic analytical approximation of
δ(C, Ĉ) as defined in Remark 2. It is observed that, while
the SCM never reaches the unbiased CRB, in many cases
the QuESTx estimators and our proposed method overtake
the CRB, sometimes significantly so. The Wishart ma-
trix case seems more challenging from this perspective.
In terms of performances, both our proposed method and
QuESTx perform competitively and systematically better
than the sample covariance matrix.

Remark 2 (Consistent estimator for δ(C, Ĉ)). With the
same technical tools from (Couillet et al., 2018), it is
straightforward to estimate the distance δ(C, Ĉ). Indeed,
δ(C, Ĉ) = 1

2πı

∮
Γ
f(z)mγ(z) for mγ(z) the Stieljes trans-

form of the eigenvalue distribution of C−1Ĉ; the limiting
distribution of the latter is the popular Marcenko-Pastur law
(Marc̆enko & Pastur, 1967), the expression of which is well
known. The estimate is denoted “SCM th” in Figures 2–3.
The observed perfect match between limiting theory and
practice confirms the consistency of the random matrix ap-
proach even for not too large p, n.

4.2. Application to LDA/QDA

As pointed out in the introduction, the estimation of the co-
variance and inverse covariance matrices of random vectors
are at the core of a wide range of applications in statistics,
machine learning and signal processing. As a basic illustra-
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Figure 3. Fisher distance of estimates ofC−1, initialized at linear-
shrinkage. From top-left to bottom-right: Wishart, Toeplitz 0.1,
Toeplitz 0.9, Discrete. Averaged over 100 random realizations of
X , p = 200.

tive example, we focus here on linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA). Both
exploit estimates covariance matrices of the data or their
inverse in order to perform the classification.

Suppose x(1)
1 , . . . , x

(1)
n1 ∼ N(µ1, C1) and x(2)

1 , . . . , x
(2)
n2 ∼

N(µ2, C2) are two sets of random independent p-
dimensional training vectors forming two classes of a
Gaussian mixture. The objective of LDA and QDA is to
estimate the probability for an arbitrary random vector x
to belong to either class by replacing the genuine means µa
and covariancesCa by sample estimates, with in the case of
LDA the underlying (possibly erroneous) assumption that
C1 = C2. Defining C as C ≡ n1

n1+n2
C1 + n2

n1+n2
C2, the

classification rules for LDA and QDA for data point x de-
pend on the signs of the respective quantities:

δLDA
x = (µ̂1 − µ̂2)TČ−1x+

1

2
µT

2 Č
−1µ2 −

1

2
µ̂T

1 Č
−1µ̂1

δQDA
x =

1

2
xT
(
Č−1

2 − Č−1
1

)
x+

(
µ̂T

1 Č
−1
1 − µ̂T

2 Č
−1
2

)
x

+
1

2
µ̂T

2 Č
−1
2 µ̂2 −

1

2
µ̂T

1 Č
−1
1 µ̂1 +

1

2
log det

Č−1
1

Č−1
2

− log
n2

n1

where µ̂a ≡ 1
na

∑na

i=1 x
(a)
i is the sample estimate of µa and

Č−1
a are some estimate of C−1

a , while Č ≡ n1

n1+n2
Č1 +

n2

n1+n2
Č2 with Ča the estimation of Ca. As such, in the

following simulations, LDA will exclusively exploit esti-
mations of C1 and C2 (before inverting their estimated av-
erage), while QDA will focus on estimating directly the
inverses C−1

1 and C−1
2 .
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Figure 4. Mean accuracy obtained over 10 realizations of LDA
classification. From left to right and top to bottom: C1 andC2 are
respectively Wishart/Wishart (independent), Wishart/Toeplitz-
0.2, Toeplitz-0.2/Toeplitz-0.4, and real application to EEG data.

The first three displays in Figures 4 and 5 compare the ac-
curacies of the LDA/QDA algorithms forC1 andC2 chosen
among Wishart and Toeplitz matrices, and for µ2 = µ1+ 80

p

for the LDA and µ2 = µ1 + 1
p for the QDA settings (in

order to avoid trivial classification). The bottom right dis-
plays are applications to real EEG data extracted from the
dataset in (Andrzejak et al., 2001). The dataset contains
five subsets (denoted A-E). Sets A and B were collected
from healthy volunteers while C, D, E were collected from
epileptic patients. The graph presents all combinations
of binary classes between healthy volunteers and epilec-
tic subjects (e.g., A/E for subsets A and E). There we ob-
serve that, for most considered settings, our proposed algo-
rithm almost systematically outperforms competing meth-
ods, with QuEST1 and QuEST2 exhibiting a much less sta-
ble behavior and particularly weak performances in all syn-
thetic scenarios.

5. Discussion and Concluding Remarks
Based on elementary yet powerful contour integration tech-
niques and random matrix theory, we have proposed in this
work a systematic framework for the estimation of covari-
ance and precision matrices. Unlike alternative state-of-
the-art techniques that attempt to invert the fundamental
Bai–Silverstein equations (Silverstein & Bai, 1995), our
proposed method relies on a basic gradient descent ap-
proach in S++

n that, in addition to performing competi-
tively (if not better), is computationally simpler.

While restricted to metrics depending on the eigenvalues of
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Figure 5. Mean accuracy obtained over 10 realizations of QDA
classification. From left to right and top to bottom: C1 andC2 are
respectively Wishart/Wishart (independent), Wishart/Toeplitz-
0.2, Toeplitz-0.2/Toeplitz-0.4, and real application to EEG data.

products of covariance matrices, our approach may be flex-
ibly adapted to further matrix divergences solely depending
on eigenvalue relations. The same framework can notably
be applied to the Wasserstein distance between zero-mean
Gaussian laws. A reservation nonetheless remains on the
need for n > p in settings involving inverse matrices that,
when not met, does not allow to relate the sought-for eigen-
values to the (undefined) inverse sample covariance matri-
ces. (Couillet et al., 2018) shows that this problem can be
partially avoided for some divergences (not for the Fisher
distance though). A systematic treatment of the n < p case
is however lacking.

Our approach also suffers from profound theoretical lim-
itations that need be properly addressed: the fact that
δ̂(M,X) only estimates the sought-for δ(M,C) for M in-
dependent ofX poses a formal problem when implemented
in the gradient descent approach. This needs be tackled:
(i) either by estimating the introduced bias so to estimate
the loss incurred or, better, (ii) by accounting for the de-

pendence to provide a further estimator ˆ̂
δ(M(X), X) of

δ(M(X), C) for all X-dependent matrices M(X) follow-
ing a specific form. Notably, given that, along the gradient
descent initialized at M0 = ÛD0Û

T, with Û the eigen-
vectors of Ĉ and D0 some diagonal matrix, all subsequent
Mk matrices share the same profile (i.e., Mk = ÛDkÛ

T

for some diagonal Dk), a first improvement would consist
in estimating consistently δ(ÛDÛT, C) for deterministic
diagonal matrices D.
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The stability of the eigenvectors when initialized at M0 =
ÛD0Û

T, with Û the eigenvectors of Ĉ, turns our algorithm
into a “non-linear shrinkage” method, as called by (Ledoit
& Wolf, 2015). Parallel simulations also suggest that arbi-
trary initializations M0 which do not follow this structure
tend to still lead to solutions converging to the eigenspace
of Ĉ. However, this might be a consequence of the incon-
sistency of δ̂(M,X) for X-dependent matrices M : it is
expected that more consistent estimators might avoid this
problem of “eigenvector of Ĉ” attraction, thereby likely
leading to improved estimations of the eigenvectors of C.

We conclude by emphasizing that modern large dimen-
sional statistics have lately realized that substituting large
covariance matrices by their sample estimators (or even
by improved covariance estimators) is in general a weak
approach, and that one should rather focus on estimating
some ultimate functional (e.g., the result of a statistical test)
involving the covariance (see, e.g., (Mestre & Lagunas,
2008) in array processing or (Yang et al., 2015) in statis-
tical finance). It is to be noted that our proposed approach
is consistent with these considerations as various function-
als of C can be obtained from Equation (2), from which
similar derivations can be performed.
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