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ABSTRACT

This article proposes an original approach to the perfor-
mance understanding of large dimensional neural networks.
In this preliminary study, we study a single hidden layer
feed-forward network with random input connections (also
called extreme learning machine) which performs a simple
regression task. By means of a new random matrix result, we
prove that, as the size and cardinality of the input data and
the number of neurons grow large, the network performance
is asymptotically deterministic. This entails a better com-
prehension of the effects of the hyper-parameters (activation
function, number of neurons, etc.) under this simple setting,
thereby paving the path to the harnessing of more involved
structures.

Index Terms— Neural networks, random matrix theory,
extreme learning machines.

1. INTRODUCTION

Artificial neural networks have had a long history of succes-
sive crests and troughs, which may be summarized as the re-
sult of an arms race between the theoretically grounded signal
processing (with methods such as support vector machines)
and the sequential improvement of computational power and
size of available datasets of modern computer science to run
neural networks. The incompatibility of neural networks and
signal processing primarily lies in the inherent intractabil-
ity of neural network performances, which mainly originates
from the non linearity of the neural activations (as well as
from learning by back-propagation of the error).

With this observation in mind, we propose here a theoreti-
cal study of the performance of large dimensional neural net-
works (in the sense of large datasets and number of neurons)
in the instrumental setting of a single hidden layer neural net-
work with random input connections, sometimes referred to
as extreme learning machines (ELM) [1]. Although a poor
model of present deep learning structures, ELMs are simple
networks that allow to focus on the present task in this arti-
cle: harnessing the non-linearity riddle. We believe that the
extension of our present findings to multiple layers and the
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Fig. 1. Extreme learning machine neural network.

introduction of several steps of learning by gradient descent
is a merely secondary, more easily addressable, task.

Precisely, assuming the ELM depicted in Figure 1, con-
stituted of n neurons trained for T time steps by input data
x1, . . . , xT ∈ Rp to achieve a regression task, we shall show
that, as n, T, p → ∞ at proportional growth rate and un-
der mild assumptions on the activation function σ at each
neuron and on the random connectivity matrix W ∈ Rp×n,
the (ridge) regression performance of the neural network is
asymptotically deterministic. The obtained formulas notably
unveil important performance properties, such as the rele-
vance of the distribution of the entries of W (provably not
the case in linear networks) as well as unexpected common
features of several classical choices of σ (sign, ReLu, etc.).

2. SYSTEM SETTING

We start our study by considering an extreme learning ma-
chine neural network, as introduced in [1] and depicted in
Figure 1. The network is fed by a set of T input data vec-
tors X = [x1, . . . , xT ] ∈ Rp×T and is trained to map cor-
responding vectors Y = [y1, . . . , yT ] ∈ Rq×T , through a
single hidden layer of n neurons with non-linear activation
function σ. The training phase in ELMs is particular in that
only the hidden layer-to-sink connectivity matrix β ∈ Rn×q
is learnt while the input-to-hidden layer connectivity matrix
W ∈ Rp×n is static but randomly selected.

For a given β, the output of the ELM is thus simply given
by Ŷ = βTΣ ∈ Rq×T , where Σ ≡ σ(WX), and the ap-
plication of σ is understood entry-wise. During the training
phase, the output weight matrix β is merely learnt by ridge



regression, by solving the quadratic minimization problem
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with ‖ · ‖F the Frobenius matrix norm, γ > 0 some constant.
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Once training is achieved, the performance of the ELM is
assessed from its generalization capability, measured here as
the mean square error Etest(γ) on test data X̃ of size T̃ , with
corresponding output Ỹ , as

Etest(γ) =
1

T̃

∥∥∥βTσ(WX̃)− Ỹ
∥∥∥2

F
.

The quantities Etrain and Etest are inherently random, as
the connectivity matrix W is chosen randomly (which is also
true of more elaborate neural networks since a random weight
initialization is often carried out). Our objective is to show
that, under rather mild assumptions on the distribution of the
entries ofW and on the activation function σ,Etrain andEtest

converge to deterministic values when n, T, T̃ , p→∞ at the
same rate, while q is fixed. This result is presented next.

3. MAIN RESULTS

In the remainder, we shall assume that n, T, T̃ , p grow at the
same rate in the sense that there exists 0 < m < M such
that, as T → ∞, m < n/T < M , m < n/T̃ < M and
m < p/T < M . As for q, we assume it fixed for all values of
n, p, T, T̃ . In particular, the phrase n → ∞ or T → ∞ shall
indicate that n, p, T, T̃ →∞.

For simplicity in this article, we shall only focus on the
simpler Etrain. From (1) and classical random matrix consid-
erations (see e.g., [2, 3]), to describe Etrain as T → ∞, one
needs to exhibit a so-called deterministic equivalent to the re-
solvent Q(γ) of 1

T ΣTΣ; that is, a matrix Q̄(γ) such that, for
all bounded norm, deterministic vectors a, b ∈ RT and ma-
trix A ∈ RT×T , aT(Q(γ)− Q̄(γ))b→ 0 and 1

T trA(Q(γ)−

Q̄(γ)) → 0, almost surely. To this end, most random matrix
methods fundamentally rely on the independence or linear de-
pendence of the entries of Σ to retrieve Q̄(γ) [2, 4]. However,
even when assuming the entries ofW independent (as shall be
done next), our present setting falls outside this standard sce-
nario as Σ = σ(WX) has independent rows but non-linearly
dependent columns. As a work around, we shall exploit the
fact that the rows of Σ satisfy a concentration of measure
identity under mild assumptions on σ and W , which is a suf-
ficiently strong property to recover a deterministic equivalent
Q̄(γ), somewhat in the same spirit as in the work [5].

3.1. Concentration of measure preliminaries

Our first result is therefore a concentration of measure prop-
erty, for which we need the following set of assumptions.

Assumption 1 (Connectivity Matrix W ). The matrix W ∈
Rn×p has independent and identically distributed rows hav-
ing (Rp-supported) measure µW satisfying the concentration

αµW
(t) ≤ κe−Kpt

2

(4)

for some κ,K > 0 andαµ(t) ≡ sup
{

1− µ(At) | µ(A) ≥ 1
2

}
with At = {x ∈ Rp | ∃y ∈ A, ‖x− y‖ ≤ t}.

Assumption 1 essentially states that the rows of W ex-
hibit a concentration of measure phenomenon. An example
is W with i.i.d. Gaussian or uniform entries with zero mean
and variance 1/n but, more generally, W with rows having a
Lebesgue density e−U where the Hessian of U is greater than
cIp, c > 0, is appropriate [6, 5]. Since Lipschitz functions
propagate concentration of measure, we subsequently need:

Assumption 2 (Lipschitz σ). The function σ is λ-Lipschitz
for some λ > 0.

Assumption 3 (Boundedness of X). There exists κ > 0 such
that ‖X‖ ≤ κ√p, with ‖ · ‖ the matrix operator norm.

Assumptions 1–3 induce the necessary concentration of
measure for Σ as follows:

Proposition 1 (Concentration of Measure for Σ). Let As-
sumptions 1–3 hold. Then the rows of 1√

T
Σ = 1√

T
σ(WX)

are i.i.d. with measure µΣ satisfying

αµΣ
(t) ≤ κ′e−K

′pt2 (5)

for some κ′,K ′ > 0 and αµ defined in Assumption 1.

The arguments follow the classical results from [6] but
are not detailed here in the interest of space. A more gen-
eral assumption would be to directly request the conclusion
of Proposition 1 as the base assumption, which in general is
however not necessarily simple to ensure. Notably, we believe
that the rows of 1√

T
Σ may concentrate without requiring σ to

be Lipschitz, e.g., for σ(t) = 1{t>0} or σ(t) = sign(t), possi-
bly to the expense of more stringent assumptions onX . These
considerations are left to future investigations.
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T
1
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3.2. Deterministic Equivalent

We provide here a heuristic development of our main tech-
nical result. The detailed, mathematically thorough, argu-
ments are deferred to an extended version of the article. Re-
call that our objective is to retrieve a matrix Q̄(γ) such that,
for a, b ∈ RT and A ∈ RT×T deterministic and bounded,
aT(Q(γ) − Q̄(γ))b → 0 and 1

T trA(Q(γ) − Q̄(γ)) → 0, al-
most surely. Focusing only on the latter identity (and leaving
the former to the extended version of the article), in the same
spirit as in [7], let us write Q̄(γ) = (F + γIT )−1 for some
deterministic F ∈ RT×T to be identified. Then, we have
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This form has the advantage of isolating terms of the type
1
T Σi,·AΣT

i,· for A a matrix independent of Σi,·.

The main difficulty in extending the standard random ma-
trix techniques (devised in e.g., [2, 4]) to the present study
lies in the generalization of a key proof ingredient at this
point of the derivation, often referred to as the trace lemma
(e.g., [2, Lemma B.26]). This lemma states that, for x ∈ Rn

with i.i.d. entries having zero mean and unit variance and
A ∈ Rn×n Hermitian independent of x and with bounded op-
erator norm, 1

nx
TAx− 1

n trA→ 0, almost surely as n→∞.
For σ(t) = t and W having i.i.d. zero mean and variance
1/n entries, using this lemma, we would easily obtain that
1
T Σi,·AΣT

i,· − 1
Tn tr (XAXT) → 0. However, for non-linear

σ, Σi,· does not have linearly dependent entries and we there-
fore must resort to a generalization of the trace lemma. A
direct consequence of Proposition 1 precisely provides this
result as follows.

Proposition 2 (Trace lemma for Σ). Under Assumptions 1–3,
with A ∈ RT×T deterministic of bounded spectral norm,
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From Proposition 2, we now have that, as T →∞,
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where by xn � yn, we mean informally that xn − yn → 0
as n → ∞, and where the second equality uses the fact that
1
T tr (A+vvT)−1− 1

T trA−1 → 0 ifA is positive definite with
smallest eigenvalue uniformly away from zero (ensured here
by γ > 0). Since we aim at having 1

T trA(Q(γ)−Q̄(γ))→ 0,
a clear choice for F is to take it as the solution to the implicit
equation F = n

T ΦX/(1 + 1
T tr ΦXQ̄(γ)) (it is implicit since

Q̄(γ) = (F + γIT )−1), and we obtain the desired result.

From these heuristic derivations, we have thus reached
our main technical result.

Theorem 1 (Deterministic Equivalent). Under Assump-
tions 1–3, for A ∈ RT×T deterministic bounded, as n→∞,
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T
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almost surely, with δ the positive solution to δ = 1
T tr ΦXQ̄(γ).
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3.3. Neural Network Performance

Theorem 1 is the key intermediary result to investigate Etrain

and Etest. The complete investigation requires more ad-
vanced but mostly classical random matrix tools and we only
provide here the final results.

Proposition 3 (Network Performance). Under Assump-
tions 1–3, as n → ∞, we have Etrain − Ētrain → 0 and
Etest − Ētest → 0, almost surely, where Ētrain and Ētest are
deterministic, defined in (2) and (3) in the previous page.

It is useful to obtain the exact value of ΦA,B for various
W and σ, as they are at the core of Theorem 1 and Proposi-
tion 3. Some examples, obtained through various integration
tricks, are provided in Figure 2. Even though Theorem 1, as it
stands, does not cover non-Lipschitz σ, we display here some
other practically used σ. Note in particular the surprising
closeness of the formulas for 1{t>0}, ReLu(t) = max(t, 0)
and sign(t) which all revolve on the angles acos(Zij).

Proposition 3 along with Figure 2 allow for a theoretical
evaluation of numerous configurations of the neural network.
A comparison between theory and practice is depicted in Fig-
ure 3; there, X is extracted from the MNIST handwritten
digit database [8] with x1, . . . , xT/2 ∈ Rp vectorized images
of zeros and xT/2+1, . . . , xT ∈ Rp of ones, and associated
y1, . . . , yT/2 = −1, yT/2+1, . . . , yT = 1 (here q = 1). We
took n = 512, T = 1024 and p = 784 and tested over another
set of T̃ = 1024 images, Wij ∼ N (0, 1/n). As expected,
non-linear activation functions σ provide better performances
in this highly non linear classification task.

4. CONCLUDING REMARKS

This study lays the first steps of a theoretical analysis of large
dimensional neural networks, starting from the elementary
case of ELMs. The training and testing performances were
provided deterministic approximations featuring the main
hyper-parameters of the network. While seemingly complex,
these expressions greatly simplify in specific cases, such as
when (i) either n, p or T grows faster than the other dimen-
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Fig. 3. Neural network performance for σ(t) = t and σ(t) =
max(t, 0), as a function of γ, for 2-class MNIST data (zeros,
ones), n = 512, T = 1024, p = 784.

sions, or (ii) X has a simple structure. These considerations
are discussed at length in the extended version of the article.

Since the main technical difficulty, related to the non-
linearity of σ, is now covered, it appears not a grand task to
generalize our present random matrix framework to multiple
hidden layers, thereby opening up the possibility to partially
answer the open problem of network dimensioning. Subse-
quently, or rather in parallel, generalizing our results to in-
corporate a few steps of back-propagation of the error so to
update the matrix W seems reachable and may notably pro-
vide insights within the underlying mechanisms of neural net-
work learning. Further, the combination of the present find-
ings with the study of linear echo-state networks (the recur-
rent version of ELMs) in [9] may allow for extensions to re-
cursive network structures. These considerations, we believe,
might open up the road to a new (random matrix-based) angle
of investigation of neural networks.
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