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ABSTRACT

We provide promising mathematical considerations for the study
of robust scatter matrices in the regime where the data number and
dimension are large. Chiefly, we present a new realistic model for
data with an assumption inspired from the concentration of measure
phenomenon. Our technical contribution is to provide a determinis-
tic equivalent for the robust scatter matrix (i) under relaxed assump-
tions when compared to the robust statistics literature and (ii) with
an original proof based on the introduction of a new semi-metric.
This brings simultaneously a new methodological approach to robust
statistics analysis and a wider application spectrum to more realistic
large dimensional data models.

Index Terms— Scatter matrix, concentration of measure, ran-
dom matrices, fixed point theorem.

1. INTRODUCTION

Given a set of n data vectors X = [x1, . . . , xn] ∈ Rp×n arising
from one or several distributions, a classical statistical question is to
estimate the population covariance matrix E[ 1

n
XXT ]. This is gen-

erally, if not almost always, empirically performed via the sample
covariance matrix 1

n
XXT .

However, there exist cases (presence of outliers, spurious or
missing entries, etc.) where the data have a diverging sample co-
variance due to a heavy tail behavior, resulting in a weak population
covariance estimation. To solve this issue one classically exploits, in
place of the sample covariance, the so-called robust scatter matrix
([1], [2] and [3]) Ĉ solution of the equation:

Ĉ =
1

n

n∑
i=1

u

(
1

n
xTi

(
Ĉ + γIp

)−1

xi

)
xix

T
i

where γ > 0 is here to ensure the invertibility of Ĉ + γIp when
p > n, and u : R+ → R+ is in general a decreasing function
meant to mitigate (or cut out) the outliers among the dataset. The
study is generally conducted under the elliptical model assumption
relying on the decomposition xi =

√
τiC

1
2 zi where C ∈ Rp×p is

the sought-for scatter matrix and zi is uniformly distributed on the
sphere and independent of τi.

Following the approach initiated in [4], we suggest here to re-
lax the hypothesis on the random wi = C

1
2 zi to assume that they

belong to the class of “concentrated random vectors” – to visualize
this class, for now, just keep in mind that this class contains any
1-Lipschitz transformation of a Gaussian vector. In particular the
realistic images built from generative adversarial neural networks
(GAN), or more generally any output of neural networks fed in by
random Gaussian vectors, belong to this class by construction but
we tend to think that even real images and most of the data types

commonly explored by machine learning techniques verify this as-
sumption. Yet, to still account for outliers in the data model, as a
first extension of the concentrated vector model, we investigate here
the case xi =

√
τiwi with wi concentrated and τi heavy-tailed and

independent of wi. It is a very general model in that it allows the
entries of the wi’s (that carry the information) to have complex de-
pendence.

A major novelty of the article lies in the introduction of a new
semi-metric ds defined as ds(x, y) = |x − y|/√xy for x, y ∈ R+.
Assuming that the mapping u is 1-Lipschitz for this semi-metric
(along with some bounding conditions), our main contribution is to
prove the “concentration” of the spectral density (i.e., the eigenvalue
distribution) of the robust estimator and devise a deterministic limit-
ing measure conditioned on τ .

2. THE CONCENTRATION OF MEASURE FRAMEWORK

We noteMp,n (or simplyMp if p = n) the set of matrices of size
p× n that can be endowed with three possible norms:

• the Frobenius norm ‖M‖F =
√

Tr(MMT )

• the operator norm ‖M‖ = sup‖x‖≤1 ‖Mx‖, where ‖x‖ =√∑n
i=1 x

2
i , for x ∈ Rn

• the nuclear norm ‖M‖1 = Tr(
√
MMT ) (it is the dual norm

of ‖ · ‖ for the canonical scalar product onMp,n).

We note Dn ⊂ Mn the set of diagonal matrices and D+
n the set of

positive diagonal matrices.
Consider w1, . . . , wn ∈ Rp seen as n independent drawings

of one out of k possible distributions µ1, . . . µk with respective co-
variances C1, . . . , Ck. We place ourselves under the classical quasi-
asymptotic random matrix setting where p and n are large and of the
same order.

Assumption 1. p = O(n), n = O(p) and k = O(1).

The first two points of the assumption can be understood as the
existence of a positive ratio c > 0 such that p

n
→ c as n → ∞. In

fact, p and n need not be too large as it has repeatedly been shown
in practice that the estimators provided by random matrix theory are
already quite accurate for p, n of order 10. Then, the number of
classes k needs to be at least ten times smaller than p and n.

Let us denoteW = [w1, . . . , wn] ∈Mn,p for which we wish to
devise a concentration hypothesis. Although seemingly artificial, the
hypothesis presented here is very general and efficient (as recalled
in the introduction and proven in [5]) – when satisfied, we call those
random vectors concentrated vectors. The important point is that the
subsequent concentration inequality is independent of p and n.



Assumption 2. There exist two constantsC, c > 0 (such thatC, c =
O(1)) such that, for any 1-Lipschitz function f :Mp,n → R,

∀t > 0 : P (|f(W )− E[f(W )]| ≥ t) ≤ Ce−(t/c)2 .

In particular (see [6]), the assumption holds if the vectorswi are:

• Gaussian vectors with bounded norm covariance,

• uniformly distributed on the sphere Sp−1 (or on the ballBp =
{x ∈ Rp, ‖x‖ ≤ 1})

• any 1-Lipschitz transformation of the upper cases.

This last item allows one to easily construct a wide range of con-
centrated vectors, among which random vectors with intricate de-
pendence between their entries (such as randomly generated GAN
images). We need a supplementary hypothesis on W to control the
non-centered sample covariance matrix S = 1

n
WWT :

Assumption 3. ‖E[wi]‖ = O(
√
p).

The large dimensional behavior of the spectral measure µS =
1
p

∑
λ∈Sp(S) δλ is classically determined by the Stieltjes transform

mS : t ∈ C \ Sp(S) 7−→
∫
R+

1

t− z dµS(t),

where Sp(S) is the set of eigenvalues of S ([7]). For z > 0,
we further introduce the resolvent Rz = ( 1

n
WWT + zIp)

−1 that
satisfies mS(z) = 1

p
Tr(R−z). We showed in [5], under our hy-

potheses, that Rz is concentrated in the sense of Assumption 2 and
that ‖E[W ] − R̃z‖ = O( 1√

n
) for R̃z ∈ Mp a deterministic ma-

trix that only depends on the (non-centered) population covariance
matrices C1, . . . , Ck (a more general result is given in Theorem 1
below). Thus, µS also converges to a distribution defined only by
C1, . . . , Ck, i.e., as if w1, . . . wn were Gaussian vectors.

Here, however, to extend our results, we are interested in the
second order statistics of non concentrated random vectors X =
Wτ

1
2 where τ = Diag(τ1, . . . , τn) is a positive random diagonal

matrix independent ofW and possibly non concentrated in the sense
of Assumption 2 (imagine that the τi are Student or Cauchy random
variables). To study this new setting, we introduce, for a given z > 0
and D ∈ D+

n , the (respectively random and deterministic) resolvent
matrices

Rz(D) =

(
1

n
WDWT + zIp

)−1

R̃z(D) =

(
1

n

n∑
i=1

DiCk(i) + zIp

)−1

where k(i) is the class of datum i. We will extensively use the in-
equalities (in the set of symmetric matrices):

Ip

z + 1
n
‖W‖2

≤ Rz ≤
Ip
z

and
Ip

z +KC
≤ R̃z ≤

Ip
z

(1)

where KC = sup(‖Ca‖)1≤a≤k. Given D ∈ Dk, we note D(n) =
Diag(Dk(i), 1 ≤ i ≤ n), that can be used to adapt the results of
[5] and design a deterministic equivalent for Rz(D). The proof of
the next proposition relies on tools presented in Section 3 it is thus
reported later in the paper (after Theorem 2).

Proposition 1. For any D ∈ D+
n , the fixed point equation

Λ = Diag

(
1

n
Tr

(
CaR̃z

(
D

1 +DΛ(n)

))
, 1 ≤ a ≤ k

)
admits a unique solution that we note Λz(D).

Theorem 1. Given D ∈ D+
n such that ‖D‖ = O(1) and a matrix

A ∈ Mp such that ‖A‖1 = O(1), there exist two constants C, c =
O(1) such that:

P
(∣∣∣Tr

(
A
(
Rz(D)− R̃z

))∣∣∣ ≥ t) ≤ Ce−nt2/c,
with the shortcut notation R̃z = R̃z

(
D

1+DΛ
(n)
z (D)

)
.

In particular, since ‖ 1
p
Ip‖1 = 1 = O(1), Theorem 1 pro-

vides the concentration of the Stieltjes transform mS(D)(z) =
1
p

Tr(Rz(D)) of the spectral measure of S(D) = 1
n
WDWT .

This result cannot be employed directly by replacing D with τ
since the assumption ‖τ‖ = O(1) would ruin our setting. Instead, as
mentioned in the introduction, we look into Ĉ, the robust estimator
of scatter for data X = Wτ

1
2 , that solves:

Ĉ =
1

n

n∑
i=1

u

(
1

n
xTi (Ĉ + γIp)

−1xi

)
xix

T
i (2)

where γ > 0, X = [x1, . . . , xn] and u is a well chosen function
whose properties are described next.

In the remaining section, we successively prove the existence
and uniqueness of Ĉ, and then the convergence properties of its
eigenvalue distribution.

3. EXISTENCE AND UNIQUENESS OF Ĉ, AND A NEW
SEMI-METRIC

The set D+
n can be considered an extension of R+ since elements

behaving mostly like reals. Its commutativity allows us to employ
the fractional notation:

D′

D
= D′D−1 = D−1D′, for D,D′ ∈ D+

n .

Besides, the spectral norm on D+
n is equal to the infinite norm as we

have ‖D‖ = ‖Diag(Di, 1 ≤ i ≤ n)‖ = sup1≤i≤nDi.

Definition 1. For D,D′ ∈ D+
n , we introduce the semi-metric:

ds(D,D
′) =

∥∥∥∥D −D′√
DD′

∥∥∥∥ .
Definition 2. The class of 1-Lipschitz functions for the semi-metric
ds is called the stable class, denoted S(D+

n ).

When on R+, one can find a very simple characterization of the
stable class that is lost on D+

n :

Property 2. A function f : R+ → R+ is stable if and only if x 7→
f(x)
x

is nonincreasing and x 7→ xf(x) is nondecreasing.

Sketch of Proof. You can let y tend to x in the inequality:∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤
√
f(x)f(y)

xy

to obtain the two inequalities−f(x) ≤ xf ′(x) ≤ f(x) that provide
the monotonicity of x 7→ xf(x) and x 7→ f(x)

x
.



The qualifier “stable” indicates the existence of a set of stability
properties that we give below.

Property 3. Given A ∈ Mp,n with stricly positive entries and
f, g ∈ S(D+

n ):

Af ∈ S(D+
n ),

1

f
∈ S(D+

n ), and f ◦ g ∈ S(D+
n ).

The example of stable function that interests us particularly is
given by Proposition 1.

Proposition 4. The function

Ĩ : D 7−→ Diag

(
1

n
Tr
(
CaR̃z(D)

)
, 1 ≤ a ≤ k

)
,

is stable and its Lipschitz parameter is bounded with

sup
{
λĨ(D), D ∈ D+

n ,
}

where λĨ(D) ≡
∥∥∥1− γR̃z(D)

∥∥∥
It can be shown that the semi-metric space (D+

n , ds) is complete.
We thus prove a result quite similar to Picard’s fixed point theorem
that is at the center of our study.

Theorem 2. Let f : D+
n → D+

n , bounded from above and below,
and contracting for the semi-metric ds. Then there exists a unique
D∗ ∈ D+

n satisfying D∗ = f(D∗).

This result together with Proposition 4 entices Proposition 1.

Proof of Proposition 1. For any D ∈ D+
n , fD : Λ 7→ D

1+DΛ(n) is

stable and consequently, Ĩ ◦f – unlike Ĩ – satisfies the hypothesis of
Theorem 2. Indeed, it is contracting thanks to (1):

sup{λĨ(fD(Λ)), D ∈ D+
n } ≤

‖D‖KC

γ + ‖D‖KC
< 1,

and it is bounded from above and below respectively by pKC
nγ

and
inf( 1

n
Tr(Ca))1≤a≤k
γ+‖D‖KC

.

With the same idea, we can set the existence and uniqueness of
Ĉ as defined in (2) thanks to the next assumption:

Assumption 4. The mapping u : R+ → R+ is in the stable class
S(R+) and is bounded from above.

Property 2 and the stability rules given by Property 3 to which
we can add the stability with the maximum and the minimum (only
for mappings defined on R+) give us a full range of basic operations
to construct possible u’s. For instance, one can consider u : t 7→
min(t + 1, 1

t+1
). Although u is defined on R+, we can apply it on

diagonal matrices entry-wise and thus introduce the shortcut notation
uτ : D 7→ τu(τD). Let us also denote:

I : D ∈ D+
n 7→ Diag

(
1

n
wTi Rγ(D)wi, 1 ≤ i ≤ n

)
∈ D+

n

Proposition 5. The fixed point equation

∆ = I(uτ (∆)) (3)

admits a unique solution ∆ ∈ D+
n .

The proof is the same as for Proposition 1, the mapping I could
be seen as Ĩ where the matrices Ck(i) would be replaced by wiwTi
and z by γ. The superior bound on uτ , allows us to conclude the
proof the same way as the bound ‖fD(Λ)‖ ≤ ‖D‖ authorized the
application of Theorem 2 on Ĩ ◦ f .

We can finally set Ĉ = 1
n
Xu(∆)XT to retrieve the existence

and uniqueness of Ĉ.

4. CONCENTRATION AND ESTIMATE OF Ĉ

In this section we prove our main result: the convergence (concen-
tration) of the eigenvalue distribution of Ĉ under the conditions of
Assumptions 1-4, along with extra conditions to be introduced.

If we try to show directly the concentration of ∆, we rapidly
face the dependence between ∆ and xi. As a workaround, we em-
ploy the Schur identities. For any D ∈ D+

n , denote for simplic-
ity R(D) = Rγ(D) and, for i ∈ {1, . . . , n}, denote W−i =
[w1, . . . , wi−1, 0, wi+1, . . . , wn] and R−i(D) = (W−iDW

T
−i +

γIp)
−1, the resolvent R(D) deprived of the contribution of wi. We

then have:

R(D)wi =
R−i(D)wi

1 + Di
n
wTi R−i(D)wi

. (4)

Let us set ∆− ≡ I−(uτ (∆)) where I− is the stable mapping:

I− : D 7→ Diag

(
1

n
wTi R−i(D)wi, 1 ≤ i ≤ n

)
(the stability is a similar result to Proposition 4). We have from (4)
the identity:

τ∆ =
1

1
τ∆− + u(τ∆)

.

We are naturally led to introducing the function η : R+ → R+

satisfying τ∆ = η(τ∆−) defined thanks to the next proposition
which is again an application of Theorem 2 with the convenient 1-
Lipschitz mapping of (R+, ds).

Proposition 6. Given x ∈ R+, there is a unique η(x) ∈ R+ such
that η(x) = 1

1
x

+u(η(x))
. In addition, η ∈ S(R+).

We can deduce from the fixed point equation (3) satisfied by ∆
a fixed point equation satisfied by ∆− that could be taken as a new
definition for ∆− (here uτη : D 7→ τ u ◦ η(τD))

∆− = I−(uτη(∆−))

To design a deterministic equivalent of ∆−, we then inspire
from a corollary of Theorem 1 that sets for any D ∈ D+

n such that
‖D‖ = O(1) the existence of two constants C, c = O(1) such that:

P
(∣∣I−(D)− Λγ(D)k(i)

∣∣ ≥ t) ≤ Ce−nt2/c, (5)

Thanks again to Theorem 2 we therefore define the deterministic
equivalent to be of ∆− as the unique deterministic (conditionally on
τ ) diagonal matrix ∆̃ ∈ D+

n satisfying:

∆̃ = Λγ(uτη(∆̃(n))). (6)

To set the concentration bounds, we need to bound asymptoti-
cally (i.e. when p, n tend to∞) from above and below the diagonal
matrix uτη(∆̃) (in particular to be able to employ Theorem 1 in the
case D = uτη(∆̃)). We need for that two last assumptions, the first
one allows us to bound inferiorly uτη(∆).

Assumption 5.
∥∥ 1
τ

∥∥ = 1
τmin

= O(1) and limx→0 u(x) > 0.



Remark 1. Assumption 5 is very weak because for any pair of in-
dependent random matrices (W, τ) ∈ Mp,n × D+

n such that W
satisfies Assumption 2, one can show that the couple (W ′, τ ′) de-
fined with:

τ ′ = Diag (max(τi, 1), 1 ≤ i ≤ n) , W ′ = W
τ

1
2

τ ′
1
2

is such thatW ′ satisfies Assumption 2 and τ ′ satisfies Assumption 5.
Therefore, our proposed model for “real data” is the same with or
without Assumption 5.

Assumption 6. x 7→ xu(x) is bounded by κu < 1.

We know from the definition of η that ∀x > 0, η(x)
x

+

η(x)u(η(x) = 1, thus, since x 7→ xu(x) is nondecreasing, η(x)
x
≥

1− κu > 0. Now, given i ∈ {1, . . . , n}:

uτη(∆̃(n))i = τiu(η(τi∆̃k(i))) ≤
τiκu

η(τi∆̃k(i))
≤
κu/∆̃k(i)

1− κu
= O(1)

thanks to Assumption 5. Note that κu
1−κu = O(1) because we im-

plicitly assume that u is independent of n and p (as γ).

Theorem 3. There exist two constants C, c > 0 such that C, c =
O(1) and ∀ε ∈ (0, 1):

P
(∥∥∥∆− − ∆̃

∥∥∥ ≥ ε) ≤ Ce−√ n
c logn

ε
.

Sketch of proof. The idea is to decompose ∆− − ∆̃ into ∆− −
I−(uτη(∆̃)) + I−(uτη(∆̃))− ∆̃ and to employ the contracting char-
acter of I− ◦ uτη (recall that ∆− = I−(uτη(∆−))):∥∥∥∥∥∥ ∆− − ∆̃√
I−(uτη(∆̃))∆−

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∆− − I−(uτη(∆̃))√

I−(uτη(∆̃))∆−

∥∥∥∥∥∥+

∥∥∥∥∥∥ I
−(uτη(∆̃))− ∆̃√
I−(uτη(∆̃))∆−

∥∥∥∥∥∥
≤ λI−

∥∥∥∥∥∆− − ∆̃√
∆̃∆−

∥∥∥∥∥+

∥∥∥∥∥∥ I
−(uτη(∆̃))− ∆̃√
I−(uτη(∆̃))∆−

∥∥∥∥∥∥ ,
with λI− = λI−(∆−) < 1 (like the parameter λĨ(fD(Λ)) that
appeared in the proof of Proposition 1). Since we know from (5)
that ∆̃ = Λγ(uτη(∆̃)) is close to I−(uτη(∆̃)), we can derive from
this last inequality:∥∥∥∥∥∥ D̃ −D−√

I−(uτη(D̃))D−

∥∥∥∥∥∥ ≤ 1 + C

1− λ

∥∥∥∥∥∥ I−(uτη(D̃))− D̃√
I−(uτη(D̃))D−

∥∥∥∥∥∥ .
and we conclude again thanks to (5) (and the lower and upper bounds
on uτη(D̃) following from Assumptions 5 and 6).

Recalling that Ĉ = 1
n
Wuτη(∆−)WT and letting R̂z =

Rz(u
τ (∆)), the resolvent of Ĉ, we now understand the spectral

measure µĈ of Ĉ thanks to the next proposition (which is a simple
adaptation of Theorem 1):

Corollary 1. For any A ∈Mp such that ‖A‖1 = O(1), there exist
two constants C, c = O(1) such that ∀ε ∈ (0, 1):

P
(∣∣∣∣Tr

(
A

(
R̂z − R̃

uτη(D̃)
z

))∣∣∣∣ ≥ ε) ≤ Ce−√ n
c logn

ε

with the short notation R̃
uτη(D̃)
z = R̃z

(
uτη(D̃)

1+uτη(D̃)Λ
(n)
z (uτη(D̃))

)
.

If we notemĈ the Stieltjes transform of µĈ , we have the identity
∀z > 0:

mĈ(z) =
1

p
Tr
(
R̂z
)

=
1

p
Tr

((
Wuτ (∆)WT + zIp

)−1
)
.

Therefore, as depicted in Figure 1, asymptotically, the spectral mea-
sure of Ĉ is close to a distribution with the deterministic (condition-

ally on τ ) Stieltjes transform m̃Ĉ(z) = 1
p

Tr(R̃
uτη(D̃)
z ). This last

property induces a lot of inferences on the matrix Ĉ and, in turn, on
the robust kernel matrix K = 1

n
uτ (∆)

1
2XTXuτ (∆)

1
2 fully stud-

ied in our companion article [8].

0 2 4

·10−2
eigenvalues λ

d
µ
Ĉ
(λ
)

empirical distribution
prediction from m̃Ĉ

0 5 · 10−2 0.1

eigen values out
of the support

eigenvalues λ

empirical distribution
prediction from m̃Ĉ

Fig. 1: Histogram of the eigenvalues of the matrix Ĉ without the mass at 0.
We took X = Wτ

1
2 ∈ Mp,n with p = 3000, n = 1000. To avoid a

purely Gaussian scenario, we took W = W ′ − E[W ′] with W ′ = f(TZ),
f = ReLu : t 7→ max(0, t), T = Toeplitz(0.5i, 0 ≤ i ≤ p − 1) and
Z ∈ Mp,n with independent standard Gaussian entries. To compute ∆,
we took γ = 0.1 and τi = max(|τ ′i |, 0.1) where τ ′i is a student random
variable with parameter 1. On the left u = min(5, 0.1/t) and on the right
u = min(0.005, 0.1/t); on this last case, there is a saturation effect on ∆
(#{i, uτη(∆i) = 0.005τi} = 600) causing a little spreading of the eigen
values out of their asymptotic support. This is made possible because the
assumption of independence of u towards p and n is not respected (0.005 ∼
1
n

). The predictions are computed thanks to an estimation of the population
covariance of W made on n = 50 000 samples.

5. CONCLUDING REMARKS

The model X = Wτ
1
2 proposed here distinguishes the information

– held in W – from a disturbing term – τ – whose effect must be
mitigated to efficiently recover the behavior of W . Such a model is
not relevant in practice since one has access toW easily dividing the
columns ofX by their norm. A model commonly found in array pro-
cessing is ratherX = Wτ

1
2 +AwhereA ∈Mp,n is a deterministic

matrix such that ‖A‖F ≤
√
n. Hopefully, in that case, the matrix

X writes X = W ′τ ′ where W ′ and τ ′ verify the same assumption
as W and τ ; consequently, our results are still valid. The main dif-
ference though is that the naive vector-wise normalization approach
becomes inappropriate and one is therefore led to cleverly choose the
stable mapping u that helps recoveringA. It is in particular shown in
a machine learning classification context in our companion paper [8]
that a good choice of u for classification issues can be u : t 7→ 1+α

1+αt
for some appaorpriate α > 0.

One could also object that the right diagonal action of τ in the
model is somewhat limited to match a sufficiently large range of ap-
plications.The introduction of a diagonal term τ ′ ∈ D+

p that would
disrupt the matrixW from the left or a “variance profile” multiplying
the entries of W are possible directions of practical extension of the
present model, for which the tools of the concentration of measure
framework are still valid.
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