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ABSTRACT

This article improves over the recently proposed Bethe Hes-
sian matrix for community detection on sparse graphs, as-
suming here a more realistic setting where node degrees are
inhomogeneous. We notably show that the parametrization
proposed in the seminal work on the Bethe Hessian cluster-
ing can be ameliorated with positive consequences on correct
classification rates. Extensive simulations support our claims.

Index Terms— community detection; Bethe Hessian;
spectral clustering; statistical physics.

1. INTRODUCTION

Community detection on graphs [1] is a cornerstone topic in
machine learning, much related to unsupervised classification
(or clustering) [2], and consists in grouping nodes of strong
affinity in distinct classes. Theoretically speaking, given a
statistical generative model for a graph G with classes, the first
question to consider is their detectability and the capability to
associate each node to its genuine class.

The most popular and versatile approach to perform com-
munity detection on graphs is the belief propagation algo-
rithm; however, the latter is computationally expensive, of-
fers no convergence guarantee and is theoretically hard to an-
alyze. Most convincing (since well performing, theoretically
analyzable and computationally appealing) among the pro-
posed alternative approaches to community retrieval are spec-
tral methods that consist in reading the community classes
directly off the dominant eigenvectors of a matrix represen-
tation of G, thereby reminiscent of spectral clustering [2].
Assuming a two-class stochastic block model (SBM) for the
generative graph model with n nodes – where the probabil-
ity for node i to connect to node j equals pin ∈ [0, 1] if they
belong to the same class or pout ∈ [0, 1] otherwise, and ev-
ery edge is drawn independently – a natural spectral commu-
nity detection method consists in extracting the class informa-
tion from the dominant eigenvectors of the adjacency matrix
A ∈ {0, 1}n×n, where Aij = 1 if nodes i and j are con-
nected, and Aij = 0 otherwise.

Couillet’s work is supported by the GSTATS UGA IDEX DataScience
chair and the ANR RMT4GRAPH Project (ANR-14-CE28-0006).

It was indeed shown that, as n → ∞ and pin, pout are in-
dependent of n, which is referred to as a dense graph commu-
nity detection problem, spectral clustering on A is “optimal”
in the sense that:

(a) there exists a minimal value for (pin−pout)/
√
pin + pout

below which community detection is infeasible;
(b) spectral clustering on A returns non-trivial classifica-

tion (that is on average better than random guess) as
soon as this threshold is exceeded.

In statistical physics terms, this asymptotic decidability
thresholding effect is referred to as a phase transition phe-
nomenon.

Yet, the conditions under which spectral clustering on A
is optimal rely on two key ingredients:

(i) the statistical block model for G is quite elementary;
(ii) the graph is dense (the node degrees scale with n).

Both conditions are deemed unrealistic as not representative
of real world graphs. To address issue (i), a line of works
was developed [3, 4] in a K-class degree corrected stochastic
block model (DC-SBM), where

P (Aij = 1) = qiqjC(xi, xj)

with qi > 0 some intrinsic connectivity amplitude for node
i, xi ∈ {1, . . . ,K} the label of the class of node i, and
C(xi, xj) some class-wise affinity parameter. In [4], it is
shown that spectral clustering on A is no longer optimal in
that the phase transition phenomenon in general arises well
below the detectability power of A; an improvement is then
proposed in [4] which shows that there exists α > 0 depend-
ing on the law of the qi’s such that performing spectral cluster-
ing on D−αAD−α rather than A drastically pushes the phase
transition to smaller discriminative values of C(a, b). Yet, to
date, no theoretical optimal phase transition in the dense (as
well as sparse) DC-SBM setting is known.

Addressing limitation (ii) is theoretically much harder.
Assuming that the probability for Aij = 1 scales like 1/n,
i.e., the average nodal degree is of order O(1) with respect
to n, it has long been seen in simulations that spectral clus-
tering on A is largely suboptimal and, here again, even under
the SBM setting, the optimal phase transition position is
unknown. Yet, via the impulse of statistical physics tricks,



mostly consisting in either approximating (linearizing) belief
propagation or mapping the community detection problem
into an Ising model analog, new spectral clustering algorithms
were proposed that are shown in practice (and sometimes in
theory [5]) to dramatically improve over spectral clustering
on A; this is notably the case of spectral clustering on the
non-backtracking operator B [6] and on the (closely related)
Bethe Hessian [7].

The work we propose in this article precisely revolves
around the Bethe Hessian matrix that we aim at analyzing
and improving in a sparse DC-SBM setting. The Bethe Hes-
sian matrix Hr is defined as

Hr = (r2 − 1)In +D − rA (1)

for a certain parameter r, with D = diag(d1, . . . , dn) (di =
[A1n]i) the degree matrix. Assuming a two-class SBM model
with label xi ∈ {−1, 1} for node i, Hr corresponds to the
Hessian matrix of the Bethe free energy of an Ising model on
the graph, the Bethe approximation consisting of using be-
lief propagation to express the probability distribution of the
system and r relates to the physical temperature in the model
(see details in Section 2).

In [7], the authors propose various intuitive arguments for
setting r to some presumably optimal value for spectral clus-
tering on Hr. Precisely, they advise r =

√
ρ(B) (i.e., the

spectral radius of the non-backtracking operator B from [6])
that in a homogeneous case reduces to:

r =
√
c, c ≡ 1

2
(cin + cout) (2)

where cin ≡ npin and cout ≡ npout are constant in the sparse
model. Besides, it is claimed in [7] that the optimal phase
transition for Hr appears as soon as

cin − cout > 2
√
c (3)

which is consistent with the proved phase transition of the
non-backtracking operator [5].

In [4], it is however shown in simulations that Hr (for
the above choice of r) often performs far from optimaly in
the DC-SBM model and for realistic graphs, even for rather
sparse scenarios, where spectral clustering on the (supposedly
suboptimal) matrices D−αAD−α (even for α = 0) often out-
performs Hr. This is mostly due to the fact that the domi-
nant eigenvectors of Hr are strongly affected by the varying
degrees. This suggests that either a post-processing on the
eigenvectors of Hr is needed or that, in the first place, the
SBM-adapted Ising model should be revised to accommodate
for the more diverse degrees observed in real graphs.

In this article, rather than updating the Ising model, we
make the following observation: there exists a value r = rc

different from that recommended in (2) for which the Bethe
Hessian is insensitive to the node heterogeneity, precisely

rc =
cin + cout
cin − cout

(and rc =
√
c right at the phase transition cin − cout = 2

√
c).

Thus, our main finding is that the Bethe Hessian itself,
although developed under an SBM assumption, with properly
set temperature, is resilient to degree heterogeneity and thus
likely well-performing on realistic graphs, at least for r = rc.

2. MODEL AND MAIN RESULTS

2.1. Preliminaries

We consider a 2-class symmetric n-node graph G generated
from a sparse DC-SBM model, that is with adjacency matrix
A ∈ {0, 1}n×n such that

P (Aij = 1) = qiqj
C(xi, xj)

n
(4)

for q1, . . . , qn > 0 random and independently drawn with
E[qi] = 1, xi ∈ {−1, 1} the class label of node i, and
C(xi, xj) = cin > 0 if xi = xj or C(xi, xj) = cout < cin if
xi 6= xj . For a given random realization of A, we then define
the Bethe Hessian matrix Hr as per (1).

The authors in [7] claim that, in the class detectabil-
ity regime (3), the eigenvector corresponding to the second
smallest eigenvalue of Hr is very much aligned to the vector
x ∈ {−1, 1}n containing the labels xi, and therefore con-
tains the structural information about the classes that can be
retrieved by spectral clustering.

Selecting the optimal value of r is however a delicate mat-
ter. Indeed, Hr derives from the analog Ising model of inter-
action between the “spins” xi defined from the dimensionless
Hamiltonian with temperature-related parameter r:

βE({x}; r) = −
∑

i,j∈{1,...,n}
Aij=1

atanh(r−1)xixj

At high temperature (r → ∞), the free energy is dominated
by the entropy contribution and the xi’s become independent,
thereby not raising any clustering. On the opposite, at low
temperature (r ↓ 1), spontaneous magnetization occurs, lead-
ing to a favorite orientation of the spins. In [7], the authors ar-
gue that, under an SBM setting, the optimal value of r should
be found over the range

√
c ≤ r ≤ c (5)

since, for r somewhat larger to the right-edge, the eigenvalues
of Hr no longer isolate. On this range lies r =

√
ρ(B),

which perfectly maps the Bethe Hessian to the related non-
backtracking operator B and is thus claimed in [7] to be the



likely optimal parameter for Hr. As previously pointed out,
for the very specific case of the SBM setting, this value is
found to be r =

√
c.

We argue in the following, and support in simulations, that
an appropriate choice of r, better adapted to the DC-SBM
model, can be found outside the range (5).

2.2. Main Result

Let us start by considering Hrx:

(Hrx)i = (r2 − 1)xi + dixi − r
∑

k∈N (i)

xk

where k ∈ N (i) ⇔ Aik = 1 (that is N (i) is the set of
neighbors of i). Denoting ∂Si ≡ {j, Aij = 1 and xi = xj}
the set of neighbors of node i belonging to the same class
and, similarly, ∂Oi ≡ {j, Aij = 1 and xi 6= xj} the set of
neighbors of i from the opposite class, this simply reads

(Hrx)i = xi
[
(r2 − 1) + di − r

(
|∂Si | − |∂Oi |

)]
.

We now make the assumption (or rather the heuristic ap-
proximation) that, although the average node degree is of or-
der O(1) with respect to n, one can approximately claim that

|∂Si |
di
' cin
cin + cout

,
|∂Oi |
di
' cout
cin + cout

at least for those nodes i having many neighbors (close to the
decidability threshold (3), the approximation is mostly ade-
quate to scenarios where cout is rather large). Then,

(Hrx)i ' xi
[
(r2 − 1) + di

(
1− r cin − cout

cin + cout

)]
(6)

where, under the DC-SBM model (4), the di’s may in general
be quite different. Thus, in order to retrieve an approximate
eigenvector equation for x, one must set

r ≡ rc =
cin + cout
cin − cout

(7)

in which case Hrcx ' (r2c − 1)x. As such, for r = rc, one
expects to see one dominant eigenvector of Hrc not tainted
by the degrees di, as opposed to what was observed in [4] for
r =
√
c or r = ρ(B).

Remark 1 (Homogeneous case). Note that in the homoge-
neous case where the qi’s are all equal and thus the di’s are
expected to be approximately the same, (6) is an approximate
eigenvector equation for all r’s. And thus rc is not a particu-
larly preferred candidate.

It is now interesting to see that, as pointed out previously,
r = rc necessarily falls away from the conservative range (5)

of utmost interest to the authors in [7]. Indeed, for cin and
cout compliant with (3), we find

rc ≤
√
c

with equality right at the transition of (3).
This said, it is still important to note that the authors in [7]

have identified (mostly through simulations) the eigenvector
carrying the class information as the one associated to the sec-
ond smallest eigenvalue of Hr for all positive r’s inducing an
asymptotic phase transition. This observation seems also to
hold in the DC-SBM case.

As such, our final claim may then be formulated as:

Claim 1 (Spectral Clustering on Hrc ). Assume a sparse DC-
SBM model for a graph G. Then, community detection on G is
efficiently performed, irrespective of the heterogeneity of the
degrees, by performing spectral clustering on the eigenvec-
tor attached to the second smallest eigenvalue of Hrc with rc
given in Equation (7).

2.3. Estimation of rc

A subsequent difficulty for practical application is that cin −
cout, and thus rc, is not directly accessible. Several solu-
tions here exist to retrieve a good approximation for rc. One
may for instance iteratively perform spectral clustering on
Hr starting with, say, r =

√
ρ(B) that can be estimated as∑

i d
2
i∑

i di
−1 (according to [7]), obtain a first estimate of the class

components, from which cin and cout are further estimated,
and so on. Another initialization option follows from

(D−1Ax)i =
∑

k∈N (i)

xk
di

=
|∂Si | − |∂Oi |

di
xi '

cin − cout
cin + cout

xi.

(8)

As such, rc can be retrieved, with the same approximation
made above on Hrcx, as a corresponding isolated (inverse)
eigenvalue of D−1A.1

3. NUMERICAL RESULTS

This section provides numerical support for our claimed re-
sults. We start first by considering synthetic DC-SBM graphs
with various laws for the qi’s. For comparison fairness and
adaptability to uneven class cardinalities, spectral cluster-
ing is systematically performed using the k-means algorithm
rather than on a sign-based method (as opposed to [7])

We first focus on the case of two even size classes. While
the coming observations have been verified to be equally valid

1This, in passing, raises the question as to why D−1A would not be an
equally valid matrix for spectral clustering as Hrc . The answer however lies
in the badly understood reasons why spectral clustering on D−1A as well as
A, D −A, D− 1

2 AD− 1
2 does not perform well in the sparse case.



for various heterogeneous settings, we will here depict the
most interesting and visible case where qi ∈ {0.4, 1.6} with
P (qi = 0.4) = P (qi = 1.6) = 1

2 . In this case, both Hrc

and H√
ρ(B)

essentially have the same performance in terms
of overlap (which measures the distance to random guess on
a [0, 1] scale), both overtaking that of D−1A. However, a
careful control of the second smallest eigenvectors of Hrc ,
H√

ρ(B)
and second largest of D−1A (Figure 1) reveals that

the second suffers from the presence of two distinct values for
the qi’s by exhibiting four ‘plateaus’ rather than two. This is
not the case of either Hrc or D−1A. Yet, when asked to re-
trieve exactly two classes, k-means usually performs a correct
partitioning, hence the equal overlap performance. Drawing
on this observation, Figure 2 compares the performance of
the same three methods and for the same choice of qi but now
for two classes of uneven sizes n

3 and 2n
3 , respectively. In

this more asymmetric situation, the performance of H√
ρ(B)

is strongly affected by the qi’s that k-means wrongly con-
fuses for the genuine class divisions. Spectral clustering on
Hr does not suffer this limitation.

Fig. 1. Second dominant eigenvector of Hrc , H√
ρ(B)

, and

D−1A for qi distributed as 1
2δ0.4+

1
2δ1.6. In this case the qi’s,

i = 1, . . . , n, are sorted in four n4 -sized consecutive blocks as
(1.6, .4, 1.6, .4).

Table 1 provides a comparative overlap performance, on
the same real graphs as in [7], of H√

ρ(B)
, for the iterated

method discussed in Subsection 2.3 with initialization at r =√
ρ(B) (indicated as

√
ρ(B)

+
) or r = 1/λ2(D

−1A) (indi-
cated as λ+2 (D

−1A)), and for the oracle optimal r = ropt ∈
R. Consistently with our intuitive findings, it is observed
that ropt is systematically rather far from

√
ρ(B) while r =

1/λ2(D
−1A) and further iterates are close. In terms of over-

lap, the proposed methods outperform the H√
ρ(B)

approach,
although some overlaps remain much lower than optimal, de-
spite the proximity of r to ropt; this is likely due both to a

Fig. 2. Overlap performance of the three methods for an un-
even population |C1| = 2|C2| of classes C1 and C2, with qi’s
distributed as 1

2δ0.4 +
1
2δ1.6.

finite-dimensional effect as well as to the specificities of the
possibly far-from-DCSBM looking graphs.

Graph / r
√
ρ(B)

√
ρ(B)

+
λ+2 (D

−1A) ropt
Polblogs 0.32 0.59 0.03 0.90

(8 .01 ) (8 .01 ) (1 .09 ) (1 .15 )
(1 .94 ) (1 .00 )

Karate 1 0.94 0.94 1
(1 .78 ) (2 .14 ) (1 .15 ) (1 .78 )

(1.19) (1.19)
Dolphins 0.93 0.97 0.97 0.97

(1 .61 ) (1 .61 ) (1 .04 ) (1 .08 )
(0 .97 ) (1 .08 )

Table 1. Overlap performance on benchmark graphs and, in
parentheses, starting and final values of r for the iterated esti-
mates (r+).

4. CONCLUDING REMARKS

This article proposes an improvement over the recently de-
veloped Bethe Hessian approach to community detection on
sparse graphs. We showed that the proposed new parametriza-
tion, while performing similarly on homogeneous graphs,
brings significant gains on more realistic heterogeneous
graphs, as confirmed by simulations on real networks.

The cornerstone of our approach however lies in bene-
fiting from a fortunate cancelling of the heterogeneity effect
on the matrix second smallest eigenvector for a precise pa-
rameter setting. Estimating the latter satisfactorily , a point
of crucial importance as demonstrated in our simulations, re-
quires a more thorough analysis. A line of further improve-
ment lies in updating the energy potential formulation from
which the Bethe Hessian derives to already accommodate for
graph heterogeneity, without resorting to a fine posterior pa-
rameter tuning. These are the objects of future investigations.
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