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Abstract—In this article, we analyze the asymptotic distribu-
tion of the eigenvectors used in spectral clustering of random
graphs and in kernel spectral clustering of high dimensional
Gaussian random vectors. For dense random graphs drawn
from the Stochastic Block Model (SBM), we prove that the
isolated dominant eigenvectors of the modularity matrix behave
asymptotically like Gaussian random vectors with independent
components. As opposed to previous works on SBM eigenvectors,
we deal with a more challenging and practically meaningful
growth rate of the edge probabilities. Similarly for kernel clus-
tering of a two-class Gaussian mixture we prove the asymptotic
Gaussianity of the finite-dimensional marginals of the single
isolated eigenvector. We present two practical applications of our
results: predicting the classification accuracy of clustering algo-
rithms, and speeding up the convergence of the final Expectation
Maximization (EM) clustering using an improved initialization.

Index Terms—spectral clustering, kernel spectral clustering.

I. INTRODUCTION

The distributions of eigenvalues and eigenvectors of random
matrix ensembles form an important research topic in random
matrix theory [2], [3], [15], [17]. In this article, we focus on
the dominant eigenvector distributions of the random matrix
ensembles that arise in community detection and clustering.
Spectral clustering for community partitioning or data group-
ing has two main steps outlined below [18]:
1. The spectral phase: from the spectral analysis of a suitable

kernel or graph matrix, identify and compute the isolated
eigenvalues and their corresponding eigenvectors;

2. The clustering phase: Apply a clustering algorithm such as
Expectation Maximization (EM) or k-means to the eigen-
vectors from step 1. to determine the hidden classes [12].

In the analysis of spectral clustering the matrices in the spectral
phase take on the form of “spiked random matrices” that have
been extensively studied in the random matrix literature [5],
[8], [9]. A spiked random matrix is of the form H = W+P,
where W can be a Hermitian random matrix with zero mean
and i.i.d. upper triangular entries (i.e., a Wigner matrix) or
a random covariance matrix of the form ZZT , where Z is a
rectangular matrix with independent zero mean columns [3],
[9]. The matrix P is a deterministic matrix of finite rank.
While the limiting spectral measure of the eigenvalues of H is
the same as that of W, it may have extra isolated eigenvalues
depending on the eigenvalues of P relative to that of W [6].

In [8], [9] the authors develop central limit theorems (CLT)
for the dominant eigenvalues of spiked Wigner matrices for
general families of component distributions. Deep properties
of spiked covariance models are developed and applied to
kernel spectral clustering of high dimensional Gaussian vectors
in [10], [11] and to principle component analysis in [14].
Limiting distributions of the dominant eigenvalues of spiked
covariance models have been studied in [4], [19]. The results
in the present article complement these existing results by
characterizing the asymptotic distributions of the eigenvector
components for the spiked random matrices appearing in graph
spectral clustering and kernel spectral clustering.

In [2], [16] the authors proved the asymptotic Gaussianity
of the dominant eigenvectors of SBM adjacency matrices.
However the growth rate of SBM edge probabilities was
chosen so that the eigenvalues of the corresponding P matrix
grow with the graph size. This specific case is “easier” to
analyze and leads to trivial asymptotic clustering. In contrast,
in the present paper we analyze a “non-trivial” regime of SBM
edge probabilities [1], i.e., the community edge probabilites
decay with graph size and P ends up having finite-valued
eigenvalues. This scenario is more realistic since it leads to a
finite asymptotic error rate of classification.

The main contribution of our paper is threefold. Using
random matrix techniques we characterize exactly the finite-
dimensional dominant eigenvector distributions of the modu-
larity matrix of an SBM graph and the inner-product kernel
of a two-class Gaussian mixture model. We then use these
distributions to characterize the asymptotic classification errors
of community partitioning and clustering. Finally, we show
that we can smartly initialize the EM parameters used to
cluster the eigenvectors, in order to accelerate the convergence
of spectral clustering. These facts are corroborated by suitable
simulations.

II. EIGENVECTOR ANALYSIS FOR SBM GRAPHS

A. Graph Model

In this section we describe the SBM model, which is an
undirected random graph model with inherent community
structure. Consider a graph drawn from a K-community SBM.
Let A be its adjacency matrix, i.e., Aij ∈ {0, 1} equals
1 if there exists an edge between nodes i and j. Then the



Aij , 1 ≤ i < j ≤ n, form a collection of independent Bernouli
random variables such that pij = P(Aij = 1) is given by

pij = q0

(
1 +

MCiCj√
n

)
,

where q0 < 1 is a constant, MCiCj = O(1), and Ci ∈
{1, 2, . . .K} is the community to which node i belongs.
Thus M ∈ RK×K is the matrix of intercommunity edge
probabilities. For K = 2 we have:

M =

[
p1 q
q p2

]
,

for some p1, p2, q > 0. Let na be the number of nodes in
community a, 1 ≤ a ≤ K, and ca = na/n = O(1). Let
1n ∈ Rn denote the vector of all ones. Without loss of
generality, we assume that the nodes of the graph are grouped
such that the first n1 nodes belong to community 1, the next
n2 nodes belong to community 2 and so on. Let ja ∈ Rn
be the membership vector of community a, i.e., [ja]i = 1 if
i ∈ a, and zero otherwise.

In [1] community partitioning using the leading eigenvectors
of the modularity matrix

B = A− ddT

dT1
,

was considered, where d = A1 is the vector of node degrees.
Introduced in [13], the modularity matrix defines a widely used
community partitioning heuristic [7].

B. Asymptotic SBM Eigenvector Distribution

It is convenient for the analysis to introduce the notations
1 = 1n/

√
n and X := X/

√
n, where X = A − EA. Under

these notations, when K ≥ 2 we can express B of a K-
community SBM as follows [1]

B = X +
q0
n

JM̃JT − 11
T
X−X11

T
+ ∆, (1)

where ∆ represents a random matrix such that ‖∆‖2 =
O(n−1/2) almost surely.1 Here J =

[
j1 j2 . . . jK

]
∈

Rn×K and M̃ = (I − 1cT )M(I − c1T ), where c =[
c1 c2 . . . cK

]T ∈ Rk. It can be verified that M̃ has rank
K − 1. Let θ1 > θ2 > θ3 . . . > θK−1 be its K − 1 non-zero
eigenvalues with eigenvectors ri, 1 ≤ i ≤ K − 1. We define
ui = Jri. The matrix B thus has the form of a spiked Wigner
matrix as studied for example in [8].

Theorem 1: Let J ≤ K − 1 be such that θJ < 2σ and
θJ−1 > 2σ. Further assume that each θi is different. Let vBi be
the eigenvector corresponding to λBi , the ith largest eigenvalue
of B. Then:

lim
n→∞

Pr

 ∏
1≤i≤J,l∈S

θi

(
√
nvBil −

√
θ2i − σ2

θi

√
nuil

)
≥ xil


=

∏
1≤i≤J,l∈S

Q
(xil
σ

)
,

1For a Hermitian matrix A, ‖A‖2 = maxi |λi(A)|.

for xil ∈ R and any finite set S, where σ2 = q0(1− q0).
This result tells us that the dominant eigenvector compo-
nents, corresponding to those deterministic eigenvalues θi that
satisfy a threshold condition, have asymptotically Gaussian
distributions around the components of ui, which encode
the community memberships. Furthermore, their variances are
inversely proportional to θi. Therefore, the larger the various
θi, the more separated the dominant eigenvalues are from the
bulk spectral edge (given by 2σ), and the lower the asymptotic
variance of the eigenvector components. Also the eigenvectors
are independent from each other asymptotically. We shall
corroborate this fact in simulations.

Next we present a corollary of the above theorem for K = 2.
Corollary 1: Let vB be the dominant eigenvector corre-

sponding to the largest eigenvalue λB of B. We assume
θ > 2σ. Then λB converges to θ + σ2

θ as n → ∞ almost
surely. Besides, in the limit, any finite number of components
are jointly independent Gaussians with the following entry-
wise distributions:

θ

(√
nvBi − β

√
1− c1
c1

)
n→∞−−−−→ N

(
0, σ2

)
for 1 ≤ i ≤ n1

θ

(√
nvBi + β

√
c1

1− c1

)
n→∞−−−−→ N

(
0, σ2

)
for n1 + 1 ≤ i ≤ n,

in distribution, where θ := q0(p1 + p2 − 2q)c1(1 − c1) and

β =
√

1− σ2

θ2 .
The parameter θ determines the separability of the commu-

nities. It is larger when the edge-probabilities p1, p2 within
each community are larger than the inter-community edge
probability q. As the asymptotic variance is inversely propor-
tional to θ2, we achieve a smaller classification error when θ
is larger, i.e., the communities are more separable.

III. KERNEL SPECTRAL CLUSTERING

We similarly apply the asymptotic analysis of the dominant
eigenvector to a linear inner product kernel. For simplicity, we
analyze a Gaussian mixture with two classes but the general
principle can be straightforwardly extended to multiple classes.

A. The Model

Consider n jointly Gaussian random vectors denoted by
yi ∈ Rp, 1 ≤ i ≤ n with covariance matrix given by ς2Ip and
Y =

[
y1 y2 . . .yn

]
∈ Rp×n. We further assume a fraction

c1 of these vectors have mean µ and the rest have mean −µ.
Without loss of generality, the vectors are arranged so that the
first c1n of them are in community 1. Let µ = ‖µ‖2 by a
slight abuse of notation. 2 We consider the high dimensional
regime where both n and p are large and grow at the same
rate, i.e., c = p/n = O(1) as n→∞. In order to group these
points in an unsupervised manner, we apply kernel spectral
clustering with the inner product kernel K = 1

pYTY. Let
wi = yi − Eyi. Then we can write

K = W
T
W + W

T
µsT + sµTW + ‖µ‖22ssT , (2)

2For a vector x, ‖x‖2 =
√∑

i=1 x
2
i , the 2-norm.



where

W =
1
√
p

[
w1 w2 . . . wn

]
and s =

1
√
p
(j1 − j2).

We can thus retrieve the classes by merely estimating s.

B. Asymptotic Distribution of Kernel Eigenvector

Let vK be the dominant eigenvector of K. In the following
theorem, we present the limiting distribution of vK when the
eigenvalue of the deterministic component in (2) satisfies a
threshold condition.

Theorem 2: If µ > ς√
c
(1 +

√
c), as n → ∞, any

finite number of components of
√
nvK are asymptotically

independent and satisfy:

√
nvKi

n→∞−−−−→

N
(
+γ, ς

2

µ2

(
cς2 + µ2

µ2+ς2

))
if i ≤ n1

N
(
−γ, ς

2

µ2

(
cς2 + µ2

µ2+ς2

))
otherwise,

(3)

in distribution where γ =

√
µ2

µ2+ς2

(
1− cς4

µ4

)
.

According to this theorem the asymptotic distributions have
the same absolute mean in the two communities, but with dif-
ferent signs. The variance is also the same for all components.

Finally, in order to cluster the points we need to apply EM
or k-means as described in Section I, but a single-dimensional
version, as opposed to the p-dimensional EM on the original
data. From the asymptotic distribution in Theorem 2, we can
see that the price we pay for the reduced complexity is the
higher error rate. This can be explained as follows. Roughly
the error rate in a Gaussian classification problem is an increas-
ing function of the ratio of the square of mean to the variance.
This ratio is ‖µ‖

2

ς2 = µ2

ς2 in the original p dimensional space,
whereas in the limiting one-dimensional Gaussian problem of

Theorem 2 it equals µ2

ς2

(
µ2

µ2+ς2

(
1− cς4

µ4

)
µ2

µ2+ς2
+cς2

)
, which is less than

µ2

σ2 for any c > 0 and decreases as c increases. This Is the cost
incurred by the dimensionality reduction.

IV. PRACTICAL APPLICATIONS

In the following sections we describe two practical applica-
tions of the eigenvector CLTs previously derived.

A. Asymptotic Classification Error

In both community partitioning and kernel clustering ap-
plications, it is important to determine the asymptotic rate of
correct classification. In this section we demonstrate how the
eigenvector distributions can be used to obtain the asymptotic
classification errors. We restrict our presentation to the two
community SBM, but the general principle applies irrespective
of the underlying model, as long as the eigenvector distri-
butions converge. As for the two-community SBM, we can
achieve community partioning by thresholding the entries of
the scaled dominant eigenvector vB , i.e., we can estimate the
community membership vector j1 for example, as:

ĵ1 = 1{
√
nvB>τ},

where 1A is the indicator function or the characteristic func-
tion for the set A, and τ is an appropriately chosen threshold.

In order to evaluate the asymptotic error rate of classification
we need to evaluate the limits of the empirical distribution
functions, for x ∈ R,

F1(x) =
1

n1

n1∑
i=1

1√nvBi >x, F2(x) =
1

n2

n∑
i=n1+1

1√nvBi >x.

(4)
For a given threshold x the average classification error can be
computed as

pe(x) = c1(1− F1(x)) + (1− c1)F2(x).

We then have the following theorem.
Theorem 3: Under the assumptions of Corollary 1, we can

show

lim
n→∞

F1(x) = Q

(
1

σ

(
x− β

√
1− c1
c1

))
(5)

lim
n→∞

F2(x) = Q

(
1

σ

(
x+ β

√
c1

1− c1

))
. (6)

Thus the asymptotic eigenvector distributions allow us to
characterize exactly the asymptotic error rate of community
partioning as a function of the graph parameters. For a certain
model, these parameters can be roughly estimated, as shown
in the next section, and hence one can estimate the asymptotic
error rate even without knowing the ground-truth communities.

B. Smart Initialization of EM

EM is a recursive algorithm used to retrieve the underlying
classes of a Gaussian mixture model [12]. It recursively
updates the estimates for the per-class means, covariance
matrices and class assignments until convergence. The conver-
gence properties of EM depends heavily on the initial values of
the estimates [20]. In this section, we show a way to initialize
mean and variance estimates of EM using our knowledge of
the asymptotic dominant eigenvector distributions. We focus
on a two-community SBM, given that the general principle
holds true for more complicated cases. To apply Corollary 1,
we need estimates for q0 and θ. The former can be estimated
from the average graph degree and the latter can be estimated
from the dominant eigenvalue (Corollary 1). We obtain

q̂0 =
2

n(n− 1)

∑
i<j

Aij ; θ̂ =
λ̂+

√
λ̂2 − 4q̂0(1− q̂0)

2

where λ̂ is the observed dominant eigenvalue of B. We further
take c1 = 1/2 since the community sizes are unknown. In the
simulations, we compare the performance of this algorithm to
EM with random initial values.

V. SIMULATIONS

In a first experiment, we compare the empirical histograms
of the components of two dominant eigenvectors of the modu-
larity matrix for an SBM graph with three communities to the
theoretical Gaussian pdfs. The graph has 5000 nodes and the
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Fig. 1. Comparison of the empirical distributions of dominant eigenvector
for 2 community SBM

Fig. 2. Comparison of convergence speeds of EM

following parameters: p1 = p2 = p3 = 20, q = 0.3, q0 = 0.2
and the scaled community sizes are c1 = 1/2, c2 = c3 = 1/4.
In Figure 1 a scatter plot shows the first against the second
dominant eigenvectors of B along with the level curve at 3
standard deviations of a two dimensional Gaussian distribution
with independent components and means and variances as
predicted by Theorem 1. The eigenvector components are
evidently independent and can be verified to have the predicted
means and variances.

Next, we examine the convergence speed of EM with the
initialization scheme proposed in Section IV-B. We take a two-
community SBM with p1 = p2 = 12, q0 = 0.2 and c1 = 2/3.
Figure 2 shows EM with the proposed initialization achieves
an error an order of magnitude smaller than EM with random
initialization quickly, although they both have the same limit-
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Fig. 3. Comparison of the empirical distributions of the dominant eigenvector
of K,a component in Community 1 (top) ;component in community 2
(bottom)

ing error performance. We achieved this improvement without
any knowledge of the underlying community structure. The
graphs are obtained by averaging over 100 independent runs
of the algorithm. Thus we obtain non-trivial acceleration by
the proposed initialization of the mean and variance estimates
of EM. Finally, we confirm the theoretical distributions of the
kernel eigenvector. We consider a simple case of clustering
with two clusters of equal size and variance. For σ2 = .16
and a mean vector of norm µ = 1.2, we obtain the histograms
for the eigenvector in Figure 3.

VI. CONCLUSIONS

In this article, we have proved the asymptotic Gaussianity
of the eigenvectors used in spectral clustering of SBM and
kernel spectral clustering of high dimensional Gaussian ran-
dom vectors. We have also seen that these distributions have
practical application aside from their theoretical interest. As
a next step it would be interesting to extend this treatment to
more complex and realistic graph models and data models such
as the Degree-corrected Stochastic Block Model and Gaussian
mixtures with a more general covariance structure than dealt
with in this article. It would be interesting to investigate how
to speed up the clustering for these more realistic models,
since for large datasets clustering can be resource intensive. In
deriving the results for this paper, we were able to characterize
the asymptotic distribution of the eigenvector object, which
implicitly depends upon the corresponding random matrix.
One could then investigate if other dimensionality reduction
algorithms could also be analyzed with similar techniques. We
leave these questions open for future works.
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