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Abstract—This article proposes a large system approximation
of the ergodic sum-rate (SR) for cellular multi-user multiple-
input multiple-output uplink systems. The considered system has
various degrees of freedom, such as clusters of base stations
(BSs) performing cooperative multi-point processing, randomly
distributed user terminals (UTs), and supports arbitrarily con-
figurable antenna gain patterns at the BSs. The approximation
is provably tight in the limiting case of a large number of
single antenna UTs and antennas at the BSs. Simulation results
suggest that the asymptotic analysis is accurate for small system
dimensions. Our deterministic SR approximation result is applied
to numerically study and optimize the effects of antenna tilting
in an exemplary sectorized 3D small cell network topology.
Significant SR gains are observed with optimal tilt angles and we
provide new insights on the optimal parameterization of cellular
networks, along with a discussion of several non-trivial effects.

I. INTRODUCTION

One of the most pressing issues in designing next generation
cellular networks is to support the exponentially increasing
demand for wireless data-rate, given generally scarce spectrum
resources. Several approaches and architectures to tackle this
challenge have been investigated. One promising solution is
to increase the frequency spatial reuse through cell densifi-
cation. This is the main motivation for the rise of small cell
networks (SCNs) [1], [2]. Base station (BS) cooperation, i.e.,
coordinated multipoint transmission and reception (CoMP) [3],
and 3D beamforming (3D-BF) [4], [5] can be used to mitigate
the induced inter-cell interference. Practical 3D-BF is possible
with antennas that can change their gain pattern fast, while
maintaining directivity. This shapes the physical channel by
increasing the signal-to-noise ratio (SNR) for the intended
user terminals (UTs), while reducing interference from non-
desired UTs. We distinguish here between “agile beams”
that can follow moving UTs to optimize the instantaneous
performance according to a performance measure, e.g. the
sum-rate (SR), and preplanned 3D-BF, where beams are static.
In the latter case, the beams are adapted to optimize the
average performance using known long term UT distributions.
As for the former case, it requires constant UT tracking and
continuous optimization of the antenna patterns. We will focus
on the preplanned case in this paper, which is prevalent in
cell planning, and leave the extension to agile beams to future
work.

Short UT to BS distances in dense networks should result
in a more pronounced tilting effect, as the difference in

tilting angles to focus on different users is larger compared
to the case of dense UTs, which are far away from the BS.
Shorter distances also reduce the “illuminated area” of the
antennas, further enhancing the possibility to isolate UTs.
Hence, sufficient support for simple vertical tilting improves
interference management and increases the system capacity
[6]. Exploiting tilting is only possible in 3D cell planning, as
the 2D approach prevalent in today’s system analyses does not
offer the necessary spatial degrees of freedom.

This work puts some effort in modeling the combination of
SCN, CoMP, and 3D-BF in a coherent analytical framework,
relying on large dimensional random matrix theory (RMT) [7],
[8]. In [9], an RMT approach was presented to evaluate the SR
in systems with randomly distributed UTs, where the target is
to optimize BS placements. Previous work on the impact of
the antenna elevation angles, regarding the ergodic mutual in-
formation of multiple-input multiple-output (MIMO) systems
[10], is usually more centered on the antenna technology and
does not take random UT placement into account. We also
mention that, in [11], a 3D-BF system model similar to ours
is used to analyze the performance of antenna tilting for the
almost same topology. However, the scope of that article is
on the downlink case and a simple matched filter precoding
is assumed at the BS, in order to derive exact performance
formulas. Our work assumes instead a more involved system
model, for which the exact performance analysis is intricate,
hence the random matrix analysis. As such, our work allows
for a more generic system analysis of the long-term benefits
of antenna tilting in various cellular scenarios.

The main contributions of this paper can be summarized as
follows: (i) We build upon the results in [9] and extend the
deterministic SR approximation to support the modeling of
clusters of cooperating BSs. We also incorporate a 3D antenna
gain pattern, which approximates a standard sector antenna
[4]. (ii) We exploit the results from (i) to numerically analyze
and optimize the effects of antenna tilting on the achievable
SR of a SCN. As opposed to standard simulation tools, we
show that the implementation of our equations is simple and
considerably improves the simulation effort.

II. SYSTEM MODEL

We consider an uplink multi-user MIMO (MU-MIMO) sys-
tem in a 3D network topology, consisting of K UTs and BSs
organized in B clusters. Cluster i consists of Bi BSs, which
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Fig. 1. Multi-cluster example for SCN deployment

act as a distributed antenna system and Ki corresponding
single-antenna UTs, where Ki satisfies K =

∑B
i=1Ki. The

BSs within each cluster can independently perform tilting.
Within cluster i, the BSs are fully cooperating in the sense
that they jointly decode the messages received from the Ki

UTs. Communication between the BSs within a cluster is done
through an infinite capacity backhaul link. We define BSi,k,
i = 1, . . . , B, k = 1, . . . , Bi as the kth BS of cluster i.
BSi,k uses Ni,k antennas and we denote Ni =

∑Bi
k=1Ni,k,

N =
∑B
i=1Ni. BSi,k has Ki,k attached users, thus Ki =∑Bi

k=1Ki,k. We also denote UTi,k,l, l = 1, . . . ,Ki,k, as the
lth UT of BS k in cluster i. Note that, since the BSs are coop-
erating within a cluster, the Ki users UTi,1,1, . . . ,UTi,Bi,Ki,Bi
attached to cluster i could have simply been indexed by
UTi,1, . . . ,UTi,Ki ; however, our notation is more convenient
to study the system performance for different clustering sce-
narios.

The placement of the BSs is arbitrary in the 3D model and
UTi,k,l is placed according to a random distribution at the
position xi,k,l, i = 1, . . . , B, k = 1, . . . , Bi, l = 1, . . . ,Ki,k.
An illustrative example for a possible topology with B =
2, B1 = 1, B2 = 2,K1,1 = 2,K2,1 = 3, and K2,1 = 2 is
shown in Figure 1. In the following, we use the indices i or
j to identify a cluster, k to identify a base station, and l to
identify a user; whenever this scheme is possible.

A. Uplink Channel Model

We now define the fading channel model for the interaction
between the previously defined users and base stations. Let
yi ∈ CNi be the stacked received signal vector at the BS
antennas of cluster i. The overall received vector y ∈ CN of
all clusters is then given by

y
∆
=

y1

...
yB

 =
√
ρulHs + n =

√
ρul

H1

...
HB

 s + n

=
√
ρul

H1,1 · · · H1,B

...
. . .

...
HB,1 · · · HB,B


s1

...
sB

+

n1

...
nB

 (1)

where si ∼ CN (0, IKi) is the transmit vector of all UTs in
cluster i and si = (si,1,1, . . . , si,Bi,Ki,Bi )

T , with si,k,l the
transmit symbol of UTi,k,l. Additionally, ni ∼ CN (0, INi) is
the noise vector of cluster i and ρul is the transmit SNR,
identical for every UT. We denote Hi,j ∈ CNi×Kj the
channel matrix from all UTs of cluster j to all antennas
of cluster i and Hi = [Hi,1, . . . ,Hi,B ] ∈ CNi×K . The
vector channel from UTi,k,l to the BSs of cluster i is denoted
hi,j,k,l ∈ CNi , such that Hi,j = [Hi,j,1, . . . ,Hi,j,Bj ], where
Hi,j,k = [hi,j,k,1, . . . ,hi,j,k,Kj,k ]. We model hi,j,k,l as

hi,j,k,l = F
1
2

i,j,k,lgi,j,k,l

where gi,j,k,l ∼ CN (0, 1
K INi) and we define Fi,j,k,l =

diag
(
fi,1(xj,k,l) · INi,1 , . . . , fi,Bi(xj,k,l) · INi,Bi

)
.

The functions fi,z(xj,k,l) determine the variance of the
channel coefficients, i.e., fi,z(xj,k,l) is the path loss (PL)
from UTj,k,l (at position xj,k,l) with respect to BSi,z . In the
following, any positive, bounded, and integrable function f
can be used. Yet, for the interest of including tilting capabilities
at the BSs, we take for f the specific model defined in the
next subsection.

B. Pathloss Model

The PL function used in this paper is a combination of dis-
tance dependent loss and the 3D antenna gain pattern proposed
in [4]. The model presented there is a simplified 3D repre-
sentation of the commonly used Kathrein 742215 antenna. It
discards explicit side lobes in favor of constant gain outside
the main lobe. The antenna gain G(∆φi,z,j,k,l,∆θi,z,j,k,l) =
G(∆φ,∆θ) depends on the relative angles between the direct
line from UTj,k,l to BSi,z and the main lobe of the antenna
pattern, both in horizontal (azimuth, ∆φ) and vertical (tilt, ∆θ)
direction.

We denote ∆xi,z,j,k,l = UTx − BSx = ∆x, where the
superscript indicates the x-coordinate of the respective UT or
BS. Similarly, ∆y = BSy − UTy and ∆z = BSz − UTz . The
distance di,z,j,k,l = d between UTj,k,l and BSi,z , as well as the
corresponding gain G(∆φ,∆θ) are related to the respective
BS and UT positions through (2) and (5). Given the main
lobe tilt (θBS) and azimuth (φBS) angle with respect to the
ground and to the south orientation, respectively, and calling
atan2(y, x) the four-quadrant inverse tangent function, we have

d =
√

∆x2 + ∆y2 + ∆z2 (2)
∆φ = atan2(∆x,∆y)− φBS (3)

∆θ = atan2(
√

∆x2 + ∆y2,∆z)− θBS (4)
with − 180◦ < θBS , φBS ≤ 180◦.

In order to obtain the PL function f , we then express the
antenna gain G as follows (all G-values in decibel):

G(∆φ,∆θ) = Gh(∆φ) +Gv(∆θ) where (5)

Gh(∆φ) = Gm −min
{

12 [∆φ/HPBWh]
2
,FBRh

}
Gv(∆θ) = max

{
−12 [∆θ/HPBWv]

2
,SLLv

}



in which we denote Gm the maximum antenna gain, set
to 18 dBi, HPBWv the vertical half power beam width, set
to 6.2◦, HPBWh the horizontal half power beam width, set
to 65◦, FBRh the azimuth front-to-back ratio, set to 30 dB,
and SLLv the tilt side lobe level, set to −18 dB relative
to Gm. All these values are taken in accordance with the
Kathrein 742215 antenna model, which we chose due to its
low complexity. Even though, it was not conceived to be used
in the context of 3D-BF, but rather as a (constant tilt) sector
antenna representation.

Hence, the overall PL factors contained in Fi,j,k,l are

fi,z(xj,k,l) = 10
G(∆φi,z,j,k,l,∆θi,z,j,k,l)

10 · d−α (6)

where α ∈ [2, 5] is the path loss exponent, whose value
we leave unspecified for the moment. We already note that
fi,z(xj,k,l) is bounded as d > 0. Further details on this section
and how to obtain and motivate (6) are given in [4].

III. ASYMPTOTICALLY ACHIEVABLE SUM-RATE

In this section, we study the performance of the system
modeled in Section II and derive a large system approximation
of the SR for a generic clustering scenario.

A. Sum-Rate

We are intersted in the ergodic SR under linear detection
at the receivers, i.e., the clusters of BSs, under different
cooperation levels or clustering. Since successive interference
cancellation at the receivers is usually not considered due to
implementation complexity, we assume that the cooperating
BSs within cluster i perform a joint linear minimum-mean-
square-error (MMSE) decoding on yi. We recall that the
linear MMSE receiver maximizes the signal-to-interference-
plus-noise ratio (SINR).

For simplicity, we assume that all receivers have sufficient
channel state information (CSI) to perform MMSE decoding.
More precisely, we assume that cluster i knows perfectly: (i)
The matrix Hi,i, or equivalently all channel vectors hi,i,k,l,
and (ii) the covariance matrix

(
HiH

H
i + 1

ρul
INi

)
. Assump-

tion (i) is rather natural as the BSs can estimate the hi,i,k,l
based on dedicated pilot sequences sent by the UTs (or on CSI
feedback from the UTs in case of time division duplexing).
The information (ii) can be obtained through approximating
the covariance matrix by the sample covariance matrix of the
received data. Note in particular that we do not demand that
Hi is completely known at cluster i, which would be rather
difficult to motivate.

Under these assumptions, the achievable per-receive antenna
normalized ergodic SR is given by

Rul
sum(ρul) =

1

N

B∑
i=1

Bi∑
k=1

Ki,k∑
l=1

E
[
log
(
1 + γul

i,k,l

)]
(7)

where the expectation E is taken with respect to the channels
and the UT positions, and γul

i,k,l is the SINR of UTi,k,l with

respect to the BSs of cluster i given by

γul
i,k,l = hHi,i,k,l

(
HiH

H
i − hi,i,k,lh

H
i,i,k,l +

1

ρul
INi

)−1

hi,i,k,l.

(8)

The goal of cell planning is to optimize Rsum with respect
to variable BS parameters (e.g., placement, number and orien-
tation of antennas). It takes into account statistical information
available at the BSs, like user locations and channel statistics.
This paper is particularly interested in the performance gains
obtained by controlling antenna tilting. We assume here that
the user positions are statistically described, i.e., xj,k,l is a
random variable with known probability distribution, referred
to as the UT distribution. This random UT placement poses a
problem for optimization methods relying on repeated random
sampling, as now both the channel and the (previously fixed)
UT positions need to be repeatedly sampled, thus increas-
ing computational complexity. An alternative to Monte-Carlo
(MC) simulations, based on deterministic equivalents from
random matrix theory, is proposed in the following subsection.

B. Asymptotic Analysis
In order to reduce the complexity of the optimization prob-

lem and to obtain tractable and insightful expressions of the
system performance, we propose a large scale approximation,
which allows us to state the SR expression in a compact form.
The large scale approximation is mathematically based on
the assumption that the various system dimensions (number
of users and number of antennas) all grow large with the
same order of magnitude. Therefore, we need some technical
assumptions in the following.

Denoting ci,z =
Ni,z
K , ci = Ni

K , and c = N
K , we assume

A 1. N1, . . . , NB ,K1, . . . ,KB →∞, such that for all i, z:

0 < lim sup ci,z ≤ lim sup ci ≤ lim sup c <∞.

We also denote N →∞ the convergence regime of A 1.

A 2. The variables xj,k,l are independent random variables
with finite second order moment, identically distributed across
j, and with distribution function Fj,k.

Adapting and applying the steps in [9] to (7) and (8) yields
a large scale approximation of the ergodic SR under MMSE
detection for the case of joint decoding within clusters.

Proposition 1 (Deterministic SR approximation). Assume A 1
and A 2, then

Rul
sum(ρul) −−−−→

N→∞
R̄ul

sum(ρul) (9)

where

R̄ul
sum(ρul) =

B∑
i=1

Bi∑
k=1

Ki,k

cK

∫
log
(
1 + γ̄ul

i (x)
)
dFi,k(x)

with

γ̄ul
i (x) =

Bi∑
k=1

ci,kfi,k(x)Ψi,k(ρul)



and Ψi,k, k = 1, . . . , Bi the unique non-negative solution to
the fixed-point equation

Ψi,k(ρul) =(
1

ρul
+

B∑
j=1

Bj∑
d=1

Kj,d

K

∫
fi,k(x)dFj,d(x)

1 +
∑Bi
k̃=1

ci,k̃fi,k̃(x)Ψi,k̃(ρul)

)−1

.

(10)

Sketch of proof: The start of the proof follows the outline
given in [9]. We introduce the symbol a.s.−→ for almost sure
convergence. Since the Fi,i,k,l are bounded in spectral norm
and ρul > 0, we have from [12, Lemmas F.4 and F.8]:

γul
i,k,l −

1

K
trFi,i,k,l

(
HiH

H
i +

1

ρul
INi

)−1
a.s.−→ 0.

Applying [12, Theorem 2.1] to the second term on the left-
hand side, we obtain

γul
i,k,l −

1

K

Bi∑
b=1

Ni,bfi,b(xj,k,l)Ψ
◦
b

a.s.−→ 0 (11)

with Ψ◦i,1(ρul), . . . ,Ψ
◦
i,Bi

(ρul) the unique non-negative solu-
tions to

Ψ◦i,b(ρul) =(
1

ρul
+

B∑
j̃=1

Bj̃∑
k̃=1

Kj̃,k̃∑
l̃=1

1
K fi,b(xj̃,k̃,l̃)

1 +
∑Bi
b̃=1

ci,b̃fi,b̃(xj̃,k̃,l̃)Ψ
◦
i,b̃

(ρul)

)−1

.

We then need to prove that Ψi,b(ρul) → Ψ◦i,b(ρul) for all i, b
and all ρul > 0. First, we need to show that Ψi,b(ρul) exists
and is a solution to the implicit equation (10). Then, writing
the difference, one can show by standard manipulations and
inequalities that

max
i,b

∣∣Ψi,b(ρul)−Ψ◦i,b(ρul)
∣∣

≤ C(ρul) max
i,b

∣∣Ψi,b(ρul)−Ψ◦i,b(ρul)
∣∣+ εN

for some sequence εN
a.s.−→ 0, as N → ∞, and C(ρul)

a constant (independent of N ) that converges to 0 as
ρul → 0. Therefore, taking ρul in the connected set B =
{x : C(x) < 1/2},

max
i,b

∣∣Ψi,b(ρul)−Ψ◦i,b(ρul)
∣∣ ≤ εN

1− C(ρul)
.

We then have on B, for all i, b,

Ψi,b(ρul)−Ψ◦i,b(ρul)
a.s.−→ 0.

Proving that both Ψ◦i,b and Ψ◦i,b are analytic functions (more
precisely, they are Stieltjes transforms of negatively supported
measures) on C \R+, we can then use the Vitali convergence
theorem and the identity theorem to show, that the above
convergence holds for all ρul > 0. From the convergence
mapping theorem, we obtain

γul
i,k,l − γ̄ul

i (xi,k,l)
a.s.−→ 0

Fig. 2. Sectors of a hexagonal cell

and finally

Rul
sum(ρul)− R̄ul

sum(ρul) −−−−→
N→∞

0

which completes the proof.
This result provides an immediate approximation formula

for the SR performance of large dimensional systems. Based
on our notations, it is particularly easy to use Proposition 1
to evaluate the performance of various clustering scenarios.
Adapting the indices of the maps between the BSs and their
associated clusters, will suffice.

Although this approximation is provably valid only for
large system dimensions, it happens to be accurate for small
system dimensions. We will provide evidence for this assertion
in Section IV. Moreover, implementing Proposition 1 as a
replacement for MC simulations of (7) is straightforward.
The fixed-point equation converges provably and usually fast,
even under simple fixed-point iteration, and the integrals can
be evaluated numerically with arbitrary precision. The major
advantage in terms of calculating the large scale approximation
over MC simulation approaches lies in its accuracy and speed,
as is evidenced in the next section.

IV. NUMERICAL APPLICATION

A. Simulation Model

We now use Proposition 1 to analyze the effect of antenna
tilting on the uplink SR with MMSE detection in a single
isolated sectorized cell scenario. The model consists of 3 BSs
with a height of 15 m, arranged to split one hexagonal cell into
three sectors as depicted in Figure 2. The distance between
the BSs and the cell center is set to 50 m. The azimuth angles
of each BS are fixed at 180◦ for BS1, 60◦ for BS2, and
−60◦ for BS3. All azimuth angles are given with respect to
the south direction and positive values in clockwise direction,
i.e., all BSs point to the cell center. Tilting angles are given
with respect to the ground and positive values mean upward
tilting. Each BS is equipped with 12 antennas and each sector
contains 8 uniformly distributed UTs. The antenna pattern
and PL model are given in Section II-B. For simplicity of
interpretation, we assume that all BSs use the same tilt angle.
The transmit power ρul is chosen such that the received SNR



0 20 40 60 80

0.5

1

1.5

Tilt BS 1,2&3 [deg]

N
or

m
al

iz
ed

Su
m

-R
at

e
[n

at
/s

ec
/H

z] Prop. 1 - FCoop
MC - FCoop
Prop. 1 - NCoop
MC - NCoop

Fig. 3. SR versus tilt angle, comparison between Proposition 1 and MC
simulation.

from a UT located at the cell center is 5 dB; assuming maximal
antenna gain and a PL exponent of α = 3.6.

In the following, we compare two different cases of cooper-
ation. We define the case of full cooperation (denoted FCoop)
where the cell consists of a single cluster formed by all 3 BSs.
The second case is that of no cooperation (denoted NCoop) in
which we assume 3 clusters constituted by a single BS each.

B. Optimal Tilting

We first set the PL exponent to α = 3.6 and compare
in Figure 3 the SR performance of NCoop against FCoop
for different tilting angles. We provide in this figure MC
simulations based on 90 000 random channel realizations (300
samples of 24 UTs, each evaluated for 300 channel samples),
as well as the theoretical results from Proposition 1.

We observe that, even for these small system dimensions,
the theoretical results based on Proposition 1 are extremely
accurate in comparison with the MC simulations. In terms of
system performance, we first see that tilting too low does not
allow for sufficient users to be served. Therefore, there is a
global trend, for both NCoop and FCoop, to tilt high in order
to reach sufficiently many UTs. For the NCoop case, we see
however that for some critical tilting angle, the interference
level starts to become large; quickly reducing the SR. For the
FCoop scenario, a non-straightforward behavior is observed.
Two local SR maxima appear in a region above the critical
tilt angle for NCoop. This is due to a trade-off in this area
between reaching more UTs and, at the same time, maintaining
a sufficiently low inter/intra-cluster interference level (even in
the FCoop scenario users share the same frequency resource,
hence interference is the main SR limiting factor). Also, for
overly high tilt angles, the closest UTs to the BSs experience
low antenna gain and the SR dramatically drops.

In Figures 4 and 5, we focus on the influence of the PL
on the optimal tilt angle and the corresponding SR. These
analyses are computationally intensive for MC methods, thus
no accuracy markers are shown. More explicitly, Figure 4
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shows the impact of different PL exponents on the optimal
tilting angle for both the NCoop and the FCoop scenarios.
For PL exponents less than 4.5, the optimal tilt depends on
the cooperation type. In the case of NCoop, the reduction
of both the SNR and the interference-to-noise ratio (INR)
compensate each other for varying PL, thus resulting in an
almost constant optimal tilt. In the FCoop case, one observes
an optimal tilt of approximately 67◦ for α > 3.6, being
consistent with the explanations above. However, a distinctive
discontinuity is present around α ' 3.6, where the optimal
tilt angle suddenly jumps to 76◦ for lower PL exponents.
Referring back to Figure 3, this corresponds to a change in the
local maximum constituting the global maximum. Looking at
the normalized SR as a function of PL, depicted in Figure 5.
We see first that, for the NCoop scenario, moderate PL levels
of up to 2.7 have a beneficial effect, as the interference is
attenuated for increasing PL, while higher PL exponents result
in too much power loss. We then notice that, for PL exponents
larger than 3.8, the SR gain from optimal tilting is equivalent
to the SR gain achieved by using FCoop instead of NCoop. We
finally observe, that in the FCoop scenario, non-optimal tilting,
resulting from selecting the wrong local maximum in Figure 3,
leads to a reduction in the achievable SR of about 10%; both
at very low and very high PL exponents. In summary we see
that the optimal tilt depends in a non-obvious manner on the
PL exponent and analyzing this behavior is more convenient
with our proposed tools than using an MC approach.

V. CONCLUSION

We have presented a large scale approximation of the
normalized ergodic SR under MMSE detection for small cell
MU-MIMO uplink systems with clusters of cooperating BSs,
assuming random user placement. We specifically studied the
impact of antenna tilting on the resulting ergodic SR. This
result was used to analyze and numerically optimize the per-
formance of a sectorized cell scenario, assuming cooperative
or non-cooperative BSs, as a function of antenna tilting. The
existence of locally optimal tilts, due to a basic SNR versus
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interference trade-off, were observed from which insightful
conclusions were drawn. We observed in particular that, for
high path loss scenarios, appropriate tilting can replace the SR
gain brought by BS cooperation. This suggests that 3D-BF is
of particular interest for small cell networks.

REFERENCES

[1] J. Hoydis, M. Kobayashi, and M. Debbah, “Green small-cell networks,”
IEEE Vehicular Technology Magazine, vol. 6, no. 1, pp. 37–43, 2011.

[2] A. Ghosh, J. G. Andrews, N. Mangalvedhe, R. Ratasuk, B. Mondal,
M. Cudak, E. Visotsky, T. A. Thomas, P. Xia, H. S. Jo, H. S. Dhillon,
and T. D. Novlan, “Heterogeneous cellular networks: From theory to
practice,” IEEE Communications Magazine, December 2012.

[3] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P.
Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts,
performance, and field trial results,” IEEE Communications Magazine,
vol. 49, no. 2, pp. 102–111, 2011.

[4] F. Gunnarsson, M. N. Johansson, A. Furuskar, M. Lundevall, A. Simons-
son, C. Tidestav, and M. Blomgren, “Downtilted base station antennas - a
simulation model proposal and impact on HSPA and LTE performance,”
in Proc. VTC 2008-Fall Vehicular Technology Conf. IEEE 68th, 2008,
pp. 1–5.

[5] L. Thiele, T. Wirth, M. Schellmann, Y. Hadisusanto, and V. Jung-
nickel, “MU-MIMO with localized downlink base station cooperation
and downtilted antennas,” in Proc. IEEE Int. Conf. Communications
Workshops ICC Workshops 2009, 2009, pp. 1–5.

[6] A.-L. Alcatel-Lucent Shanghai Bell, “3GPP TSG-RAN WG1 #65 R1-
111436: Channel modeling considerations for vertical beamforming,”
online, 2011, accessed 30-January-2012. [Online]. Available: http:
//www.3gpp.org/ftp/tsg ran/wg1 rl1/TSGR1 65/Docs/R1-111436.zip

[7] R. Couillet and M. Debbah, Random Matrix Methods for Wireless
Communications. Cambridge University Press, November 2011.

[8] W. Hachem, P. Loubaton, and J. Najim, “Deterministic equivalents
for certain functionals of large random matrices,” Annals of Applied
Probability, vol. 17, pp. 875–930, 2007.

[9] J. Hoydis, A. Müller, R. Couillet, and M. Debbah, “Analysis of multicell
cooperation with random user locatiosn via deterministic equivalents,”
in Workshop on Spatial Stochastic Models for Wireless Networks
(SpaSWiN), 2012.

[10] M. Shafi, M. Zhang, P. J. Smith, A. L. Moustakas, and A. F. Molisch,
“The impact of elevation angle on MIMO capacity,” in Proc. IEEE Int.
Conf. Communications ICC ’06, vol. 9, 2006, pp. 4155–4160.

[11] N. Seifi, M. Coldrey, and M. Viberg, “Throughput optimization in
multicell MISO networks via coordinated user-specific tilting,” submitted
to IEEE Communication Letter, Jan. 2012.

[12] S. Wagner, “MU-MIMO transmission and reception techniques for the
next generation of cellular wirelsss standards (LTE-A),” Ph.D. disserta-
tion, EURECOM, 2229, Route des Cretes, F-06560 Sophia-Antipolis,
2011.


