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Random matrix theory deals with the study of matrix-valued random variables. It is conven-
tionally considered that random matrix theory dates back to the work of Wishart in 1928 [1] on
the properties of matrices of the type XXH with X ∈ CN×n a random matrix with independent
Gaussian entries with zero mean and equal variance. Wishart and his followers were primarily
interested in the joint distribution of the entries of such matrices and then on their eigenvalue
distribution. It then dawned to mathematicians that, as the matrix dimensions N and n grow
large with ratio converging to a positive value, its eigenvalue distribution converges weakly and
almost surely to some deterministic distribution, which is somewhat similar to a law of large
numbers for random matrices. This triggered a growing interest in particular among the signal
processing community, as it is usually difficult to deal efficiently with large dimensional data
because of the so-called curse of dimensionality. Other fields of research have been interested
into large dimensional random matrices, among which the field of wireless communications,
as the eigenvalue distribution of some random matrices is often a sufficient statistics for the
performance evaluation of multi-dimensional wireless communication systems.

In the following, we introduce the main notions, results and details of classical as well as
recent techniques to deal with large random matrices.

0.1 Probability notations

In this chapter, an event will be the element ω of some set Ω. Based on Ω, we will consider the
probability space (Ω,F, P ), with F some σ-field on Ω and P a probability measure on F. If X
is a random variable on Ω, we will denote

µX(A) , P ({ω,X(ω) ∈ A})

the probability distribution of X.

When µX has a probability density function (p.d.f.), it will be denoted PX , i.e., for X with
image in R with Lebesgue measure and for all measurable f ,∫

f(x)PX(x)dx ,
∫
f(x)µX(dx).
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To differentiate between multidimensional random variables and scalar random variables, we
may denote pX(x) , PX(x), in lowercase character, if X is scalar. The (cumulative) distribution
function (d.f.) of a real random variable will often be denoted by the letter F , e.g., for x ∈ R,

F (x) , pX((−∞, x])

denotes the d.f. of X.

We further denote, for X, Y two random variables with density, and for y such that PY (y) >
0,

PX|Y (x, y) ,
PX,Y (x, y)

PY (y)

the conditional probability density of X given Y .

0.2 Spectral distribution of random matrices

We start this section with a formal definition of a random matrix and the introduction of
necessary notations.

Definition 0.1. An N×n matrix X is said to be a random matrix if it is a matrix-valued random
variable on some probability space (Ω,F, P ) with entries in some measurable space (R,G), where
F is a σ-field on Ω with probability measure P and G is a σ-field on R. As per conventional
notations, we denote X(ω) the realization of the variable X at point ω ∈ Ω.

We shall in particular often consider the marginal probability distribution function of the
eigenvalues of random Hermitian matrices X. Unless otherwise stated, the d.f. of the real
eigenvalues of X will be denoted FX.

We now discuss the properties of the so-called Wishart matrices and some known results on
unitarily invariant random matrices. These properties are useful to the characterisation e.g. of
Neyman-Pearson tests for signal sensing procedures [2], [3].

0.2.1 Wishart matrices

We start with the definition of a Wishart matrix.

Definition 0.2. The N ×N random matrix XXH is a (real or complex) central Wishart matrix
with n degrees of freedom and covariance matrix R if the columns of the N × n matrix X are
zero mean independent (real or complex) Gaussian vectors with covariance matrix R. This is
denoted

XXH ∼WN (n,R).

Defining the Gram matrix associated to any matrix X as being the matrix XXH, XXH ∼
WN (n,R) is by definition the Gram matrix of a matrix with Gaussian i.i.d. columns with zero
mean and variance R. When R = IN , it is usual to refer to X as a standard Gaussian matrix.

One interest of Wishart matrices in signal processing applications lies in the following remark.
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Remark 0.1. Let x1, . . . ,xn ∈ CN be n independent samples of the random process x1 '
CN(0,R). Then, denoting X = [x1, . . . ,xn],

n∑
i=1

xix
H
i = XXH.

For this reason, the random matrix Rn = 1
nXXH is often referred to as an (empirical) sample

covariance matrix associated to the random process x1. This is to be contrasted with the popu-
lation covariance matrix E[x1x

H
1 ] = R. Of particular importance is the case when R = IN . In

this situation, XXH, sometimes referred to as a zero (or null) Wishart matrix, is proportional
to the sample covariance matrix of a white Gaussian process. The zero (or null) terminology is
due to the signal processing problem of hypothesis testing, in which one has to decide whether
the observed X emerges from a white noise process or from an information plus noise process.

Wishart provides us with the joint probability density function of the entries of Wishart
matrices, as follows

Theorem 0.1 ([1]). The p.d.f. of the complex Wishart matrix XXH 'WN (n,R), X ∈ CN×n,
for n ≥ N is

PXXH(B) =
πN(N−1)/2

det Rn
∏N
i=1(n− i)!

e−tr(R−1B) det Bn−N . (1)

Note in particular that for N = 1, this is a conventional chi-square distribution with n
degrees of freedom.

For null Wishart matrices, notice that PXXH(B) = PXXH(UBUH), for any unitary N × N
matrix U.1 Otherwise stated, the eigenvectors of the random variable XXH are uniformly
distributed over the space U(N) of unitary N × N matrices. As such, the eigenvectors do
not carry relevant information, and PXXH(B) is only a function of the eigenvalues of B. This
property will turn out essential to the derivation of further properties of Wishart matrices.

The joint p.d.f. of the eigenvalues of zero Wishart matrices were studied simultaneously in
1939 by different authors [4], [5], [6], [7]. The two main results are summarized in the following,

Theorem 0.2. Let the entries of X ∈ CN×n, n > N , be i.i.d. Gaussian with zero mean and unit
variance. The joint p.d.f. P(λi) of the ordered eigenvalues λ1 ≥ . . . ≥ λN of the zero Wishart

matrix XXH, is given by

P(λi)(λ1, . . . , λN ) = e−
∑N
i=1 λi

N∏
i=1

λn−Ni

(n− i)!(N − i)!
∆(Λ)2,

where, for a Hermitian nonnegative N ×N matrix Λ,2 ∆(Λ) denotes the Vandermonde deter-
minant of its eigenvalues λ1, . . . , λN ,

∆(Λ) ,
∏

1≤i<j≤N
(λj − λi).

1we remind that a unitary matrix U ∈ CN×N is such that UUH = UHU = IN .
2all along this work, we will respect the convention that x (be it a scalar or an Hermitian matrix) is nonnegative

if x ≥ 0, while x is positive if x > 0.



4

The marginal p.d.f. pλ (, Pλ) of the unordered eigenvalues is

pλ(λ) =
1

M

N−1∑
k=0

k!

(k + n−N)!
[Ln−Nk (λ)]2λn−Ne−λ,

where Lkn(λ) are the Laguerre polynomials defined as

Lkn(λ) =
eλ

k!λn
dk

dλk
(e−λλn+k).

The generalized case of (non-zero) central Wishart matrices is more involved since it requires
advanced tools of multivariate analysis, such as the fundamental Harish-Chandra integral [8].
We will mention the result of Harish-Chandra, which is at the core of the results in signal sensing
presented later in Section 0.5.1.

Theorem 0.3. For non singular N × N positive definite Hermitian matrices A and B of
respective eigenvalues a1, . . . , aN and b1, . . . , bN , such that for all i 6= j, ai 6= aj and bi 6= bj, we
have ∫

U∈U(N)
eκtr(AUBUH)dU =

(
N−1∏
i=1

i!

)
κ

1
2
N(N−1) det

(
{e−bjai}1≤i,j≤N

)
∆(A)∆(B)

where, for any bivariate function f , {f(i, j)}1≤i,j≤N denotes the N × N matrix of (i, j) entry
f(i, j), and U(N) is the space of N ×N unitary matrices.

This result enables the calculus of the marginal joint-eigenvalue distribution of (non-zero)
central Wishart matrices [9], given as follows

Theorem 0.4. Let the columns of X ∈ CN×n be i.i.d. zero mean Gaussian with positive definite
covariance R. The joint p.d.f. P(λi) of the ordered positive eigenvalues λ1 ≥ . . . ≥ λN of the

central Wishart matrix XXH, reads

P(λi)(λ1, . . . , λN ) =
det({e−r

−1
j λi}1≤i,j≤N )

∆(R−1)
∆(Λ)

N∏
j=1

λn−Nj

rnj (n− j)!

where r1 ≥ . . . ≥ rN denote the ordered eigenvalues of R and Λ = diag(λ1, . . . , λN ).

This is obtained from the joint distribution of Wishart matrices XXH which, up to a variables
change, leads to the joint distribution of the couples (U,Λ) of unitary matrices and diagonal
eigenvalue matrices such that XXH = UΛUH. In performing this variable change, the Jacobian
∆(Λ)2 arises. Integrating over U to obtain the marginal distribution of Λ, we recognize the
Harish-Chandra equality which finally leads to the result.

These results are of practical interest in several domains of research which have to deals with
vectorial noise observations whose sample covariance matrix is given by such a matrix XXH.
In the specific case of wireless communications, these expressions can be used to determine for
instance the ergodic mutual information of a multi-antenna channel, modelled by a matrix H ∈
CN×n with independent and identically distributed (i.i.d.) Gaussian entries or with correlated
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columns. In this case, we indeed have that the ergodic mutual information I(σ2) of a multi-
antenna channel with additive Gaussian noise σ2 reads [10]

I(σ2) = E

[
log det

(
IN +

1

σ2
HHH

)]
,

where σ−2 denotes the signal-to-noise ratio (SNR) at the receiver and the expectation is taken
over the realizations of the random channel H, varying according to the (correlated or uncor-
related) Gaussian distribution. Denoting HHH = UΛUH the spectral decomposition of HHH,
this can be rewritten

I(σ2) = E

[
log2 det

(
IN +

1

σ2
Λ

)]
= E

[
N∑
i=1

log2

(
1 +

λi
σ2

)]

=

∫
· · ·
∫ N∑

i=1

log2

(
1 +

λi
σ2

)
dP(λi)(λ1, . . . , λN ),

which can be evaluated from the theorem above.

These are the tools we need for the study of Wishart matrices. As it appears, the above
properties hold due to the rotational invariance of Gaussian matrices. For more involved random
matrix models, e.g., when the entries of the random matrices under study are no longer Gaussian,
the study of the eigenvalue distribution is much more involved, if not unfeasible.

However, it turns out that, as the matrix dimensions grow large, nice properties arise that can
be studied much more efficiently than when the matrix sizes are kept fixed. A short introduction
to these large matrix considerations is described hereafter.

0.2.2 Limiting spectral distribution

Consider an N×N (non-necessarily random) Hermitian matrix XN . Define its empirical spectral
distribution (e.s.d.) FXN to be the distribution function of the eigenvalues of XN , i.e., for x ∈ R,

FXN (x) =
1

N

N∑
j=1

1λj≤x(x),

where λ1, . . . , λN are the eigenvalues of XN .3

The relevant aspect of large N × N Hermitian matrices XN is that their (random) e.s.d.
FXN often converges, with N →∞, towards a non-random distribution F . This function F , if
it exists, will be called the limit spectral distribution (l.s.d.) of XN . Weak convergence [12] of
FXN to F , i.e., for all x where F is continuous, FXN (x)−F (x)→ 0, is often sufficient to obtain
relevant results; this is denoted

FXN ⇒ F.

In most cases though, the weak convergence of FXN to F will only be true on a set of matrices
XN = XN (ω) of measure one. This will be mentioned with the phrase FXN ⇒ F almost surely.

3the Hermitian property is fundamental to ensure that all eigenvalues of XN belong to the real line. However,
the extension of the e.s.d. to non-Hermitian matrices is sometimes requires; for a definition, see (1.2.2) of [11].
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Figure 1: Marc̆enko-Pastur law for different limit ratios c = limN/n.

The Marc̆enko-Pastur law

In signal processing, one is often interested in sample covariance matrices or even more general
matrices such as i.i.d. matrices with left and right correlation, or i.i.d. matrices with a variance
profile. One of the best known result with a large range of applications in signal processing is the
convergence of the e.s.d. of the Gram matrix of a random matrix with i.i.d. entries of zero mean
and normalized variance (not necessarily a Wishart matrix). This result is due to Marc̆enko and
Pastur [13], so that the limiting e.s.d. of the Gram matrix is called the Marc̆enko-Pastur law.
The result unfolds as follows.

Theorem 0.5. Consider a matrix X ∈ CN×n with i.i.d. entries
(

1√
n
X

(N)
ij

)
such that X

(N)
11

has zero-mean and variance 1. As n,N → ∞ with N
n → c ∈ (0,∞), the e.s.d. of Rn = XXH

converges almost surely to a nonrandom distribution function Fc with density fc given by

fc(x) = (1− c−1)+δ(x) +
1

2πcx

√
(x− a)+(b− x)+, (2)

where a = (1−
√
c)2, b = (1 +

√
c)2 and δ(x) = 1{0}(x).

The d.f. Fc is named the Marc̆enko-Pastur law with limiting ratio c. This is depicted in
Figure 1 for different values of the limiting ratio c. Notice in particular that, when c tends to be
small and approaches zero, the Marc̆enko-Pastur law reduces to a single mass in 1, as the law
of large numbers in classical probability theory requires.

Several approaches can be used to derive the Marc̆enko-Pastur law. However, the original
technique proposed by Marc̆enko and Pastur is based on a fundamental tool, the Stieltjes trans-
form, which will be constantly used in this document. In the following we present the Stieltjes
transform, along with a few important lemmas, before we introduce several applications based
on the Stieltjes transform method.
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The Stieltjes transform and associated lemmas

Definition 0.3. Let F be a real-valued bounded measurable function over R. Then the Stieltjes
transform mF (z),4 for z ∈ Supp(F )c, the complex space complementary to the support of F ,5 is
defined as

mF (z) ,
∫ ∞
−∞

1

λ− z
dF (λ). (3)

For all F that admit a Stieltjes transform, the inverse transformation exists and formulates
as follows,

Theorem 0.6. If x is a continuity points of F , then

F (x) =
1

π
lim
y→0+

∫ x

−∞
= [mF (x+ iy)] dx. (4)

In practice here, F will be a distribution function. Therefore, there exists an intimate link
between distribution functions and their Stieltjes transforms. More precisely, if F1 and F2 are
two distribution functions (therefore right-continuous by definition, see e.g., Section 14 of [14])
that have the same Stieltjes transform, then F1 and F2 coincide everywhere and the converse is
true. As a consequence, mF uniquely determines F and vice-versa. It will turn out that, while
working on the distribution functions of the empirical eigenvalues of large random matrices
is often a tedious task, the approach via Stieltjes transforms greatly simplifies the study. The
initial intuition behind the Stieltjes transform approach for random matrices lies in the following
remark: for an Hermitian matrix X ∈ CN×N ,

mFX(z) =

∫
1

λ− z
dFX(λ)

=
1

N
tr (Λ− zIN )−1

=
1

N
tr (X− zIN )−1 ,

in which we denoted Λ the diagonal matrix of eigenvalues of X. Working with the Stieltjes
transform of FX therefore boils down to working with the matrix (X − zIN )−1, and more
specifically with the sum of its diagonal entries. From matrix inversion lemmas and several
fundamental matrix identities, it is then rather simple to derive limits of traces 1

N tr (X− zIN )−1,
as N grows large, hence the Stieltjes transform of the weak limit of FX. For notational simplicity,
we may denote mX , mFX the Stieltjes transform of the e.s.d. of the Hermitian matrix X, and
call mX the Stieltjes transform of X.

An identity of particular interest is the relation between the Stieltjes transform of XXH and
XHX, for X ∈ CN×n. Note that both matrices are Hermitian, and actually nonnegative definite,
so that the Stieltjes transform of both is well defined.

Lemma 0.1. For z ∈ C \ R+, we have

n

N
m
FXHX(z) = m

FXXH (z) +
N − n
N

1

z
.

4we borrow here the notation m to a large number of contributions from Bai, Silverstein et al. In other works,
the notation s or S for the Stieltjes transform is used.

5we recall that the support Supp(F ) of a real function F is the set {x ∈ R, |F (x)| > 0}.
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On the wireless communication side, it turns out that the Stieltjes transform is directly
connected to the expression of the mutual information, through the so-called Shannon transform,
initially coined by Tulino and Verdù, see Section 2.3.3 of [15].

Definition 0.4. Let F be a probability distribution defined on R+. The Shannon-transform VF
of F is defined, for x ∈ R+, as

VF (x) ,
∫ ∞

0
log(1 + xλ)dF (λ). (5)

The Shannon-transform of F is related to its Stieltjes transform mF through the expression

VF (x) =

∫ ∞
1
x

(
1

t
−mF (−t)

)
dt. (6)

This last relation is fundamental to derive a link between the l.s.d. of a random matrix and
the mutual information of a multi-dimensional channel, whose model is based on this random
matrix.

We complete this section by the introduction of fundamental lemmas, required to derive the
l.s.d. of random matrix models with independent entries, among which the Marc̆enko-Pastur
law, and that will be necessary to the derivation of deterministic equivalents. These are recalled
briefly below.

The first lemma is called the trace lemma, introduced in [16] (and extended in [17] under
the form of a central limit theorem), that we formulate in the following theorem,

Theorem 0.7. Let A1,A2, . . ., AN ∈ CN×N , be a series of matrices with uniformly bounded
spectral norm. Let x1,x2, . . . be random vectors of i.i.d. entries such that xN ∈ CN has zero
mean, variance 1/N and finite eighth order moment, independent of AN . Then

xH
NANxN −

1

N
trAN

a.s.−→ 0, (7)

as N →∞.

Many versions of this result exist in the literature, that can be adapted to different application
needs. We mention in particular that,

• in [18], it is shown that, when restricting the entries of xN to be bounded by logN , the
convergence holds true without the need of the existence of an eighth order moment. This
observation will be needed, along with the so-called truncation, centralization and rescaling
steps, to alleviate all moment assumptions on xN , when deriving deterministic equivalents
later in this chapter.

• in [19], we show that the above result also holds true when AN is not uniformly bounded
in spectral norm but is such that its largest eigenvalue is almost surely bounded for all
large N ; the bound in that case does not need to be uniform over the probability space
generating the random AN matrices.

The second important ingredient is the rank-1 perturbation lemma, given below



0.2. SPECTRAL DISTRIBUTION OF RANDOM MATRICES 9

Theorem 0.8. (i) Let z ∈ C \ R, A ∈ CN×N , B ∈ CN×N with B Hermitian, and v ∈ CN .
Then ∣∣∣∣ 1

N
trA

(
(B− zIN )−1 − (B + vvH − zIN )−1

)∣∣∣∣ ≤ ‖A‖
N |=[z]|

,

with ‖A‖ the spectral norm of A.

(ii) Moreover, if B is nonnegative definite, for z ∈ R−,∣∣∣∣ 1

N
trA

(
(B− zIN )−1 − (B + vvH − zIN )−1

)∣∣∣∣ ≤ ‖A‖N |z|
.

Again, generalizations of the above result can be found e.g., in [19], where we prove that

1

N
trAB−1 − 1

N
trA(B + vvH)−1 a.s.−→ 0,

as N →∞, whenever there exists ε > 0 such that the smallest eigenvalue of B is almost surely
greater than ε for all large N (the existence of B−1 and (B + vvH)−1 being almost sure in such
a case).

Based on the above ingredients and classical results from probability theory, it is possible
to prove the almost sure weak convergence of the e.s.d. of XXH, where X ∈ CN×n has i.i.d.
entries of zero mean and variance 1/n, to the Marc̆enko-Pastur law, as well as the convergence of
the e.s.d. of more involved random matrix models based on matrices with independent entries.
In particular, we will be interested in Section 0.5.2 in limiting results on the e.s.d. of sample
covariance matrices.

l.s.d. of sample covariance matrices

The limiting spectral distribution of the sample covariance matrix unfolds from the following
result, originally provided by Bai and Silverstein in [18], and further extended in e.g., [11],

Theorem 0.9. Consider the matrix BN = AN + XH
NTNXN ∈ Cn×n, where XN =

(
1√
n
XN
ij

)
∈

CN×n with entries XN
ij independent with zero mean, variance 1 and finite order 2 + ε moment

for some ε > 0 (ε is independent of N, i, j), the e.s.d. FTN of TN = diag(tN1 , . . . , t
N
N ) ∈ RN×N

converges weakly and almost surely to F T , AN is n×n Hermitian whose e.s.d. converges weakly
and almost surely to FA, N/n tends to c, with 0 < c <∞ as n, N grow large. Then, the e.s.d.
FBN of BN converges weakly and almost surely to FB such that, for z ∈ C+, mFB (z) satisfies

mFB (z) = mFA

(
z − c

∫
t

1 + tmFB (z)
dF T (t)

)
. (8)

The solution of the implicit equation (8) in the dummy variable mFB (z) is unique on the set
{z ∈ C+,mFB (z) ∈ C+}. Moreover, if the XN has identically distributed entries, then the result
holds without requiring that a moment of order 2 + ε exists.

In the following, using the tools from the previous sections, we give a sketch of the proof of
Theorem 0.9.
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Proof. The fundamental idea to infer the final formula of Theorem 0.9 is to first guess the form
it should take. For this, write

mFBN (z) ,
1

n
tr(AN + XH

NTNXN − zIN )−1

and take DN ∈ CN×N to be some deterministic matrix such that we would like

mFBN (z)−mN (z)
a.s.−→ 0

with

mN (z) ,
1

n
tr(AN + DN − zIN )−1

as N,n→∞ with N/n→ c. We then have, from the identity A−1 −B−1 = A−1(B−A)B−1,

mFBN (z)−mN (z) =
1

n
tr
[
(BN − zIN )−1(DN −XH

NTNXN )(AN + DN − zIN )−1
]
.

Taking DN = aNIN , and writing

XH
NTNXN =

N∑
k=1

tNk xkx
H
k

with xk the kth column of XH
N , we further have

mFBN (z)−mN (z) =
aN
n

tr
[
(BN − zIN )−1(AN + DN − zIN )−1

]
− 1

n

N∑
k=1

tNk xH
k (AN + DN − zIN )−1(BN − zIN )−1xk.

Using the matrix inversion identity

(A + vvH − zIN )−1v =
1

1 + vH(A− zIN )−1v
(A− zIN )−1v,

each term in the sum of the right-hand side can further be expressed as

tNk xH
k (AN + DN − zIN )−1(BN − zIN )−1xk =

tNk xH
k (AN + DN − zIN )−1(B(k) − zIN )−1xk

1 + tNk xH
k (B(k) − zIN )−1xk

where B(k) = BN − tNk xkx
H
k and where now xk and (AN + DN − zIN )−1(B(k) − zIN )−1 are

independent. But then, using the trace lemma, Theorem 0.7, we have that

xH
k (AN + DN − zIN )−1(B(k) − zIN )−1xk −

1

n
tr(AN + DN − zIN )−1(B(k) − zIN )−1 a.s.−→ 0.

Replacing the quadratic form by the trace in the Stieltjes transform difference, we then have
for all large N ,

mFBN (z)−mN (z) ' aN
n

tr
[
(BN − zIN )−1(AN + DN − zIN )−1

]
− 1

n

N∑
k=1

tNk
1
ntr(AN + DN − zIN )−1(B(k) − zIN )−1

1 + tNk
1
ntr(B(k) − zIN )−1

.
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But then, from the rank-1 perturbation lemma, Theorem 0.8, this is further approximated, for
all large N by

mFBN (z)−mN (z) ' aN
n

tr
[
(BN − zIN )−1(AN + DN − zIN )−1

]
− 1

n

N∑
k=1

tNk
1
ntr(AN + DN − zIN )−1(BN − zIN )−1

1 + tNk
1
ntr(BN − zIN )−1

where we recognize in the right-hand side the Stieltjes transform mFBN (z) = 1
ntr(BN − zIN )−1.

Taking

aN =
1

n

N∑
k=1

tNk
1

1 + tNk mFBN (z)
' c

∫
t

1 + tmFBN (z)
dF T (t),

it is clear that the difference mFBN (z) − mN (z) becomes increasingly small for large N and
therefore mFBN (z) is asymptotically close to

1

n
tr

(
AN + c

∫
tdF T (t)

1 + tmFBN (z)
IN − zIN

)−1

which is exactly

mFAN

(
z − c

∫
tdF T (t)

1 + tmFBN (z)

)
.

Hence the result.

The sample covariance matrix model corresponds to the particular case where AN = 0. In
that case, (8) becomes

mF (z) = −
(
z − c

∫
t

1 + tmF (z)
dF T (t)

)−1

, (9)

where we denoted F , FB in this special case. This special notation will often be used to

differentiate the l.s.d. F of the matrix T
1
2
NXNXH

NT
1
2
N from the l.s.d. F of the reversed Gram

matrix XH
NTNXN . Remark indeed from Lemma 0.1 that the Stieltjes transform mF of the l.s.d.

F of XH
NTNXN is linked to the Stieltjes transform mF of the l.s.d. F of T

1
2
NXNXH

NT
1
2
N through

mF (z) = cmF (z) + (c− 1)
1

z
(10)

and then we also have access to a characterization of F , which is exactly the asymptotic eigen-
value distribution of the sample covariance matrix model, when the denormalized columns√
nx1, . . . ,

√
nxn of

√
nXN form a sequence of independent vectors with zero mean and co-

variance matrix nE[x1x
H
1 ] = TN .

Secondly, in addition to the uniqueness of the pair (z,mF (z)) in the set {z ∈ C+,mF (z) ∈
C+} solution of (9), an inverse formula for the Stieltjes transform can be written in closed-form,
i.e., we can define a function zF (m) on {m ∈ C+, zF (m) ∈ C+}, such that

zF (m) = − 1

m
+ c

∫
t

1 + tm
dF T (t). (11)

This will turn out to be extremely useful to characterize the spectrum of F . More on this
topic is discussed in Section 0.3.
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0.3 Spectral analysis

In this section, we summarize some important results regarding (i) the characterization of the
support of the eigenvalues of a sample covariance matrix and (ii) the position of the individual
eigenvalues of a sample covariance matrix. The point (i) is obviously a must-have on a pure
mathematical viewpoint but is also fundamental to the study of estimators based on large dimen-
sional random matrices. Typically, we will provide in Section 0.4 and in Section 0.5.2 estimators
of functionals of the eigenvalues of a population covariance matrix based on the observation of a
sample covariance matrix. We will in particular investigate large dimensional sample covariance
matrix models with population covariance matrix composed of a few eigenvalues with large mul-
tiplicities. The validity of these estimators relies importantly on the fact that the support of the
l.s.d. of the sample covariance matrix is formed of disjoint so-called clusters, each cluster being
associated to one of the few eigenvalues of the population covariance matrix. Characterizing the
limiting support is therefore paramount to the study of the estimator performance. The point
(ii) is even more important for the estimators described above as knowing the position of the
individual eigenvalues allows one to derive such estimators. This second point is also fundamen-
tal to the derivation of hypothesis tests based on large dimensional matrix analysis, that will be
introduced in Section 0.5.1. What we will show in particular is that, under mild assumptions
on the random matrix model, all eigenvalues are asymptotically contained within the limiting
support. Also, when the limiting support is divided into disjoint clusters, the number of sample
eigenvalues in each cluster corresponds exactly to the multiplicity of the population eigenvalue
attached to this cluster. For signal sensing, this is fundamental as the observation of a sample
eigenvalue outside the expected limiting support of the pure noise hypothesis (called hypothesis
H0) suggests that a signal is present in the observed data.

We start with the point (ii).

0.3.1 Exact eigenvalue separation

The results of interest here are due to Bai and Silverstein and are summarized in the following
theorems.

Theorem 0.10 ([16]). Let XN =
(

1√
n
XN
ij

)
∈ CN×n have i.i.d. entries, such that XN

11 has zero

mean, variance 1 and finite fourth order moment. Let TN ∈ CN×N be nonrandom, whose e.s.d.

FTN converge weakly to H. From Theorem 0.9, the e.s.d. of BN = T
1
2
NXNXH

NT
1
2
N ∈ CN×N

converges weakly and almost surely towards some distribution function F , as N , n go to infinity
with ratio cN = N/n → c, 0 < c < ∞. Similarly, the e.s.d. of BN = XH

NTNXN ∈ Cn×n
converges towards F given by

F (x) = cF (x) + (1− c)1[0,∞)(x).

Denote FN the distribution of Stieltjes transform mFN (z), solution, for z ∈ C+, of the following
equation in m

m = −
(
z − N

n

∫
τ

1 + τm
dFTN (τ)

)−1

,

and define FN the d.f. such that

FN (x) =
N

n
FN (x) +

(
1− N

n

)
1[0,∞)(x).
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Let N0 ∈ N, and choose an interval [a, b], a > 0, outside the union of the supports of F and FN
for all N ≥ N0. For ω ∈ Ω, the random space generating the series X1,X2, . . ., denote LN (ω)
the set of eigenvalues of BN (ω). Then,

P (ω,LN (ω) ∩ [a, b] 6= ∅, i.o.) = 0.

This means concretely that, given a segment [a, b] outside the union of the supports of F
and FN0 , FN0+1, . . ., for all series B1(ω),B2(ω), . . ., with ω in some set of probability one, there
exists M(ω) such that, for all N ≥M(ω), there will be no eigenvalue of BN (ω) in [a, b].

As an immediate corollary of Theorems 0.5 and 0.10, we have the following results on the
extreme eigenvalues of BN , with TN = IN .

Corollary 0.1. Let BN ∈ CN×N be defined as BN = XNXH
N , with XN ∈ CN×n with i.i.d.

entries of zero mean, variance 1/n and finite fourth order moment. Then, denoting λNmin and
λNmax the smallest and largest eigenvalues of BN , respectively, we have

λNmin
a.s.−→ (1−

√
c)2

λNmax
a.s.−→ (1 +

√
c)2

as N,n→∞ with N/n→ c.

This result further extends to the case when BN = XNTNXH
N , with TN diagonal with ones

on the diagonal but for a few entries different from one. This model, often referred to as spiked
model lets some eigenvalues escape the limiting support of BN (which is still the support of
the Marc̆enko-Pastur law). Note that this is not inconsistent with Theorem 0.10 since here, for
all finite N0, the distribution functions FN0 , FN0+1, . . . may all have a non-zero mass outside
the support of the Marc̆enko-Pastur law. The segments [a, b] where no eigenvalues are found
asymptotically must be away from these potential masses. The theorem, due to Baik, is given
precisely as follows

Theorem 0.11 ([20]). Let B̄N = T̄
1
2
NXNXH

N T̄
1
2
N , where XN ∈ CN×n has i.i.d. entries of zero

mean and variance 1/n, and T̄N ∈ RN×N is diagonal given by

T̄N = diag(α1, . . . , α1︸ ︷︷ ︸
k1

, . . . , αM , . . . , αM︸ ︷︷ ︸
kM

, 1, . . . , 1︸ ︷︷ ︸
N−∑M

i=1 ki

)

with α1 > . . . > αM > 0 for some positive integer M . We denote here c = limN N/n. Call
M0 = #{j|αj > 1 +

√
c}. For c < 1, take also M1 to be such that M −M1 = #{j|αj < 1−

√
c}.

Denote additionally λ1, . . . , λN the eigenvalues of B̄N , ordered as λ1 ≥ . . . ≥ λN . We then have

• for 1 ≤ j ≤M0, 1 ≤ i ≤ kj,

λk1+...+kj−1+i
a.s.−→ αj +

cαj
αj − 1

,

• for the other eigenvalues, we must discriminate upon c,

– if c < 1,
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∗ for M1 + 1 ≤ j ≤M , 1 ≤ i ≤ kj,

λN−kj−...−kM+i
a.s.−→ αj +

cαj
αj − 1

,

∗ for the indexes of eigenvalues of T̄N inside [1−
√
c, 1 +

√
c],

λk1+...+kM0
+1

a.s.−→ (1 +
√
c)2,

λN−kM1+1−...−kM
a.s.−→ (1−

√
c)2,

– if c > 1,

λn
a.s.−→ (1−

√
c)2,

λn+1 = . . . = λN = 0,

– if c = 1,

λmin(n,N)
a.s.−→ 0.

The important part of this result for us is that all αj such that αj > 1 +
√
c produces

an eigenvalue of BN outside the support of the Marc̆enko-Pastur, found asymptotically at the
position αj +

cαj
αj−1 .

Now Theorem 0.10 and Theorem 0.11 ensure that, for a given N0, no eigenvalue of BN is
found outside the support of FN0 , FN0+1, . . . for all large N , but do not say where the eigenvalues
of BN are approximately positioned. The answer to this question is provided by Bai and
Silverstein in [21] in which the exact separation properties of the l.s.d. of such matrices BN is
discussed.

Theorem 0.12 ([21]). Assume BN is as in Theorem 0.10 with TN nonnegative definite and
FTN converging weakly to the distribution function H, and cN = N/n converging to c. Consider
also 0 < a < b < ∞ such that [a, b] lies outside the support of F , the l.s.d. of BN . Denote
additionally λk and τk the kth eigenvalues of BN and TN in decreasing order, respectively. Then
we have

1. If c(1 − H(0)) > 1, then the smallest eigenvalue x0 of the support of F is positive and
λN → x0 almost surely, as N →∞.

2. If c(1−H(0)) ≤ 1, or c(1−H(0)) > 1 but [a, b] is not contained in [0, x0], then

P (ω, λiN > b, λiN+1 < a) = 1,

for all N large, where iN is the unique integer such that

τiN > −1/mF (b),

τiN+1 < −1/mF (a).

Theorem 0.12 states in particular that, when the limiting spectrum can be divided in dis-
joint clusters, then the index of the sample eigenvalue for which a jump from one cluster (right
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Figure 2: Histogram of the eigenvalues of BN = T
1
2
NXNXH

NT
1
2
N , N = 300, n = 3000, with TN

diagonal composed of three evenly weighted masses in (i) 1, 3 and 7 on top, (ii) 1, 3 and 4 at
bottom.
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to b) to a subsequent cluster (left to a) arises corresponds exactly to the index of the popu-
lation eigenvalue where a jump arises in the population eigenvalue spectrum (from −1/mF (b)
to −1/mF (a)). Therefore, the sample eigenvalues distribute as one would expect between the
consecutive clusters. This result will be used in Section 0.4 and Section 0.5.2 to find which sam-
ple eigenvalues are present in which cluster. This is necessary because we will perform complex
integration on contours surrounding specific clusters and that residue calculus will demand that
we know exactly what eigenvalues are found inside these contours.

Nonetheless, this still does not exactly answer the question of the exact characterization of
the limiting support, which we treat in the following.

0.3.2 Support of l.s.d.

Remember from the inverse Stieltjes transform formula (4) that it is possible to determine the
support of the l.s.d. F of a random matrix once we know its limiting Stieltjes transform mF (z)
for all z ∈ C+. Thanks to Theorem 0.9, we know in particular that we can determine the
support of the l.s.d. of a sample covariance matrix. Nonetheless, (4) features a limit for the
imaginary part y of the argument z = x + iy of mF (z) going to zero, which has not been
characterized to this point (even its existence everywhere is not ensured). Choi and Silverstein
proved in [22] that this limit does exist for the case of sample covariance matrices and goes even
further in characterizing exactly what this limit is. This uses the important Stieltjes transform
composition inverse formula (11) and is summarized as follows.

Theorem 0.13 ([22]). Denote ScX the complementary of SX , the support of some d.f. X. Let
BN = XH

NTNXN ∈ Cn×n have l.s.d. F , where XN ∈ CN×n has i.i.d. entries of zero mean and
variance 1/n, TN has l.s.d. H and N/n→ c. Let B = {m | m 6= 0,−1/m ∈ ScH} and xF be the
function defined on B by

xF (m) = − 1

m
+ c

∫
t

1 + tm
dH(t). (12)

For x0 ∈ R∗, we can then determine the limit of mF (z) as z → x0, z ∈ C+, along the following
rules,

1. If x0 ∈ ScF , then the equation x0 = xF (m) in the dummy variable m has a unique real
solution m0 ∈ B such that x′F (m0) > 0; this m0 is the limit of mF (z) when z → x0,

z ∈ C+. Conversely, for m0 ∈ B such that x′F (m0) > 0, x0 = xF (m0) ∈ ScF .

2. If x0 ∈ SF , then the equation x0 = xF (m) in the dummy variable m has a unique complex
solution m0 ∈ B with positive imaginary part; this m0 is the limit of mF (z) when z → x0,
z ∈ C+.

From rule 1, it is possible to determine the exact support of F . It indeed suffices to draw
xF (m) for −1/m ∈ R \ SH . Whenever xF is increasing on an interval I, xF (I) is outside SF .
The support SF of F , and therefore of F (modulo the mass in 0), is then defined exactly by

SF = R \
⋃
a,b∈R
a<b

{
xF ((a, b)) | ∀m ∈ (a, b), x′F (m) > 0

}
.
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Figure 3: xF (m) for m real, TN diagonal composed of three evenly weighted masses in 1, 3 and
10 (top) and 1, 3 and 5 (bottom), c = 1/10 in both cases. Local extrema are marked in circles,
inflexion points are marked in squares. The support of F can be read on the right vertical axises.

This is depicted in Figure 3 in the case when H is composed of three evenly weighted masses
t1, t2, t3 in {1, 3, 5} or {1, 3, 10} and c = 1/10. Notice that, in the case where t3 = 10, F is
divided into three clusters while when t3 = 5, F is divided into only two clusters, which is due
to the fact that xF is non-increasing in the interval (−1/3,−1/5).

From Figure 3 and Theorem 0.13, we now observe that x′F (m) has exactly 2KF roots with KF

the number of clusters in F . Denote these roots m−1 < m+
1 ≤ m−2 < m+

2 < . . . ≤ m−KF < m+
KF

.

Each pair (m−j ,m
+
j ) is such that xF ([m−j ,m

+
j ]) is the jth cluster in F . We therefore have a way

to determine the support of the asymptotic spectrum through the function x′F . This is presented
in the following result

Theorem 0.14 ([23],[24]). Let BN ∈ CN×N be defined as in Theorem 0.15. Then the support
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SF of the l.s.d. F of BN is defined as

SF =

KF⋃
j=1

[x−j , x
+
j ],

where x−1 , x
+
1 , . . . , x

−
KF
, x+

KF
are defined as

x−j = − 1

m−j
+

K∑
r=1

cr
tr

1 + trm
−
j

,

x+
j = − 1

m−j
+

K∑
r=1

cr
tr

1 + trm
+
j

,

with m−1 < m+
1 ≤ m−2 < m+

2 ≤ . . . ≤ m−KF < m+
KF

the 2KF (possibly counted with multiplicity)
real roots of the equation in m,

K∑
r=1

cr
t2rm

2

(1 + trm2)2
= 1.

Notice further from Figure 3 that, while x′F (m) might not have roots on some intervals
(−1/tk−1,−1/tk), it always has a unique inflexion point there. This is proved in [24] by observing
that x′′F (m) = 0 is equivalent to

K∑
r=1

cr
t3rm

3

(1 + trm)3
− 1 = 0,

the left-hand side of which has always positive derivative and shows asymptotes in the neighbor-
hood of tr; hence the existence of a unique inflexion point on every interval (−1/tk−1,−1/tk),
for 1 ≤ k ≤ K, with convention t0 = 0+. When xF increases on an interval (−1/tk−1,−1/tk), it
must have its inflexion point in a point of positive derivative (from the concavity change induced
by the asymptotes). Therefore, to verify that cluster kF is disjoint from clusters (k − 1)F and
(k+ 1)F (when they exist), it suffices to verify that the (k− 1)th and kth roots mk−1 and mk of
x′′F (m) are such that x′F (mk−1) > 0 and x′F (mk) > 0. This is exactly what the following result
states for the case of a sample covariance matrix whose population covariance matrix has few
eigenvalues, each with a large multiplicity.

Theorem 0.15 ([25],[24]). Let BN be defined as in Theorem 0.10, with TN = diag(τ1, . . . , τN ) ∈
RN×N , diagonal containing K distinct eigenvalues 0 < t1 < . . . < tK , for some fixed K. Denote
Nk the multiplicity of the kth largest eigenvalue, counted with multiplicity (assuming ordering of
the τi, we may then have τ1 = . . . = τN1 = t1, . . . , τN−NK+1 = . . . = τN = tK). Assume also
that for all 1 ≤ r ≤ K, Nr/n → cr > 0, and N/n → c, with 0 < c < ∞. Then the cluster kF
associated to the eigenvalue tk in the l.s.d. F of BN is distinct from the clusters (k − 1)F and
(k + 1)F (when they exist), associated to tk−1 and tk+1 in F , respectively, if and only if

K∑
r=1

cr
t2rm

2
k

(1 + trm2
k)

2
< 1,

K∑
r=1

cr
t2rm

2
k+1

(1 + trm2
k+1)2

< 1, (13)
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where m1, . . . ,mK are such that mK+1 = 0 and m1 < m2 < . . . < mK are the K solutions of
the equation in m,

K∑
r=1

cr
t3rm

3

(1 + trm)3
= 1.

For k = 1, this condition ensures 1F = 2F − 1; for k = K, this ensures KF = (K − 1)F + 1 and
for 1 < k < K, this ensures (k − 1)F + 1 = kF = (k + 1)F − 1.

This result is again fundamental in the sense that the separability of subsequent clusters in
the support of the l.s.d. of BN will play a fundamental role in the validity of statistical inference
methods. In the subsequent section, we introduce the key ideas that allow statistical inference
for sample covariance matrices.

0.4 Statistical inference

Statistical inference allows for the estimation of deterministic parameters present in a stochastic
model based on observations of random realisations of the model. In the context of sample
covariance matrices, statistical inference methods consist in providing estimates of functionals
of the eigenvalue distribution of the population covariance matrix TN ∈ CN×N based on the

observation YN = T
1
2
NXN with XN ∈ CN×n a random matrix of independent and identically

distributed entries. Different methods exist that allow for statistical inference that mostly rely
on the study of the l.s.d. of the sample covariance matrix BN = 1

nYNYH
N . One of these methods

relates to free probability theory [26], and more specifically to free deconvolution approaches,
see e.g., [27], [28]. The idea behind free deconvolution is based on the fact that the moments
of the l.s.d. of some random matrix models can be written as a polynomial function of the
moments of the l.s.d. of another (random) matrix in the model, under some proper conditions.
Typically, the moments of the l.s.d. of TN can be written as a polynomial of the moments of
the (almost sure) l.s.d. of BN , if XN has Gaussian entries and the e.s.d. of TN has uniformly
bounded support. Therefore, to put it simply, one can obtain all moments of TN based on a
sufficiently large observation of BN ; this allows one to recover the l.s.d. of TN (since Carleman
condition is satisfied) and therefore any functional of the l.s.d. However natural, this method
has some major drawbacks. From a practical point of view, a reliable estimation of moments
of high order requires extremely large dimensional matrix observations. This is due to the fact
that the estimate of the moment of order k of the l.s.d. is based on polynomial expressions of
the estimates of moments of lower orders. A small error in the estimate in a low order moment
therefore propagates as a large error for higher moments; it is therefore compelling to obtain
accurate first order estimates, hence large dimensional observations.

We will not further investigate the moment-based approach above, which we discuss in more
detail with a proper introduction to free probability theory in [29]. Instead, we introduce the
methods based on the Stieltjes transform and those rely strongly on the results described in the
previous section. We will introduce this method for the sample covariance matrix model dis-
cussed so far, because it will be instrumental to understanding the power estimator introduced
in Section 0.5.2. Similar results have been provided for other models of interest to telecommu-
nications, as for instance the so-called information-plus-noise model, studied in [30].

The central idea is based on a trivial application of the Cauchy complex integration formula
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[31]. Consider f some complex holomorphic function on U ⊂ C, H a distribution function and
denote G the functional

G(f) =

∫
f(z)dH(z).

From the Cauchy integration formula, we have, for a negatively oriented closed path γ en-
closing the support of H and with winding number one,

G(f) =
1

2πi

∫ ∮
γ

f(ω)

z − ω
dωdH(z)

=
1

2πi

∮
γ

∫
f(ω)

z − ω
dH(z)dω

=
1

2πi

∮
γ
f(ω)mH(ω)dω, (14)

the integral inversion being valid since f(ω)/(z − ω) is bounded for ω ∈ γ. Note that the sign
inversion due to the negative contour orientation is compensated by the sign reversal of (ω− z)
in the denominator.

If dH is a sum of finite or countable masses and one is interested in evaluating f(λk), with
λk the value of the kth mass with weight lk, then on a negatively oriented contour γk enclosing
λk and excluding λj , j 6= k,

lkf(λk) =
1

2πi

∮
γk

f(ω)mH(ω)dω. (15)

This last expression is particularly convenient when one has access to H only through an ex-
pression of its Stieltjes transform.

Now, in terms of random matrices, for the sample covariance matrix BN = T
1
2
NXNXH

NT
1
2
N ,

we already noticed that the l.s.d. F of BN (or equivalently the l.s.d. F of BN = XH
NTNXN )

can be rewritten under the form (9), which can further be rewritten

c

mF (z)
mH

(
− 1

mF (z)

)
= −zmF (z) + (c− 1), (16)

where H is the l.s.d. of TN . Note that it is allowed to evaluate mH in −1/mF (z) for z ∈ C+

since −1/mF (z) ∈ C+.

As a consequence, if one only has access to FBN (from the observation BN ), then the only
link from the observation to H is obtained by (i) the fact that FBN ⇒ F almost surely and (ii)
the fact that F and H are related through (16). Evaluating a functional f of the eigenvalue λk
of TN is then made possible by (15). The relations (15) and (16) are the essential ingredients
behind the derivation of a consistent estimator for f(λk).

We now concentrate specifically on the case of the sample covariance matrix BN = T
1
2
NXNXH

NTN

defined as in Theorem 0.10 with TN composed of K distinct eigenvalues t1, . . . , tK of multiplic-
ities N1, . . . , NK , respectively. We further denote ck , limnNk/n and will discuss the question
of estimating tk itself. What follows summarizes the original ideas of Mestre in [23] and [25].
We have from Equation (15) that, for any continuous f and for any negatively oriented contour
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Ck that encloses tk and tk only, f(tk) can be written under the form

Nk

N
f(tk) =

1

2πi

∮
Ck

f(ω)mH(ω)dω

=
1

2πi

∮
Ck

1

N

K∑
r=1

Nr
f(ω)

tr − ω
dω

with H the limit FTN ⇒ H. This provides a link between f(tk) for all continuous f and the
Stieltjes transform mH(z).

Letting f(x) = x and taking the limit N → ∞, Nk/N → ck/c, with c , c1 + . . . + cK the
limit of N/n, we have

ck
c
tk =

1

2πi

∮
Ck

ωmH(ω)dω. (17)

We now want to express mH as a function of mF , the Stieltjes transform of the l.s.d. F of
BN . For this, we have the two relations (10), i.e.,

mF (z) = cmF (z) + (c− 1)
1

z

and (16) with F T = H, i.e.,

c

mF (z)
mH

(
− 1

mF (z)

)
= −zmF (z) + (c− 1).

Together, those two equations give the simpler expression

mH

(
− 1

mF (z)

)
= −zmF (z)mF (z).

Applying the variable change ω = −1/mF (z) in (17), we obtain

ck
c
tk =

1

2πi

∮
CF,k

z
m′F (z)

mF (z)c
+

1− c
c

mF (z)′

m2
F (z)

dz

=
1

c

1

2πi

∮
CF,k

z
m′F (z)

mF (z)
dz, (18)

where CF ,k is the preimage of Ck by −1/mF . The second equality (18) comes from the fact that
the second term in the previous relation is the derivative of (c − 1)/(cmF (z)), which therefore
integrates to 0 on a closed path, from classical real or complex integration rules [31]. Obviously,
since z ∈ C+ is equivalent to −1/mF (z) ∈ C+ (the same being true if C+ is replaced by C−),
CF ,k is clearly continuous and of non-zero imaginary part whenever =[z] 6= 0. Now, one must
be careful about the exact choice of CF ,k.

We make the important assumption that the index k satisfies the separability conditions of
Theorem 0.15. This is, the cluster kF associated to k in F is distinct from (k−1)F and (k+ 1)F

(whenever they exist). Let us then pick x
(l)
F and x

(r)
F two real values such that

x+
(k−1)F

< x
(l)
F < x−kF < x+

kF
< x

(r)
F < x−(k+1)F
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Figure 4: Integration contours Ck, k ∈ {1, 2, 3}, preimage of CF ,k by −1/mF , for CF ,k a circular
contour around cluster kF , when TN composed of three distinct entries, t1 = 1, t2 = 3, t3 = 10,
N1 = N2 = N3, N/n = 1/10.

with {x−1 , x
+
1 , . . . , x

−
KF
, x+

KF
} the support boundary of F , as defined in Theorem 0.14. Now

remember Theorem 0.13 and Figure 3; for x
(l)
F as defined previously, mF (z) has a limit m(l) ∈ R

as z → x
(l)
F , z ∈ C+, and a limit m(r) ∈ R as z → x

(r)
F , z ∈ C+, those two limits verifying

tk−1 < x(l) < tk < x(r) < tk+1, (19)

with x(l) , −1/m(l) and x(r) , −1/m(r).

This is the most important outcome of the integration process. Let us define CF ,k to be
any continuous contour surrounding cluster kF such that CF ,k crosses the real axis in only two

points, namely x
(l)
F and x

(r)
F . Since −1/mF (C+) ⊂ C+ and −1/mF (C−) ⊂ C−, Ck does not

cross the real axis whenever =[z] 6= 0 and is obviously continuously differentiable there; now Ck
crosses the real axis in x(l) and x(r), and is in fact continuous there. Because of (19), we then
have that Ck is (at least) continuous and piecewise continuously differentiable and encloses only
tk. This is what is required to ensure the validity of (18). In Figure 4, we consider the case
when TN is formed of three evenly weighted eigenvalues t1 = 1, t2 = 3 and t3 = 10, and we
depict the contours Ck, preimages of CF ,k, k ∈ {1, 2, 3}, circular contours around the clusters kF

such that they cross the real line in the positions x
(l)
F and x

(r)
F , corresponding to the inflexion

points of xF (m) (and an arbitrary large value for the extreme right point).

The difficult part of the proof is completed. The rest will unfold more naturally. We start
by considering the following expression,

t̂k ,
1

2πi

n

Nk

∮
CF,k

z
m′
FBN

(z)

mFBN (z)
dz

=
1

2πi

n

Nk

∮
CF,k

z

1
n

∑n
i=1

1
(λi−z)2

1
n

∑n
i=1

1
λi−z

dz, (20)
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where we remind that BN , XH
NTNXN and where, if n ≥ N , we defined λN+1 = . . . = λn = 0.

The value t̂k can be viewed as the empirical counterpart of tk. Now, we know from Theorem
0.9 that mFBN (z)

a.s.−→ mF (z) and mFBN (z)→ mF (z). It is not difficult to verify, from the fact
that mF is holomorphic, that the same convergence holds for the successive derivatives.

At this point, we need the two fundamental results that are Theorem 0.10 and Theorem
0.12. We know that, for all matrices BN in a set of probability one, all the eigenvalues of BN

are contained in the support of F for all large N , and that the eigenvalues of BN contained in
cluster kF are exactly {λi, i ∈ Nk} for these large N , with Nk = {

∑k−1
j=1 Nj + 1, . . . ,

∑k
j=1Nj}.

Take such a BN . For all large N , mBN
(z) is uniformly bounded over N and z ∈ CF ,k, since CF ,k

is away from the support of F . The integrand in the right-hand side of (20) is then uniformly
bounded for all large N and for all z ∈ CF ,k. By the dominated convergence theorem, Theorem

16.4 in [14], we then have that t̂k − tk
a.s.−→ 0.

It then remains to evaluate t̂k explicitly. This is performed by residue calculus [31], i.e., by
determining the poles in the expanded expression of t̂k (when developing mFBN (z) in its full
expression). Those poles are found to be λ1, . . . , λN (indeed, the integrand of (20) behaves like
O(1/(λi − z)) for z ' λi) and µ1, . . . , µN , the N real roots of the equation in µ, mFBN (µ) = 0
(indeed, the denominator of the integrand cancels for z = µi while the numerator is non zero).
Since CF ,k encloses only those values λi such that i ∈ Nk, the other poles are discarded. Noticing
now that mFBN (µ) → ±∞ as µ → λi, we deduce that µ1 < λ1 < µ2 < . . . < µN < λN , and
therefore we have that µi, i ∈ Nk are all in CF ,k but maybe for µj , j = minNk. It can in fact
be shown that µj is also in CF ,k. To notice this last remaining fact, observe simply that

1

2πi

∮
Ck

1

ω
dω = 0.

since 0 is not contained in the contour Ck. Applying the variable change ω = −1/mF (z) as
previously, this gives ∮

CF,k

m′F (z)

m2
F (z)

dz = 0. (21)

From the same reasoning as above, with the dominated convergence theorem argument, we have
that for sufficiently large N and almost surely,∣∣∣∣∣

∮
CF,k

m′
FBN

(z)

m2
FBN

(z)
dz

∣∣∣∣∣ < 1

2
. (22)

At this point, we need to proceed to residue calculus in order to compute the integral in
the left-hand side of (22). We will in fact prove that the value of this integral is an integer,
hence necessarily equal to zero from the inequality (22). Notice indeed that the poles of (21)
are the λi and the µi that lie inside the integration contour CF ,k, all of order one with residues
equal to −1 and 1, respectively. These residues are obtained using in particular L’Hospital rule,
as detailed below. Therefore, (21) equals the number of such λi minus the number of such µi
(remember that the integration contour is negatively oriented, so we need to reverse the signs).
We however already know that this difference, for large N , equals either 0 or 1, since only the
position of the leftmost µi is unknown yet. But since the integral is asymptotically less than
1/2, this implies that it is identically zero, and therefore the leftmost µi (indexed by minNk)
also lies inside the integration contour.
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From this point on, we can evaluate (20), which is clearly determined since we know ex-
actly which eigenvalues of BN are contained (with probability one for all large N) within the
integration contour. This calls again for residue calculus, the steps of which are detailed below.
Denoting

f(z) = z
m′
FBN

(z)

mFBN (z)
,

we find that λi (inside CF ,k) is a pole of order 1 with residue

lim
z→λi

(z − λi)f(z) = −λi,

which is straightforwardly obtained from the fact that f(z) ∼ 1
λi−z as z ∼ λi. Also µi (inside

CF ,k) is a pole of order 1 with residue

lim
z→µi

(z − µi)f(z) = µi,

which is obtained using L’Hospital rule: upon existence of a limit, we indeed have

lim
z→µi

(z − µi)f(z) = lim
z→µi

d
dz

[
(z − µi)zm′FBN (z)

]
d
dz

[
mFBN (z)

]
= lim

z→µi

zm′
FBN (z)

+ z(z − µi)m′′FBN (z)
+ (z − µi)m′FBN (z)

m′
FBN (z)

= lim
z→µi

z

= µi.

Since the integration contour is chosen to be negatively oriented, it must be kept in mind
that the signs of the residues need be inverted in the final relation.

Noticing finally that µ1, . . . , µN are also the eigenvalues of diag(λ) − 1
n

√
λ
√
λ
T

, with λ ,
(λ1, . . . , λN )T, from a lemma provided in [24], Lemma 1, and [32], we finally have the following
statistical inference result for sample covariance matrices.

Theorem 0.16 ([25]). Let BN = T
1
2
NXNXH

NT
1
2
N ∈ CN×N be defined as in Theorem 0.15, i.e.,

TN has K distinct eigenvalues t1 < . . . < tK with multiplicities N1, . . . , NK , respectively, for all
r, Nr/n → cr, 0 < cr < ∞, and the separability conditions (13) are satisfied. Further denote
λ1 ≤ . . . ≤ λN the eigenvalues of BN and λ = (λ1, . . . , λN )T. Let k ∈ {1, . . . ,K}, and define

t̂k =
n

Nk

∑
m∈Nk

(λm − µm) (23)

with Nk = {
∑k−1

j=1 Nj + 1, . . . ,
∑k

j=1Nj} and µ1 ≤ . . . ≤ µN are the ordered eigenvalues of the

matrix diag(λ)− 1
n

√
λ
√
λ
T

.

Then, if condition (13) is fulfilled, we have

t̂k − tk → 0

almost surely as N,n→∞, N/n→ c, 0 < c <∞.
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Similarly, for the quadratic form, the following holds.

Theorem 0.17 ([25]). Let BN be defined as in Theorem 0.16, and denote BN =
∑N

k=1 λkbkb
H
k ,

bH
kbi = δik, the spectral decomposition of BN . Similarly, denote TN =

∑K
k=1 tkUkU

H
k , UH

kUk =
Ink , with Uk ∈ CN×Nk the eigenspace associated to tk. For given vectors x,y ∈ CN , denote

u(k; x,y) , xHUkU
H
k y.

Then we have
û(k; x,y)− u(k; x,y)

a.s.−→ 0

as N,n→∞ with ratio cN = N/n→ c, where

û(k; x,y) ,
N∑
i=1

θk(i)x
Hbkb

H
k y

and θk(i) is defined by

θi(k) =

{
−φk(i) , i /∈ Nk

1 + ψk(i) , i ∈ Nk,

with

φk(i) =
∑
r∈Nk

(
λr

λi − λr
− µr
λi − µr

)
,

ψk(i) =
∑
r/∈Nk

(
λr

λi − λr
− µr
λi − µr

)
and Nk, µ1, . . . , µN defined as in Theorem 0.16.

The estimator proposed in Theorem 0.16 is extremely accurate and is in fact much more flex-
ible and precise than free deconvolution approaches. A visual comparison is proposed in Figure
5 for the same scenario as in the top Figure 3, where the free deconvolution (also called moment-
based) method is based on the inference techniques proposed in e.g., [33], [27]. Nonetheless, it
must be stressed that the cluster separability condition, necessary to the validity of the Stieltjes
transform approach, is mandatory and sometimes a rather strong assumption. Typically, the
number of observations must be rather large compared to the number of sensors in order to be
able to resolve close values of tk.

0.5 Applications

In this section, we apply the random matrix methods developed above to the successive problems
of multi-dimensional binary hypothesis testing and parameter estimation.

0.5.1 Binary hypothesis testing

We first consider the problem of detecting the presence of a signal source impaired by white
Gaussian noise. The question is therefore to decide whether only noise is being sensed or if some
coherent signal plus noise is sensed.
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Figure 5: Estimation of t1, t2, t3 in the model BN = T
1
2
NXNXH

NT
1
2
N based on first three empirical

moments of BN and Newton-Girard inversion, see [33], for N1/N = N2/N = N3/N = 1/3
,N/n = 1/10, for 100, 000 simulation runs; Top N = 30, n = 90, bottom N = 90, n = 270.
Comparison is made against the Stieltjes transform estimator of Theorem 0.16.
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Precisely, we consider a signal source or transmitter of dimension K and a sink or receiver
composed of N sensors. The linear filter between the transmitter and the receiver is modelled by
the matrix H ∈ CN×K , with (i, j)th entries hij . If at time l the transmitter emits data, those are

denoted by the K-dimensional vector x(l) = (x
(l)
1 , . . . , x

(l)
K )T ∈ CK . The additive white Gaussian

noise at the receiver is modelled, at time l, by the vector σw(l) = σ(w
(l)
1 , . . . , w

(l)
N )T ∈ CN , where

σ2 denotes the variance of the noise vector entries. Without generality restriction, we consider in

the following zero mean and unit variance of the entries of both w(l) and x(l), i.e., E[|w(l)
i |2] = 1,

E[|x(l)
i |2] = 1 for all i. We then denote y(l) = (y

(l)
1 , . . . , y

(l)
N )T the N -dimensional data received

at time l. Assuming the filter is static during at least M sampling periods, we finally denote
Y = [y(1), . . . ,y(M)] ∈ CN×M the matrix of the concatenated receive vectors.

Depending on whether the transmitter emits data, we consider the following hypotheses

• H0. Only background noise is received.

• H1. Data plus background noise are received.

Therefore, under condition H0, we have the model,

Y = σ

w
(1)
1 · · · w

(M)
1

...
. . .

...

w
(1)
N · · · w

(M)
N


and under condition H1,

Y =

h11 . . . h1K σ · · · 0
...

...
...

...
. . .

...
hN1 . . . hNK 0 · · · σ





x
(1)
1 · · · · · · x

(M)
1

...
...

...
...

x
(1)
K · · · · · · x

(M)
K

w
(1)
1 · · · · · · w

(M)
1

...
...

...
...

w
(1)
N · · · · · · w

(M)
N


. (24)

Under this hypothesis, we further denote Σ the covariance matrix of y(1),

Σ = E[y(1)y(1)H] = HHH + σ2IN = UGUH

where G = diag
(
ν1 + σ2, . . . , νN + σ2

)
∈ RN×N , with {ν1, . . . , νN} the eigenvalues of HHH and

U ∈ CN×N a certain unitary matrix.

The receiver is entitled to decide whether data were transmitted or not. It is a common
assumption to be in the scenario where σ2 is known in advance, although it is uncommon to know
the transfer matrix H. This is true in particular of the wireless signal sensing scenario where
H is the wireless fading channel matrix between two antenna arrays. We consider specifically
the Bayesian scenario where some a priori probability distribution for H is known and that this
probability distribution is unitarily invariant. This is in particular relevant when the filter H
presents rotational invariance properties. For simplicity we take H and x(l) to be i.i.d. Gaussian
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with zero mean and E[|hij |2] = 1/K, although our study could go well beyond the Gaussian
case.

For simplicity, we consider in the following the case K = 1, although a generalized result
exists for K ≥ 1 [2]. The Neyman-Pearson criterion for the receiver to establish whether data
were transmitted is based on the ratio

C(Y) =
PH1|Y(Y)

PH0|Y(Y)
, (25)

where PHi|Y(Y) is the probability of the event Hi conditioned on the observation Y. For a
given receive space-time matrix Y, if C(Y) > 1, then the odds are that an informative signal
was transmitted, while if C(Y) < 1, it is more likely that only background noise was captured.
To ensure a low probability of false alarm (or false positive), i.e., the probability to declare a
pure noise sample to carry an informative signal, a certain threshold ξ is generally set such
that, when C(Y) > ξ, the receiver declares data were transmitted, while when C(Y) < ξ the
receiver declares that no data were sent. The question of what ratio ξ to be set to ensure a
given maximally acceptable false alarm rate will not be treated here. We will however provide
an explicit expression of (25) for the aforementioned model, and shall compare its performance
to that achieved by the classical energy detector. The results provided in this section are taken
from [2].

Applying Bayes’ rule, (25) becomes

C(Y) =
PH1 · PY|H1

(Y)

PH0 · PY|H0
(Y)

with PHi the a priori probability for hypothesis Hi to hold. We suppose that no side information
allows the receiver to consider that H1 is more or less probable than H0, and therefore set
PH1 = PH0 = 1

2 , so that

C(Y) =
PY|H1

(Y)

PY|H0
(Y)

(26)

reduces to a maximum likelihood ratio.

Likelihood under H0. In this first scenario, the noise entries w
(l)
i are Gaussian and indepen-

dent. The probability density of Y, that can be seen as a random vector with NM entries, is
then an NM multivariate uncorrelated complex Gaussian with covariance matrix σ2INM ,

PY|H0
(Y) =

1

(πσ2)NM
e−

1
σ2

trYYH

. (27)

Denoting λ = (λ1, . . . , λN )T the eigenvalues of YYH, (27) only depends on
∑N

i=1 λi, as
follows

PY|H0
(Y) =

1

(πσ2)NM
e−

1
σ2

∑N
i=1 λi .
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Likelihood under H1. Under the data plus noise hypothesis H1, the problem is more in-
volved. The entries of the channel matrix H are modeled as jointly uncorrelated Gaussian, with
E[|hij |2] = 1/K. Therefore, since here K = 1, H ∈ CN×1 and Σ = HHH+σ2IN has N−1 eigen-

values g2 = . . . = gN equal to σ2 and another distinct eigenvalue g1 = ν1+σ2 = (
∑N

i=1 |hi1|2)+σ2.
The density of g1 − σ2 is a complex chi-square distribution of N degrees of freedom (denoted
χ2
N ), which up to a scaling factor 2 is equivalent to a real χ2

2N distribution. Hence, the eigenvalue
distribution of Σ, defined on R+N , reads

PG(G) =
1

N
(g1 − σ2)N−1

+

e−(g1−σ2)

(N − 1)!

N∏
i=2

δ(gi − σ2).

From the model H1, Y is distributed as correlated Gaussian, as follows

PY|Σ,I1(Y,Σ) =
1

πMN det(G)M
e−tr(YYHUG−1UH),

where Ik denotes the prior information at the receiver “H1 and K = k”.

Since H is unknown, we need to integrate out all possible linear filters for the transmission
model under H1 over the probability space of N ×K matrices with Gaussian i.i.d. distribution.
From the unitarily invariance of Gaussian i.i.d. random matrices, this is equivalent to integrating
out all possible covariance matrices Σ over the space of such nonnegative definite Hermitian
matrices, as follows

PY|H1
(Y) =

∫
Σ
PY|Σ,H1

(Y,Σ)PΣ(Σ)dΣ.

Eventually, after complete integration calculus given in the proof below, the Neyman-Pearson
decision ratio (25) for the single-input multiple-output channel takes an explicit expression, given
by the following theorem.

Theorem 0.18. The Neyman-Pearson test ratio CY(Y) for the presence of data reads

CY(Y) =
1

N

N∑
l=1

σ2(N+M−1)eσ
2+

λl
σ2∏N

i=1
i 6=l

(λl − λi)
JN−M−1(σ2, λl), (28)

with λ1, . . . , λN the eigenvalues of YYH and where

Jk(x, y) ,
∫ +∞

x
tke−t−

y
t dt.

The proof of Theorem 0.18 is provided below. Among the interesting features of (28), note
that the Neyman-Pearson test does only depend on the eigenvalues of YYH. This suggests
that the eigenvectors of YYH do not provide any information regarding the presence of data.
The essential reason is that, both under H0 and H1, the eigenvectors of Y are isotropically
distributed on the unit N -dimensional complex sphere due to the Gaussian assumptions made
here. As such, a given realization of the eigenvectors of Y does indeed not carry any relevant
information to the hypothesis test. The Gaussian assumption for H brought by the maximum
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entropy principle is in fact essential here. Note however that (28) is not reduced to a function
of the sum

∑
i λi of the eigenvalues, as suggests the classical energy detector.

On the practical side, note that the integral Jk(x, y) does not take a closed-form expression,
but for x = 0, see e.g., pp. 561 of [34]. This is rather inconvenient for practical purposes, since
Jk(x, y) must either be evaluated every time, or be tabulated. It is also difficult to get any
insight on the performance of such a detector for different values of σ2, N and K. We provide
hereafter a proof of Theorem 0.18, in which classical multi-dimensional integration techniques are
introduced. In particular, the tools introduced in Section 0.2 will be shown to be key ingredients
of the derivation.

Proof. We start by noticing that H is Gaussian and therefore that the joint density of its entries
is invariant by left and right unitary products. As a consequence, the distribution of the matrix
Σ = HHH + σ2I is unitarily invariant. This allows us to write, similar to [35],

PY|I1(Y) =

∫
Σ
PY|Σ,H1

(Y,Σ)PΣ(Σ)dΣ

=

∫
U(N)×(R+)N

PY|Σ,H1
(Y,Σ)PG(G)dUdG

=

∫
U(N)×R+

PY|Σ,H1
(Y,Σ)Pg1(g1)dUdg1

with U(N) the space of N ×N unitary matrices and Σ = UGUH.

The latter can further be equated to

PY|I1(Y) =

∫
U(N)×R+

e−tr(YYHUG−1UH)

πNM det(G)M
(g1 − σ2)N−1

+

e−(g1−σ2)

N !
dUdg1

with (x)+ , max(x, 0) here.

To go further, we use the Harish-Chandra identity provided in Theorem 0.3. Denoting ∆(Z)
the Vandermonde determinant of matrix Z ∈ CN×N with eigenvalues z1 ≤ . . . ≤ zN

∆(Z) ,
∏
i>j

(zi − zj), (29)

the likelihood PY|I1(Y) further develops as

PY|I1(Y)

= lim
g2,...,gN→σ2

eσ
2
(−1)

N(N−1)
2

∏N−1
j=1 j!

πMNσ2M(N−1)N !

∫ +∞

σ2

1

gM1
(g1 − σ2)N−1e−g1

det

({
e
−λi
gj

})
∆(YYH)∆(G−1)

dg1

= lim
g2,...,gN→σ2

eσ
2∏N−1

j=1 j!

πMNσ2M(N−1)N !

∫ +∞

σ2

1

gM1
(g1 − σ2)N−1e−g1 det

(
GN−1

) det

({
e
−λi
gj

})
∆(YYH)∆(G)

dg1

(30)

= lim
g2,...,gN→σ2

eσ
2
σ2(N−1)(N−M−1)

∏N−1
j=1 j!

πMNN !

∫ +∞

σ2

g1
N−M−1(g1 − σ2)N−1e−g1

det

({
e
−λi
gj

})
∆(YYH)∆(G)

dg1

(31)
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in which we remind that λ1, . . . , λN are the eigenvalues of YYH. The equality (30) comes from

the fact that ∆(G−1) = (−1)N(N+3)/2 ∆(G)
det(G)N−1 . Note the trick of replacing the known values

of g2, . . . , gN by limits of scalars converging to these known values, which dodges the problem
of improper ratios. To derive the explicit limits, we then proceed as follows.

To go further, we need the following result, Lemma 6 of [36].

Theorem 0.19. Let f1, . . . , fN be a family of infinitely differentiable functions and let x1, . . . , xN ∈
R. Denote

R(x1, . . . , xN ) ,
det
(
{fi(xj)}i,j

)
∏
i>j(xi − xj)

.

Then, for p ≤ N and for x0 ∈ R,

lim
x1,...,xp→x0

R(x1, . . . , xN ) =
det
[
fi(x0), f ′i(x0), . . . , f

(p−1)
i (x0), fi(xp+1), . . . , fi(xN )

]
∏
p<j<i(xi − xj)

∏N
i=p+1(xi − x0)p

∏p−1
j=1 j!

.

Denoting y = (γ1, . . . , γN−1, γN ) = (g2, . . . , gN , g1) and defining the functions,

f(xi, γj) , e
− xi
γj ,

fi(γj) , f(xi, γj),

from Theorem 0.19, we obtain

lim
g2,...,gN→σ2

det

{e−λigj }
1≤i≤N
1≤j≤N


∆(YYH)∆(G)

= lim
γ1,...,γN−1→σ2

γM→g1

(−1)N−1
det
(
{fi(λj)}i,j

)
∆(YYH)∆(G)

= (−1)N−1 det
[
fi(σ

2), f ′i(σ
2), . . . , f (N−2)(σ2), fi(g1)

]∏
i<j(λi − λj)(g1 − σ2)N−1

∏N−2
j=1 j!

.

The change of variables led to a switch of one column and explains the (−1)N−1 factor
appearing when computing the resulting determinant. The partial derivatives of f along the
second variable is

(
∂

∂γk
f

)
k≥1

(a, b) =

k∑
m=1

(−1)k+m

bm+k

(
m

k

)
(k − 1)!

(m− 1)!
ame−

a
b

, κk(a, b)e
−a
b .
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Back to the full expression of PY|H1
(Y), we then have

PY|I1(Y)

=
eσ

2
σ2(N−1)(N−M−1)

NπMN

∫ +∞

σ2

(−1)N−1gN−M−1
1 e−g1

det
[
fi(σ

2), f ′i(σ
2), . . . , f (N−2)(σ2), fi(g1)

]∏
i<j(λi − λj)

dg1

=
eσ

2
σ2(N−1)(N−M−1)

NπMN
∏
i<j(λi − λj)

×
∫ +∞

σ2

(−1)N−1gN−M−1
1 e−g1 det


e−

x1
σ2

...

e−
xN
σ2

(
κj(λi, σ

2)e−
λi
σ2

)
1≤i≤N

1≤j≤N−2

e
−λ1
g1

...

e
−λN
g1

 dg1.

Before going further, we need the following result, often required in the calculus of marginal
eigenvalue distributions for Gaussian matrices.

Lemma 0.2. For any family {a1, . . . , aN} ∈ RN , N ≥ 2, and for any b ∈ R∗,

det


1
... (κj(ai, b)) 1≤i≤N

1≤j≤N−1

1

 =
1

bN(N−1)

∏
i<j

(aj − ai).

This identity follows from the observation that column k of the matrix above is a polynomial
of order k. Since summations of linear combinations of the columns do not affect the determinant,
each polynomial can be replaced by the monomial of highest order, i.e., b−2(k−1)aki in row i.
Extracting the product 1 · b−2 · · · b−2(N−1) = b−(N−1)N from the determinant, what remains is
the determinant of a Vandermonde matrix based on the vector a1, . . . , aN .

By factorizing every row of the matrix by e−
λi
σ2 and developing the determinant on the last

column, one obtains

PY|I1(Y)

=
eσ

2
σ2(N−1)(N−M−1)

NπMN
∏
i<j(λi − λj)

∫ +∞

σ2

gN−M−1
1 e−g1−

∑N
i=1 λi
σ2

N∑
l=1

(−1)2N+l−1e
−λl

(
1
g1
− 1
σ2

)
σ2(N−1)(N−2)

∏
i<j
i 6=l
j 6=l

(λi − λj)dg1

=
eσ

2− 1
σ2

∑N
i=1 λi

NπMNσ2(N−1)(M−1)

N∑
l=1

(−1)l−1

∫ +∞

σ2

gN−M−1
1 e−g1

e
−λl

(
1
g1
− 1
σ2

)
∏
i<l(λi − λl)

∏
i>l(λl − λi)

dg1

=
eσ

2− 1
σ2

∑N
i=1 λi

NπMNσ2(N−1)(M−1)

N∑
l=1

e
λl
σ2∏N

i=1
i 6=l

(λl − λi)

∫ +∞

σ2

gN−M−1
1 e

−
(
g1+

λl
g1

)
dg1,

which finally gives

PY|I1(Y) =
eσ

2− 1
σ2

∑N
i=1 λi

NπMNσ2(N−1)(M−1)

N∑
l=1

e
λl
σ2∏N

i=1
i 6=l

(λl − λi)
JN−M−1(σ2, λl),
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Figure 6: ROC curve for single-source detection, K = 1, N = 4, M = 8, SNR = −3 dB, FAR
range of practical interest.

where

Jk(x, y) =

∫ +∞

x
tke−t−

y
t dt = 2y

k+1
2 K−k−1(2

√
y)−

∫ x

0
tke−t−

y
t dt

and Kn denotes the modified Bessel function of the second kind.

The scenario where K ≥ 1 unfolds similarly. The final theorem can be found in [2]. The
receiver operating characteristic (ROC) curve of the Neyman-Pearson test against that of the
energy detector is provided in Figure 6 for N = 4, M = 8 and σ2 = 3 dBm. We observed a
significant performance gain in terms of detection rate incurred by the Neyman-Pearson test
compared to the classical energy detector.

This completes this section on hypothesis testing. In the following section, we go beyond
the hypothesis test and move to the question of parameter inference in a slightly more complex
data plus noise model than above.

0.5.2 Parameter estimation

We consider a similar scenario as in the previous section, where now the K sources use different
transmit powers P1, . . . , PK , which the receiver is entitled to infer from successive observations.

Consider K data sources which are transmitting data simultaneously. Transmitter k ∈
{1, . . . ,K} has power Pk and has space dimension nk, e.g. is composed of nk antennas. We
denote n ,

∑K
k=1 nk the total number of transmit dimensions. Consider also a sink or receiver

with space dimension N , N > n. Denote Hk ∈ CN×nk the multi-dimensional filter matrix
between transmitter k and the receiver. We assume that the entries of

√
NHk are independent

and identically distributed with zero mean, unit variance and finite fourth order moment. At

time instant m, transmitter k emits the signal x
(m)
k ∈ Cnk , with entries assumed to be inde-

pendent, independent along m, k, identically distributed along m, and have all zero mean, unit
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variance and finite fourth order moment (the x
(m)
k need not be identically distributed along k).

Assume further that at time instant m the receive signal is impaired by additive white Gaussian
noise with entries of zero mean and variance σ2, denoted σw(m) ∈ CN . At time m, the receiver
therefore senses the signal y(m) ∈ CN defined as

y(m) =
K∑
k=1

√
PkHkx

(m)
k + σw(m).

Assuming the filter coefficients are constant over at least M consecutive sampling periods,
by concatenating M successive signal realizations into Y = [y(1), . . . ,y(M)] ∈ CN×M , we have

Y =
K∑
k=1

√
PkHkXk + σW,

where Xk = [x
(1)
k , . . . ,x

(M)
k ] ∈ Cnk×M , for every k, and W = [w(1), . . . ,w(M)] ∈ CN×M . This

can be further rewritten as
Y = HP

1
2 X + σW, (32)

where P ∈ Rn×n is diagonal with first n1 entries P1, subsequent n2 entries P2, etc. and last nK
entries PK , H = [H1, . . . ,HK ] ∈ CN×n and X = [XT

1 , . . . ,X
T
K ]T ∈ Cn×M . By convention, we

assume P1 ≤ . . . ≤ PK .

Our objective is to infer the values of the powers P1, . . . , PK from the realization of a single
random matrix Y. This is successively performed from different approaches in the following
sections. We first consider the conventional approach that assumes n small, N much larger than
n, and M much larger than N . This will lead to a simple although largely biased estimation
algorithm. This algorithm will be improved using Stieltjes transform approaches in the same
spirit as in Section 0.4.

Conventional approach

The first approach assumes numerous sensors in order to have much diversity in the observation
vectors, as well as an even larger number of observations so to create an averaging effect on the
incoming random data. In this situation, let us rewrite (32) under the form

Y =
(
HP

1
2 σIN

)(X
W

)
. (33)

We shall denote λ1 ≤ . . . ≤ λN the ordered eigenvalues of 1
MYYH (the non-zero eigenvalues

of which are almost surely different).

Appending Y ∈ CN×M into the larger matrix Y ∈ C(N+n)×M

Y =

(
HP

1
2 σIN

0 0

)(
X
W

)
,

we recognize that, conditioned on H, 1
MYYH is a sample covariance matrix, for which the

population covariance matrix is

T ,

(
HPHH + σ2IN 0

0 0

)
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and the random matrix (
X
W

)
has independent (non-necessarily identically distributed) entries with zero mean and unit vari-
ance. The population covariance matrix T, whose upper left entries also form a matrix unitarily
equivalent to a sample covariance matrix, clearly has an almost sure limit spectral distribution as
N grows large for fixed or slowly growing n. Extending Theorem 0.9 and Theorem 0.11 to c = 0
and applying them twice (once for the population covariance matrix T and once for 1

MYYH),
we finally have that, as M,N, n → ∞ with M/N → ∞ and N/n → ∞, the distribution of the
largest n eigenvalues of 1

MYYH is asymptotically almost surely composed of a mass σ2 + P1 of
weight limn1/n, a mass σ2 +P2 of weight limn2/n, etc. and a mass σ2 +PK of weight limnK/n.
As for the distribution of the smallest N − n eigenvalues of 1

MYYH, it converges to a single
mass in σ2.

If σ2 is a priori known, a rather trivial estimator of Pk is then given by

1

nk

∑
i∈Nk

(λi − σ2),

where Nk = {
∑k−1

j=1 nj + 1, . . . ,
∑k

j=1 nj} and we recall that λ1 ≤ . . . ≤ λN are the ordered

eigenvalues of 1
MYYH.

This means in practice that PK is asymptotically well approximated by the averaged value
of the nK largest eigenvalues of 1

MYYH, PK−1 is well approximated by the averaged value of the
nK−1 eigenvalues before that, etc. This also assumes that σ2 is perfectly known at the receiver.
If it were not, observe that the averaged value of the N − n smallest eigenvalues of 1

MYYH is

a consistent estimate for σ2. This therefore leads to the second estimator P̂∞k for Pk, that will
constitute our reference estimator,

P̂∞k =
1

nk

∑
i∈Nk

(
λi − σ̂2

)
,

where

σ̂2 =
1

N − n

N−n∑
i=1

λi.

Incidentally, although not derived on purpose, the refined (n,N,M)-consistent estimator of
Section 0.5.2 will appear not to depend on a prior knowledge of σ2. Note that the estimation of Pk
only relies on nk contiguous eigenvalues of 1

MYYH, which suggests that the other eigenvalues are
asymptotically uncorrelated from these. It will turn out that the improved (n,N,M)-consistent
estimator does take into account all eigenvalues for each k, in a certain manner.

The Stieltjes transform method

The Stieltjes transform approach relies heavily on the techniques from Mestre, established in
[25] and introduced in Section 0.4. The main strategy is the following.

• We first need to study the asymptotic spectrum of BN , as all system dimensions (N , n,
M) grow large (remember that K is fixed). For this, we will proceed to
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– determine the almost sure l.s.d. of BN . Practically, this will allow us to connect the
asymptotic spectrum of BN to the spectrum of P,

– study the exact separation of the eigenvalues of BN in clusters of eigenvalues. This
is necessary first to determine whether the coming step of complex integration is
possible and second to determine a well-chosen integration contour for the estimation
of every Pk.

• Then, we will write Pk under the form of a complex integral of a functional of the spectrum
of P over this well-chosen contour. Since the spectrum of P can be linked to that of BN

(at least asymptotically) through the previous step, a change of variable will allow us to
rewrite Pk under the form of an integral of some functional of the l.s.d. of BN . This point
is the key step in our derivation, where Pk is now connected to the observation matrix Y
(although only in the asymptotic sense).

• Finally, the estimate P̂k of Pk will be computed from the previous step by replacing the
l.s.d. of BN by its e.s.d., i.e., by the truly observed eigenvalues of 1

MYYH, in the expression
relating Pk to the l.s.d. of BN .

We provide here only the study of the limiting spectrum of BN and of the final estimator,
taking for granted the result of the contour integration study, which is more technical and is
properly detailed in [24].

Limiting spectrum of BN In this section, we prove the following result

Theorem 0.20. Let BN = 1
MYYH, with Y defined as in (32). Then, for M , N , n growing

large with limit ratios M/N → c, N/nk → ck, 0 < c, c1, . . . , cK < ∞, the empirical spectral
distribution FBN of BN converges almost surely to the distribution function F , whose Stieltjes
transform mF (z) satisfies, for z ∈ C+,

mF (z) = cmF (z) + (c− 1)
1

z
, (34)

where mF (z) is the unique solution with positive imaginary part of the implicit equation in mF ,

1

mF
= −σ2 +

1

f
−

K∑
k=1

1

ck

Pk
1 + Pkf

(35)

in which we denoted f the value

f = (1− c)mF − czm2
F .

Proof. First remember that the matrix Y in (32) can be extended into the larger sample covari-
ance matrix Y ∈ C(N+n)×M

Y =

(
HP

1
2 σIN

0 0

)(
X
W

)
.

From Theorem 0.9, since H has independent entries with finite fourth order moment, we
have that the e.s.d. of HPHH converges weakly and almost surely to a limit distribution G as
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N,n1, . . . , nK →∞ with N/nk → ck > 0. For z ∈ C+, the Stieltjes transform mG(z) of G is the
unique solution with positive imaginary part of the equation in mG,

z = − 1

mG
+

K∑
k=1

1

ck

Pk
1 + PkmG

. (36)

The almost sure convergence of the e.s.d. of HPHH ensures the almost sure convergence

of the e.s.d. of the matrix
(

HPHH+σ2IN 0
0 0

)
. Since mG(z) evaluated at z ∈ C+ is the Stieltjes

transform of the l.s.d. of HPHH + σ2IN evaluated at z + σ2, adding n zero eigenvalues, we

finally have that the e.s.d. of
(

HPHH+σ2IN 0
0 0

)
tends almost surely to a distribution H whose

Stieltjes transform mH(z) satisfies

mH(z) =
c0

1 + c0
mG(z − σ2)− 1

1 + c0

1

z
, (37)

for z ∈ C+, where we denoted c0 the limit of the ratio N/n, i.e., c0 = (c−1
1 + . . .+ c−1

K )−1.

As a consequence, the sample covariance matrix 1
MYYH has a population covariance matrix

which is not deterministic but whose e.s.d. has an almost sure limit H for increasing dimensions.
Since X and W have entries with finite fourth order moment, we can again apply Theorem 0.9
and we have that the e.s.d. of BN , 1

MYHY converges almost surely to the limit F whose
Stieltjes transform mF (z) is the unique solution in C+ of the equation in mF

z = − 1

mF
+

1

c

(
1 +

1

c0

)∫
t

1 + tmF
dH(t)

= − 1

mF
+

1 + 1
c0

cmF

[
1− 1

mF
mH

(
− 1

mF

)]
(38)

for all z ∈ C+.

For z ∈ C+, mF (z) ∈ C+. Therefore −1/mF (z) ∈ C+ and one can evaluate (37) at
−1/mF (z). Combining (37) and (38), we then have

z = −1

c

1

mF (z)2
mG

(
− 1

mF (z)
− σ2

)
+

(
1

c
− 1

)
1

mF (z)
, (39)

where, according to (36), mG(−1/mF (z)− σ2) satisfies

1

mF (z)
=− σ2 +

1

mG(− 1
mF (z) − σ2)

−
K∑
k=1

1

ck

Pk

1 + PkmG(− 1
mF (z) − σ2)

. (40)

Together with (39), this is exactly (35), with f(z) = mG(− 1
mF (z) − σ

2) = (1 − c)mF (z) −
czmF (z)2.

Since the eigenvalues of the matrices BN and BN only differ by M −N zeros, we also have
that the Stieltjes transform mF (z) of the l.s.d. of BN satisfies

mF (z) = cmF (z) + (c− 1)
1

z
. (41)

This completes the proof of Theorem 0.20.
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For further usage, notice here that (41) provides a simplified expression for mG(−1/mF (z)−
σ2). Indeed we have,

mG(−1/mF (z)− σ2) = −zmF (z)mF (z). (42)

Therefore, the support of the (almost sure) l.s.d. F of BN can be evaluated as follows: for
any z ∈ C+, mF (z) is given by (34), in which mF (z) is solution of (35); the inverse Stieltjes
transform formula (4) allows then to evaluate F from mF (z), for values of z spanning over the
set {z = x+ iy, x > 0} and y small.

Multi-source power inference In the following, we finally prove the main result of this
section, which provides the G-estimator P̂1, . . . , P̂K of the transmit powers P1, . . . , PK .

Theorem 0.21. Let BN ∈ CN×N be defined as BN = 1
MYYH with Y defined as in (32), and

λ = (λ1, . . . , λN ), λ1 ≤ . . . ≤ λN , be the vector of the ordered eigenvalues of BN . Further
assume that the limiting ratios c0, c1, . . . , cK , c and P are such that the cluster mapped to Pk in
BN does not map another Pi, i 6= k. Then, as N , n, M grow large, we have

P̂k − Pk
a.s.−→ 0,

where the estimate P̂k is given by

• if M 6= N ,

P̂k =
NM

nk(M −N)

∑
i∈Nk

(ηi − µi),

• if M = N ,

P̂k =
N

nk(N − n)

∑
i∈Nk

 N∑
j=1

ηi
(λj − ηi)2

−1

,

in which Nk = {
∑k−1

i=1 ni + 1, . . . ,
∑k

i=1 ni}, η1 ≤ . . . ≤ ηN ) are the ordered eigenvalues of

the matrix diag(λ) − 1
N

√
λ
√
λ
T

and µ1 ≤ . . . ≤ µN are the ordered eigenvalues of the matrix

diag(λ)− 1
M

√
λ
√
λ
T

.

Remark 0.2. We immediately notice that, if N < n, the powers P1, . . . , Pl, with l the largest
integer such that N −

∑K
i=l ni < 0, cannot be estimated since clusters may be empty. The case

N ≤ n turns out to be of no practical interest as clusters always merge and no consistent estimate
of either Pi can be described.

Proof. The approach pursued to prove Theorem 0.21 relies strongly on the original idea of [23],
which was detailed for the case of sample covariance matrices in Section 0.4. From Cauchy’s
integration formula,

Pk = ck
1

2πi

∮
Ck

1

ck

ω

Pk − ω
dω

= ck
1

2πi

∮
Ck

K∑
r=1

1

cr

ω

Pr − ω
dω (43)
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for any negatively oriented contour Ck ⊂ C, such that Pk is contained in the surface described
by the contour, while for every i 6= k, Pi is outside this surface. The strategy is very similar
to that used for the sample covariance matrix case in Section 0.4. It comes as follows: we first
propose a convenient integration contour Ck which is parametrized by a functional of the Stieltjes
transform mF (z) of the l.s.d. of BN . We proceed to a variable change in (43) to express Pk as a
function of mF (z). We then evaluate the complex integral resulting from replacing the limiting
mF (z) in (43) by its empirical counterpart m̂F (z) = 1

N tr(BN − zIN )−1. This new integral,

whose value we name P̂k, is shown to be almost surely equal to Pk in the large N limit. It then
suffices to evaluate P̂k, which is just a matter of residue calculus.

Similar to Section 0.4, it turns out that the clusters generated in the spectrum of BN can
be mapped to one or many power values Pk. In what follows, we assume that the clusters are

disjoint so that no holomorphicity problem arises. We can prove the following. There exist x
(l)
kF

and x
(r)
kF

outside the support of F , on either side of cluster kF (i.e., the cluster in F that is

uniquely mapped to Pk) such that mF (z) has limits m
(l)
F ,kG

, m◦F (x
(l)
kF

) and m
(r)
F ,kG

, m◦F (x
(r)
kF

),

as z → x
(l)
kF

and z → x
(r)
kF

, respectively, with m◦F the analytic extension of mF in the points

x
(l)
kF
∈ R and x

(r)
kF
∈ R. These limits m

(l)
F ,kG

and m
(r)
F ,kG

are on either side of cluster kG (i.e. the

cluster in G mapped uniquely to Pk) in the support of −1/H, and therefore −1/m
(l)
F ,kG
−σ2 and

−1/m
(l)
F ,kG

− σ2 are on either side of cluster kG in the support of G.

Consider any continuously differentiable complex path ΓF,k with endpoints x
(l)
kF

and x
(r)
kF

,
and interior points of positive imaginary part. We define the contour CF,k as the union of

ΓF,k oriented from x
(l)
kF

to x
(r)
kF

and its complex conjugate Γ∗F,k oriented backwards from x
(r)
kF

to

x
(l)
kF

. The contour CF,k is clearly continuous and piecewise continuously differentiable. Also,
the support of cluster kF in F is completely inside CF,k, while the supports of the neighboring
clusters are away from CF,k. The support of cluster kG in H is then inside −1/mF (CF,k),

6

and therefore the support of cluster kG in G is inside CG,k , −1/mF (CF,k) − σ2. Since mF is

continuously differentiable on C \ R (it is in fact holomorphic there [22]) and has limits in x
(l)
kF

and x
(r)
kF

, CG,k is also continuous and piecewise continuously differentiable. Going one last step

in this process, we finally have that Pk is inside the contour Ck , −1/mG(CG,k), while Pi, for all

i 6= k, is outside Ck. Since mG is also holomorphic on C \R and has limits in −1/m◦F (x
(l)
kF

)− σ2

and −1/m◦F (x
(r)
kF

) − σ2, Ck is a continuous and piecewise continuously differentiable complex
path, which is sufficient to perform complex integration [31].

Recall now that Pk was defined as

Pk = ck
1

2πi

∮
Ck

K∑
r=1

1

cr

ω

Pr − ω
dω.

6we slightly abuse notations here and should instead say that the support of cluster kG in H is inside the
contour described by the image by −1/mF of the restriction to C+ and C− of CF,k, continuously extended to R
in the points −1/m

(l)
F,kG

and −1/m
(r)
F,kG

.
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With the variable change ω = −1/mG(t), this becomes

Pk =
ck
2πi

∮
CG,k

K∑
r=1

1

cr

−1

1 + PrmG(t)

m′G(t)

mG(t)2
dt

=
ck
2πi

∮
CG,k

(
mG(t)

[
− 1

mG(t)
+

K∑
r=1

1

cr

Pr
1 + PrmG(t)

]
+
c0 − 1

c0

)
m′G(t)

mG(t)2
dt.

From Equation (36), this simplifies into

Pk =
ck
c0

1

2πi

∮
CG,k

(c0tmG(t) + c0 − 1)
m′G(t)

mG(t)2
dt. (44)

Using (39) and proceeding to the further change of variable t = −1/mF (z)−σ2, (44) becomes

Pk =
ck
2πi

∮
CF,k

(
1

mF (z)
+ σ2

)
zmF (z)mF (z)

−mF (z)mF (z)− zm′F (z)mF (z)− zmF (z)m′F (z)

z2mF (z)2mF (z)2
dz

=
ck
2πi

∮
CF,k

(
1 + σ2mF (z)

) [
− 1

zmF (z)
−

m′F (z)

mF (z)2
−

m′F (z)

mF (z)mF (z)

]
dz. (45)

This whole process of variable changes allows us to describe Pk as a function of mF (z), the
Stieltjes transform of the almost sure limiting spectral distribution of BN , as N → ∞. It then
remains to exhibit a relation between Pk and the empirical spectral distribution of BN for finite
N . This is to what the subsequent section is dedicated to.

Let us now define m̂F (z) and m̂F (z) as the Stieltjes transforms of the empirical eigenvalue
distributions of BN and BN , respectively, i.e.,

m̂F (z) =
1

N

N∑
i=1

1

λi − z
(46)

and

m̂F (z) =
N

M
m̂F (z)− M −N

M

1

z
.

Instead of going further with (45), define P̂k, the “empirical counterpart” of Pk, as

P̂k =
n

nk

1

2πi

∮
CF,k

N

n

(
1 + σ2m̂F (z)

) [
− 1

zm̂F (z)
−

m̂′F (z)

m̂F (z)2
−

m̂′F (z)

m̂F (z)m̂F (z)

]
dz. (47)

The integrand can then be expanded into nine terms, for which residue calculus can easily
be performed. Denote first η1, . . . , ηN the N real roots of m̂F (z) = 0 and µ1, . . . , µN the N
real roots of m̂F (z) = 0. We identify three sets of possible poles for the nine aforementioned

terms: (i) the set {λ1, . . . , λN}∩ [x
(l)
kF
, x

(r)
kF

], (ii) the set {η1, . . . , ηN}∩ [x
(l)
kF
, x

(r)
kF

] and (iii) the set
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{µ1, . . . , µN} ∩ [x
(l)
kF
, x

(r)
kF

]. For M 6= N , the full calculus leads to

P̂k =
NM

nk(M −N)


∑

1≤i≤N
x
(l)
kF
≤ηi≤x(r)kF

ηi −
∑

1≤i≤N
x
(l)
kF
≤µi≤x(r)kF

µi



+
N

nk


∑

1≤i≤N
x
(l)
kF
≤ηi≤x(r)kF

σ2 −
∑

1≤i≤N
x
(l)
kF
≤λi≤x(r)kF

σ2

+
N

nk


∑

1≤i≤N
x
(l)
kF
≤µi≤x(r)kF

σ2 −
∑

1≤i≤N
x
(l)
kF
≤λi≤x(r)kF

σ2

 . (48)

Now, we know from Theorem 0.20 that m̂F (z)
a.s.−→ mF (z) and m̂F (z)

a.s.−→ mF (z) as N →∞.
Observing that the integrand in (47) is uniformly bounded on the compact CF,k, the dominated

convergence theorem, Theorem 16.4 of [14], ensures P̂k
a.s.−→ Pk.

To go further, we now need to determine which of λ1, . . . , λN , η1, . . . , ηN and µ1, . . . , µN
lie inside CF,k. It can be proved, by extending Theorem 0.10 and Theorem 0.12 to the current
model, that there will be no eigenvalue of BN (or BN ) outside the support of F , and the number
of eigenvalues inside cluster kF is exactly nk. Since CF,k encloses cluster kF and is away from the

other clusters, {λ1, . . . , λN} ∩ [x
(l)
kF
, x

(r)
kF

] = {λi, i ∈ Nk} almost surely, for all N large. Also, for
any i ∈ {1, . . . , N}, it is easy to see from (46) that m̂F (z)→∞ when z ↑ λi and m̂F (z)→ −∞
when z ↓ λi. Therefore m̂F (z) = 0 has at least one solution in each interval (λi−1, λi), with
λ0 = 0, hence µ1 < λ1 < µ2 < . . . < µN < λN . This implies that, if k0 is the index such that CF,k
contains exactly λk0 , . . . , λk0+(nk−1), then CF,k also contains {µk0+1, . . . , µk0+(nk−1)}. The same
result holds for ηk0+1, . . . , ηk0+(nk−1). When the indexes exist, due to cluster separability, ηk0−1

and µk0−1 belong, for N large, to cluster kF −1. We are then left with determining whether µk0
and ηk0 are asymptotically found inside CF,k.

For this, we use the same approach as in [23] by noticing that, since 0 is not included in Ck,
one has

1

2πi

∮
Ck

1

ω
dω = 0.

Performing the same changes of variables as previously, we have

∮
CF,k

−mF (z)mF (z)− zm′F (z)mF (z)− zmF (z)m′F (z)

z2mF (z)2mF (z)2
dz = 0. (49)

For N large, the dominated convergence theorem ensures again that the left-hand side of the
(49) is close to

∮
CF,k

−m̂F (z)m̂F (z)− zm̂′F (z)m̂F (z)− zm̂F (z)m̂′F (z)

z2m̂F (z)2m̂F (z)2
dz. (50)
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Figure 7: Distribution function of the estimators P̂∞k and P̂k for k ∈ {1, 2, 3}, P1 = 1/16,
P2 = 1/4, P3 = 1, n1 = n2 = n3 = 4 antennas per user, N = 24 sensors, M = 128 samples and
SNR = 20 dB. Optimum estimator shown in dashed lines.

Residue calculus of (50) then leads to
∑

1≤i≤N
λi∈[x

(l)
kF
,x

(r)
kF

]

2−
∑

1≤i≤N
ηi∈[x

(l)
kF
,x

(r)
kF

]

1−
∑

1≤i≤N
µi∈[x

(l)
kF
,x

(r)
kF

]

1

 a.s.−→ 0. (51)

Since the cardinalities of {i, ηi ∈ [x
(l)
kF
, x

(r)
kF

]} and {i, µi ∈ [x
(l)
kF
, x

(r)
kF

]} are at most nk, (51) is

satisfied only if both cardinalities equal nk in the limit. As a consequence, µk0 ∈ [x
(l)
kF
, x

(r)
kF

] and

ηk0 ∈ [x
(l)
kF
, x

(r)
kF

]. For N large, N 6= M , this allows us to simplify (48) into

P̂k =
NM

nk(M −N)

∑
1≤i≤N
λi∈Nk

(ηi − µi) (52)

with probability one. The same reasoning holds for M = N . This is our final relation. It

now remains to show that the ηi and the µi are the eigenvalues of diag(λ) − 1
N

√
λ
√
λ
T

and

diag(λ)− 1
M

√
λ
√
λ
T

respectively. But this is merely a consequence of Lemma 1 of [24].

This concludes the proof of Theorem 0.21.

We now turn to the proper evaluation of the Stieltjes transform power inference method, for
K = 3 sources, P1 = 1/16, P2 = 1/4, N = 24 sensors, M = 128 samples and n1 = n2 = n3 = 4.
In Figure 7, we compare the distribution functions of the three estimated powers under the
classical and Stieltjes transform method. We observe a significant gain in terms of bias reduction
for the Stieltjes transform method here.
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0.6 Conclusion

Random matrix theory for signal processing is a fast growing field of research whose interest
is mainly motivated by the increase of the dimensionality and complexity of today’s systems.
While the first years of random matrix theory were mainly focusing Gaussian or invariant matrix
distributions, the last ten years of research were mainly targeting large dimensional matrices
with independent entries. This provided interesting results in particular on the limiting spectrum
of sample covariance matrices, but not only, which led to new results on inverse problems for
large dimensional systems. These results are often surprisingly simple and efficient as they
perform well against exact maximum likelihood solutions, even for systems of not too large
dimensions. Much more is however needed from a mathematical viewpoint relative in particular
to second order statistics, see e.g. [37], [38], in order to evaluate theoretically the performance
of these methods as well as a generalization to more intricate random matrix structures, such
as Vandermonde matrices for array processing, see e.g. [39], or unitary random matrices, see
e.g. [40]. A more exhaustive account of random matrix methods as well as more details on the
methods presented here can be found in [15, 11, 29].
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0.7 Exercises

• Exercise 1. Based on Theorem 0.9, prove the Marc̆enko-Pastur law, Theorem 0.5.

Hint: Observe that the fixed-point equation in mFB reduces now to a second order poly-
nomial from which mFB (z) takes an explicit form. The inverse Stieltjes transform formula
4 gives the expression of FB.

• Exercise 2. Let XN ∈ CN×n be a random matrix with i.i.d. Gaussian entries of zero
mean and variance 1/n. For RN ∈ CN×N and TN ∈ Cn×n deterministic and of uniformly
bounded spectral norm such that FRN ⇒ FR and FTN ⇒ F T , as N,n → ∞, determine
an expression of the Stieltjes transform of the limiting eigenvalue distribution of BN =

R
1
2
NXNTNXH

NR
1
2
N as N/n→ c.

Hint: Follow the proof of Theorem 0.9 by looking for a deterministic equivalent of 1
N trA(BN−

zIN )−1 for some deterministic A, taken to be successively RN and IN . A good choice of
the matrix DN is DN = aNRN .

• Exercise 3. Based on the definition of the Shannon-transform and on the G-estimator
for the Stieltjes transform, determine a G-estimator for

VTN (x) =
1

N
log det (xTN + IN )

based on the observations

yk = T
1
2
Nxk

with xk ∈ CN with i.i.d. entries of zero mean and variance 1/N , independent across k, for
k ∈ {1, . . . , n}.
Hint: Write the expression of VTN (x) as a function of the Stieltjes transform of TN and
operate a variable change in the resulting integral using Theorem 0.9.

• Exercise 4. From the result of Theorem 0.11, propose an hypothesis test for the presence
of a signal transmitted by a signal source and observed by a large array of sensors, assuming
that the additive noise variance is either perfectly known or not.

Hint: Observe that the ratio of the extreme eigenvalues in both H0 and H1 hypotheses is
asymptotically independent of the noise variance.

• Exercise 5. For W ∈ CN×n, n < N , the n columns of a random unitarily invariant
unitary matrix, w a column vector of W, prove that, if BN is a random matrix with
bounded spectral norm, function of all columns of W but w, then, as N,n → ∞ with
n/N → c < 1,

wHBNw − 1

N − n
tr(IN −WWH)BN

a.s.−→ 0.

Hint: write w as the normalized projection of a Gaussian vector x on the subspace
orthogonal to the space spanned by the columns of W but w, i.e. w = Πx, with
Π = IN −WWH + wwH.
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