
9 Extreme eigenvalues and
eigenspace projections

This last chapter of Part I introduces very recent mathematical advances of deep

interest to the field of wireless communications, related to the limiting behavior

of the extreme eigenvalues and of their corresponding eigenvectors. Again, the

main objects which have been extensively studied in this respect are derivatives

of the sample covariance matrix and of the information plus noise matrix.

This chapter will be divided into two sections, whose results emerge from

two very different random matrix approaches. The first results, about the

limiting extreme eigenvalues of the spiked models, unfold from the previous exact

separation results described in Chapter 7. It will in particular be proved that

in a sample covariance matrix model, when all population eigenvalues are equal

but for the few largest ones, the l.s.d. of the sample covariance matrix is still

the Marc̆enko–Pastur law, but a few eigenvalues may now be found outside the

support of the l.s.d. The second set of results concerns mostly random matrix

models with Gaussian entries, for which limiting results on the second-order

behavior of extreme eigenvalues are available. These results use very different

approaches than those proposed so far, in particular the theory of orthogonal

polynomials and determinantal representations. This subject, which requires

many additional tools, is briefly introduced in this chapter. For more information

about these tools, see, e.g. the tutorial [Johnstone, 2006] or the book [Mehta,

2004].

We start this section with the spiked models.

9.1 Spiked models

9.1.1 First order statistics of spiked models

As an introduction to the spiked models, let us consider the now standard

covariance matrix model BN = XNXH
N with XN ∈ CN×n random with i.i.d.

entries of zero mean, variance 1/n, and finite fourth order moment. From

Theorem 2.13 and Theorem 7.1, we know that, as N,n→∞ with N/n→ c > 0,

the e.s.d. FBN of BN converges weakly and almost surely to the Marc̆enko–

Pastur law with d.f. F , i.e. FBN ⇒ F , and that, for all large N , no eigenvalue

of BN can be found outside the support of F .
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We also know, from Theorem 3.13, that, if BN is now BN = T
1
2

NXNXH
NT

1
2

N ,

and FTN (x)⇒ 1{x≤1}, then FBN ⇒ F almost surely, as well. However, as

mentioned in the discussion following Theorem 7.1, it is not necessarily true

that no eigenvalue of BN is found outside the support of F for all large N .

Intuitively, if TN = diag(1, . . . , 1, 100), with N − 1 ones and a single value at

hundred, it is expected that the largest eigenvalue of BN does not remain inside

F for all large N , especially so for N/n small.

In the preceding example, BN follows a spiked model, in the sense that it

appears as a small perturbation of a standard matrix model, small meaning

“low rank” here. Obviously, this spiked model is nothing but an instance of the

sample covariance matrix model of Theorem 3.13. However, the fact that BN is

a low rank perturbation of XNXH
N leads to extremely interesting simplifications

of the study of such model, starting with the fact that the limiting positions of

the extreme eigenvalues, as well as their fluctuations around these positions, can

be characterized in closed form.

The importance of spiked models in wireless communications and signal

processing arises when performing signal sensing or statistical inference, when

the (hypothetical) signal space has small dimension compared to the noise space.

In this case, we might want to be able to decide on the presence of a signal based

on the spectrum of the sample covariance matrix BN . Typically, if an eigenvalue

is found outside the limiting predicted noise spectrum F of BN (i.e. outside the

support of the Marc̆enko–Pastur law above), then this must indicate the presence

of a signal bearing informative data. If, on the opposite, all the eigenvalues are

inside the limiting support F , then this should indicate the absence of such a

signal. The story is however not so simple and, while the former statement is

correct, the latter is not. Indeed, as we will see in the following, it might not

always be true that a spike (i.e. a large eigenvalue) in TN results in a spike in

BN found outside the support of F , in the sense that the support of F may

“hide” the spike in some sense. This is especially true when the size of the main

clusters of eigenvalues (linked to the ratio N/n) is large enough to “absorb” the

spike of BN that would have resulted from the population spike of TN . In this

case, for signal detection purposes, whether a signal bearing informative data is

present or not, there is no way to decide on the presence of this signal by simply

looking at the asymptotic spectrum. The condition for decidability is given in

the following fundamental initial result.

Theorem 9.1 ([Baik and Silverstein, 2006]). Let BN = T
1
2

NXNXH
NT

1
2

N , where

XN ∈ CN×n has i.i.d. entries of zero mean, variance 1/n and order moment of

order O(1/n2), and TN ∈ RN×N is diagonal given by:

TN = diag(1, . . . , 1︸ ︷︷ ︸
N−r

, 1 + ω1, . . . , 1 + ω1︸ ︷︷ ︸
j1

, . . . , 1 + ωr, . . . , 1 + ωt︸ ︷︷ ︸
jt

)

with ω1 > . . . > ωt > −1 for some t fixed and j1 + . . .+ jt = r.
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Take c > 0 and denote p = #{i, ωi >
√
c} and q = #{i, ωi < −

√
c}. Denote

additionally λ1 ≥ . . . ≥ λN the ordered eigenvalues of BN . We then have, as

N,n→∞, with N/n→ c:

• if ωk > 0, for 1 ≤ i ≤ jk

λj1+...+jk−1+i
a.s.−→

{
ρk , 1 ≤ k ≤ p
(1 +

√
c)2 , k > p

• if ωk < 0 and c < 1, for 1 ≤ i ≤ jk

λN−jt−...−jk+i
a.s.−→

{
ρk , t− q + 1 ≤ k ≤ t
(1−

√
c)2 , k < t− q + 1.

where we defined ρk = 1 + ωk + cω−1
k (1 + ωk).

Note that the function ρ : ω 7→ 1 + ω + cω−1(1 + ω) is increasing on (−∞,
√
c)

and (
√
c,∞), and equals (1 +

√
c)2 for ω =

√
c. Therefore, the theorem can

be interpreted as follows: if TN has a diagonal entry ω >
√
c, then BN will

asymptotically have a corresponding eigenvalue ρ away from the support of the

Marc̆enko–Pastur law, with ρ being larger for larger ω and ρ getting close to the

right-edge of the support for ω close to
√
c and eventually collapsing within the

support for 0 < ω ≤
√
c. When ω < −

√
c, it is fundamental that c ≤ 1, otherwise

the eigenvalue of BN associated to ω will fall within the set of null eigenvalues

of BN .

The value
√
c therefore corresponds to a universal boundary above which it is

possible to observe eigenvalues outside the support of the Marc̆enko–Pastur law.

From a signal processing viewpoint, this boundary corresponds to a threshold

above which the presence of a signal of power ω can be decided from the

observation of BN or not. This phenomenon is depicted in Figure 9.1 where

we consider t = 2 population spikes ω1 = 2 and ω2 = 1, both of multiplicity

j1 = j2 = 2, hence r = 4. We illustrate the decidability condition depending on

c by considering first c = 1/3, in which case
√
c ' 0.57 < ω2 < ω1 and then we

expect two spikes of BN at position ρ2 ' 2.67 and two spikes of BN at position

ρ1 = 3.5. We then increase c to c = 5/4 for which ω2 <
√
c ' 1.12 < ω1; we

therefore expect only the two eigenvalues associated with α1 at position ρ1 ' 4.88

to lie outside the spectrum of F . This is approximately what is observed.

The fact that spikes are non-discernible for large c leads to a seemingly

paradoxical situation. Consider indeed that the sample space is fixed to n samples

while the population space of dimension N increases, so that we increase the

collection of input data to improve the quality of the experiment. In the context

of signal sensing, if we rely only on a global analysis of the empirical eigenvalues

of the input covariance matrix to declare that “if eigenvalues are found outside

the support, a signal is detected,” then it seems that we are better off limiting

N to a minimal value and therefore we are better off with a mediocre quality of

the experiment; otherwise the decidability threshold is severely impacted. The
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Figure 9.1 Eigenvalues of BN = T
1
2
NXNXH

NT
1
2
N , where TN is a diagonal of ones but

for the first four entries set to {3, 3, 2, 2} (ω1 = 3, ω2 = 2). On top, N = 500,
n = 1500. On the bottom, N = 500, n = 400. Theoretical limit eigenvalues
ρk = 1 + ωk + cω−1k (1 + ωk) of BN are stressed.

reasoning error however is that, in standard signal processing models, the larger

N , the larger the signal power collected on the antenna array, and therefore the

larger ω. These practical aspects are discussed in Chapter 16.

Another way of observing practically when the e.s.d. at hand is close to the

Marc̆enko–Pastur law F is to plot the empirical eigenvalues against the quantiles

F−1(k−1/2
N ) for k = 1, . . . , N . This is depicted in Figure 9.2, for the case c = 1/3

with the same set of population spikes {2, 2, 3, 3} in TN as before. We observe

again the presence of four outlying eigenvalues in the e.s.d. of BN .
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Figure 9.2 Eigenvalues of BN = T
1
2
NXNXH

NT
1
2
N , where TN is a diagonal of ones but

for the first four entries set to {3, 3, 2, 2}, against the quantiles of the
Marc̆enko–Pastur law, N = 500, n = 15 000, c = 1/3.

The original proof of Theorem 9.1 relies heavily on the tools used in [Bai and

Silverstein, 1998, 1999] for the exact separation of the sample covariance matrix.

Indeed, in [Baik and Silverstein, 2006], population spikes are seen as clusters of

eigenvalues of supports sufficiently small to asymptotically admit only j1, . . . , jt
eigenvalues, respectively. When XN is chosen to be Gaussian, or at least left-

unitarily invariant, different techniques can be used which greatly simplify the

proof. In the remainder of this section, we focus on this scenario. We start with

a short outlook of the proof of Theorem 9.1 in this context.

Proof of Theorem 9.1 with XN Gaussian. Denote Ω = diag(ω1Ij1 , . . . , ωtIjt).

Take N sufficiently large so that XNXH
N has no eigenvalue above (1 +

√
c)2 + ε

for some ε > 0. Take x > (1 +
√
c)2 + ε. If x is an eigenvalue of BN , then, by

definition det (BN − zIN ) = 0. Developing this expression and using the fact

that x is not an eigenvalue of XNXH
N , we have

det (BN − zIN )

= det TN det
(
XNXH

N − xIN + x
[
IN −T−1

N

])
= det TN det

(
XNXH

N − xIN
)

det
(
IN + x(TN − IN )T−1

N (XNXH
N − xIN )−1

)
where we used IN −T−1

N = (TN − IN )T−1
N . Equating the above to zero implies

that the third determinant equals zero. Using the fact that TN − IN has rank

r, there exists U ∈ CN×r such that TN − IN = UΩUH. From det(I + AB) =

det(I + BA), we therefore have

det
(
IN + x(TN − IN )T−1

N (XNXH
N − xIN )−1

)
= det

(
Ir + xΩUH(IN + UΩUH)−1(XNXH

N − xIN )−1U
)
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= det
(
Ir + xΩ (Ir + Ω)−1 UH(XNXH

N − xIN )−1U
)

where in the last equality, we used UH(IN + UΩUH)−1 = (Ir + Ω)−1UH. The

interest of the above derivation lies in the isolation of the resolvent (XNXH
N −

xIN )−1 for which much is known. The remaining terms matrices are deterministic

and therefore easily dealt with.

Since r is fixed and XN is left-unitarily invariant, an immediate extension of

the trace lemma, Lemma 3.4, ensures that UH(XNXH
N − xIN )−1U

a.s.−→ m(x)Ir
(each diagonal entry of the left-hand side is a quadratic form and each non-

diagonal entry a bilinear form based on orthogonal vectors), where m(z) is the

Stieltjes transform of the l.s.d. of XNXH
N . As a consequence, an eigenvalue x of

BN outside the support, if any, satisfies asymptotically

xm(x)ωk(1 + ωk)−1 a.s.−→ −1

for some k. Replacing m(x) by the expression of the Stieltjes transform of the

Marc̆enko–Pastur law (3.20) gives immediately the expected result x
a.s.−→ 1 +

ωk + cω−1
k (1 + ωk), only if ωk >

√
c. Otherwise, the equation has no solution

outside [(1−
√
c)2, (1 +

√
c)2].

This proof approach is originally due to Benaych-Georges in [Benaych-Georges

and Rao, 2011]. Since only in the last step of the proof is m(z) particularized

to the Stieltjes transform of the Marc̆enko-Pastur law, his result is more general

than Theorem 9.1. A proper study of the existence outside the limiting support

of solutions to the equation xm(x)ωk(1 + ωk)−1 + 1 = 0 then gives precisely the

following result.

Theorem 9.2 ([Benaych-Georges and Rao, 2011]). Let RN ∈ CN×N be a

Hermitian random matrix with ordered eigenvalues ν1 ≥ . . . ≥ νN for which we

assume that the e.s.d. FRN converges almost surely toward F with compact

support with infimum a and supremum b, such that ν1
a.s.−→ b and νN

a.s.−→ a.

Consider also a perturbation matrix PN of rank r = j1 + . . .+ jt, with ordered

non-zero eigenvalues ω1 > . . . > ωt < −1, ωi having multiplicity ji, these values

being fixed for all N . Denote s the integer such that ωs > 0 > ωs+1. We further

assume that either RN is bi-unitarily invariant. Denote BN the matrix

BN = (IN + PN )
1
2 RN (IN + PN )

1
2

with ordered eigenvalues λ1 ≥ . . . ≥ λN . Then, as N grows large, for 1 ≤ i ≤ s,
1 ≤ l ≤ ji

λj1+...+ji−1+l
a.s.−→

{
ρi , if b+mF (b+)ωi(1 + ωi)

−1 < −1

b , otherwise
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with ρi the unique solution x ∈ (b,∞) to xmF (x)ωi(1 + ωi)
−1 = 1, and, for s+

1 ≤ i ≤ t,

λn−jt−...−ji+l
a.s.−→

{
ρi , if a−mF (a−)ωi(1 + ωi)

−1 > −1

a , otherwise

with ρi the unique solution x ∈ (−∞, a) to xmF (x)ωi(1 + ωi)
−1 = 1.

Another result following the same line of proof for a different perturbation

model is also provided in [Benaych-Georges and Rao, 2011], as follows.

Theorem 9.3 ([Benaych-Georges and Rao, 2011]). Let RN ,PN ∈ CN×N be

defined as in Theorem 9.2 and BN the matrix defined as

BN = RN + PN

with ordered eigenvalues λ1 ≥ . . . ≥ λN . Then, as N grows large, for 1 ≤ i ≤ s,
1 ≤ l ≤ ji,

λj1+...+ji−1+l
a.s.−→

{
ρi , if ωimF (−b+) > 1

b , otherwise

with ρi the unique solution x ∈ (b,∞) to ωimF (x) + 1 = 0, and, for s+ 1 ≤ i ≤
t,

λn−jt−...−ji+l
a.s.−→

{
ρi , if ωimF (−a−) < 1

a , otherwise

with ρi the unique solution a ∈ (−∞, a) to ωimF (x) + 1 = 0.

As mentioned above, Theorem 9.2 encompasses the case where RN = XNXH
N ,

with XN filled with i.i.d. Gaussian entries, perturbed in the sense of Theorem 9.1.

In this case, this result generalizes Theorem 9.1 for unitarily invariant matrices,

although it does not encompass the general i.i.d. case. It also contains the case

RN = XNTNXH
N under some conditions on the Hermitian matrix TN ∈ Cn×n.

Since, in this scenario, mF is known exactly from Theorem 3.13, the limiting

position of the sample spikes unfold immediately.

When the unitary invariance of XN is no longer ensured in the model, the

proof technique from Benaych-Georges can still be used, but some more work

on the characterization of the matrices UH(XNXH
N − xIN )−1U is required. This

is performed in [Chapon et al., 2012] for the information plus noise model with

right-side correlation of the noise matrix. The results are as follows.

Theorem 9.4 ([Chapon et al., 2012]). Let XN ∈ CN×n be a random matrix with

Gaussian i.i.d. entries of zero mean and variance 1/n, TN = diag(tN1 , . . . , t
N
n )

such that FTN ⇒ H with compact support SH and that the maximum distance

from the tNi to SH tends to zero. Let also PN = UNΩ
1
2

NVN ∈ CN×n of rank

r fixed, with UN ∈ CN×r, VN ∈ Cr×n isometric and ΩN diagonal such that
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ΩN → diag(ω1Ij1 , . . . , ωtIjt), ωi > 0. Further assume that VH
Nf(TN )VN →∫

f(t)dH(t)Ir for every continuous bounded f .1 Define BN ∈ CN×N as

BN = (XNT
1
2

N + PN )(XNT
1
2

N + PN )H.

Then, as N,n→∞, N/n→ c, FBN ⇒ F where F has Stieltjes transform mF (z)

given by the analytic solution such that mF (z) ∈ C+ when z ∈ C+ of the equation

in m

m =

(
−z +

∫
t

1 + cmt
dH(t)

)−1

.

Moreover, for (a, b) outside the support SF of F with a ≥ 0, there exists 0 ≤
k ≤ r eigenvalues of BN in (a, b) for all large N , almost surely, with limits

ρ
[a,b]
1 , . . . , ρ

[a,b]
k given by the k solutions in [a, b] of the t equations in ρ > 0

ωimF (ρ)(cmF (ρ)− 1 + c) = 1

for i ∈ {1, . . . , t}. Moreover, there is no eigenvalue of BN in (a, b) ⊂ [0, inf(SF )],

for all large N , almost surely.

As an immediate corollary, we have the following result, initially proved in

[Loubaton and Vallet, 2010].

Corollary 9.1 ([Loubaton and Vallet, 2010]). Let BN = (XN + PN )(XN +

PN )H with eigenvalues λ1 ≥ . . . λN and with XN and PN as in Theorem 9.4.

Then, as N,n→∞, N/n→ c, if ωi >
√
c, for 1 ≤ l ≤ ji

λj1+...+ji−1+l
a.s.−→ ω−1

i (c+ ωi)(1 + ωi).

Note that, although in [Chapon et al., 2012], a more general form of the

theorem above is provided, the result relies on seemingly stringent underlying

assumptions. The fact that TN is diagonal is not a problem as any unitary

product on the right of XNT
1
2

N + PN , compensated by a product on the right

of XN can always turn TN into a diagonal matrix while not changing the

statistics of the model. However, the eigenvalues of TN are imposed, similar

to Theorem 9.2 and Theorem 9.3, not to escape the l.s.d. of TN . This is merely

to avoid the generation of spikes by TN itself. In practical applications, if

TN models the time correlation between successive stationary noise samples

gathered in the columns of XNTN , then it is usual to model TN as a Toeplitz

matrix (e.g. in an autoregressive moving average assumption) with limiting

spectrum given by a compact connected power spectrum density. Now, the

condition VH
Nf(TN )VN →

∫
f(t)dH(t)Ir may seem arbitrary as TN and VN

are (sequences of) deterministic matrices which have, as such, no reason to have

1 We denote f(T) for a diagonal T matrix the diagonal matrix containing the f(tNi ) in the
same order.
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any specific limiting behavior. For application purposes though, if PN is taken

to be random, but independent of XN with VN isometric (e.g. PN = hxH is

the rank-1 product of a deterministic channel vector h ∈ CN and random i.i.d.

white Gaussian signals (x1, . . . , xn) = xH), then the condition is met from the

trace lemma, Theorem 3.4. Note importantly here that the trace lemma, usually

applied to quadratic forms, is here applied to the matrix product VH
Nf(TN )VN

which is obviously valid as each entry of this finite rank matrix is a bilinear form.

Although not mentioned in the statement of Theorem 9.4, the total number

of spiked eigenvalues may exceed r in this situation (see a precise discussion in

[Chapon et al., 2012]). In fact, if SF is composed of several disjoint clusters, as

many as r eigenvalues can be found in-between each of these clusters, with total

number more than r. In [Chapon et al., 2012], it is shown that one can always

find a matrix PN such that exactly r eigenvalues are found between two clusters.

However, it is not shown if it is possible to find a matrix PN having exactly r

eigenvalues between each of these clusters. This triggers an open question raised

in [Chapon et al., 2012] regarding the numbering of these spiked eigenvalues.

Indeed, while in the previous theorems, the spikes happened to be the extreme

eigenvalues, so either the largest or the smallest, in the setting of Theorem 9.4, it

is difficult to know “from which cluster the spikes jumped out”, hence a problem

in ordering them.

As noticed from the various discussions above, the study of extreme eigenvalues

carries some importance in problems of detection of signals embedded in white or

colored noise, but not only. Fields such as speech recognition, statistical learning,

or finance also have interests in extreme eigenvalues of covariance matrices. For

the particular case of finance, see, e.g., [Laloux et al., 2000; Plerous et al., 2002],

consider XN is the N × n matrix in which each row stands for a market product,

while every column stands for a time period, say a month, as already presented in

Chapter 1. The (i, j)th entry of XN contains the evolution of the market index

for product i in time period j. If all time-product evolutions are independent

in the sense that the evolution of the value of product A for a given month

does not impact the evolution of the value of product B, then it is expected

that the rows of XN are statistically independent. Also, if the time scale is

chosen such that the evolution of the price of product A over a given time

period is roughly uncorrelated with its evolution on the subsequent time period,

then the columns will also be statistically independent. Therefore, after proper

centralization and normalization of the entries (to ensure constant variance),

it is expected that, if N , n are large, the empirical eigenvalue distribution of

XNXH
N follows the Marc̆enko–Pastur law. If not, i.e. if some eigenvalues are found

outside the support, then there exist some non-trivial correlation patterns in XN .

The largest eigenvalue here allows the trader to anticipate the largest possible

gain to be made if he aligns his portfolio on the corresponding eigenvector. But

the sample eigenvector associated to the largest eigenvalue has no reason to be

connected to the population eigenvector (which the trader wants to retrieve)

associated with the largest population spike.
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Nonetheless, as one may expect from the classical n� N regime, the

eigenvector u1 associated to the largest population eigenvalue ω1 (in case of

multiplicity one) should be much aligned to the corresponding sample eigenvector

û1 associated to the largest sample eigenvalue λ1, in the sense that |ûH
1 u1| ' 1.

This being said, if ω1 is so small that λ1 does not appear as a spike, there is

intuitively little hope that û1 be at all connected to u1, and we might even expect

|ûH
1 u1| ' 0. This is what we study next.

Prior to this, let us provide some engineering motivation for this study, beside

portfolio optimization in finance. In signal processing, the connection between

the population (or signal) eigenspace and the observation has a key importance

in subspace methods such as the MUSIC algorithm, which is known to have

problems in the N ' n regime, exactly due to the difficulty to evaluate the noise

subspace in this scenario. Knowing more about the connection between the signal

(or noise) and the observation subspaces allows one to propose improved subspace

methods, as will be discussed in Section 17.1. In wireless communications, and

particularly in cognitive radio or interference alignment schemes, it is classical

to use precoders based on the channel state information between two signal

sources so to avoid or minimize self-interference. These precoders intend to

align their eigenvectors orthogonally to the subspace spanned by the interference

channel. However, in fast fading channels, obtaining channel state information

is rate-expensive so that only partial information is known, leading to residual

interference, which it is fundamental to properly measure.

The first result, initially due to Paul in the real Gaussian case [Paul, 2007],

then generalized to unitarily-invariant matrices in [Couillet and Hachem, 2012]

is given as follows.

Theorem 9.5 ([Couillet and Hachem, 2012]). Let RN ∈ CN×N be a random

unitarily invariant Hermitian matrix with eigenvalues ν1 ≥ . . . ≥ νN such that

FRN ⇒ F with compact support [a, b] with ν1
a.s.−→ b and νN

a.s.−→ b. For t

and j1, . . . , jt fixed with
∑
i ji = r, let PN = UNΩUH

N ∈ CN×N with UN =

[UN
1 , . . . ,U

N
t ] ∈ CN×r isometric, UN

i ∈ CN×ji , and Ω = diag(ω1Ij1 , . . . , ωtIjt),

ω1 > . . . > ωt > −1. Define

BN = (IN + PN )
1
2 RN (IN + PN )

1
2

with largest eigenvalues λ1 ≥ . . . ≥ λr and associated eigenvectors the ordered

columns of [ÛN
1 , . . . , Û

N
t ], respectively. Then, as N →∞,

(UN
l )HÛN

k (ÛN
k )HUN

l
a.s.−→

{
ξkδ(k − l)Ijl , ωk isolated

0 , otherwise

where, by “ωk isolated”, we mean b+mF (b+)ωk(1 + ωk)−1 < −1 or

a−mF (a−)ωk(1 + ωk)−1 > −1, and with

ξk =
mF (ρk)(1 + ρkmF (ρk))

mF (ρk) + ρkm′F (ρk)
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and ρk as in Theorem 9.2.

An interesting corollary, often sufficient for application purposes, is the

scenario where RN = XNXH
N , XN ∈ CN×n, normalized Gaussian, as follows.

Corollary 9.2 ([Couillet and Hachem, 2012; Paul, 2007]). In the conditions of

Theorem 9.5, let RN = XNXH
N , XN ∈ CN×n with independent real or complex

Gaussian entries with zero mean and variance 1/n. Then, as N,n→∞, N/n→
c, the following holds,

(UN
l )HÛN

k (ÛN
k )HUN

l
a.s.−→

{
ξkδ(k − l)Ijl , ωk >

√
c or ωk < −

√
c

0 , otherwise

where ξk = (1− cω−2
k )(1 + ω−1

k )−1.

What the above result says is that, when a population spike ωk is above the

detectability threshold
√
c (or below its opposite), the eigenspace associated to

this eigenvalue will align to the corresponding eigenspace of the jk corresponding

sample eigenvalues and to these only. This alignment tends to one as ωk →∞
or as c→ 0, as predicted by the n� N regime, and tends to zero as ωk ↓

√
c

as expected from the previous discussion. This means in particular that, in the

asymptotic regime, nothing can be said about the population eigenvectors if

ωk <
√
c.

In Figure 9.3, the situation of a single population spike ω1 with multiplicity

one is considered. The matrix dimensions N and n are taken to be such

that N/n = 1/3, and N ∈ {100, 200, 400}. We compare the averaged empirical

projections
∣∣(ûN1 )HuN1

∣∣ (with ûN1 = ÛN
1 and uN1 = UN

1 in this vector case)

against Theorem 9.5. We observe that the convergence rate of the limiting

projection is very slow. Therefore, although nothing can be said asymptotically

on the eigenvectors of a spiked model, when ω1 <
√
c, there exists a large range

of values of N and n for which this is not so.

In the following, we provide a proof of Theorem 9.5, based on the complex

integration method discussed in Section 8.1.2.

Proof of Theorem 9.5. We only prove here the case of main interest where ωk >√
c and discard the indexes N for readability. We also assume for simplicity of

notation that ωt >
√
c. We shall prove that, for aN ,bN ∈ CN two vectors of

bounded spectral norm,

aH
NÛkÛ

H
kbN − ξkaH

NUkU
H
kbN

a.s.−→ 0

with ξk = (1− cω−2
k )(1 + cω−1

k )−1.

The starting point is the Cauchy integration formula (8.14), which states that

aH
NÛkÛ

H
kbN = − 1

2πi

∮
Ck

aH
N (BN − zIN )−1bNdz
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û
N 1

)H
u
N 1
|

Simulation, N = 100

Simulation, N = 200

Simulation, N = 400

(1− cω−2
1 )(1 + cω−1

1 )−1

Figure 9.3 Averaged absolute value of the projector |(ûN1 )HuN1 | of the eigenvectors
corresponding to the single population and sample spikes in the model
BN = (IN + PN )

1
2 XNXH

N (IN + PN )
1
2 , PN = ω1u

N
1 (uN1 )H, with N/n = 1/3 and

varying ω1.

for a positively-oriented contour Ck circling around the jk sample spike

eigenvalues of BN associated with ωk (so Ck lies away from the limiting support

of XNXH
N ). The idea of the following is similar to the proof of Theorem 9.1.

We wish to rewrite the expression above so to isolate the resolvent Q(z) =

(XNXH
N − zIN )−1. Factorizing (IN + PN )−

1
2 on each side, then Q(z) on the

left, and using Woodbury’s matrix inversion formula, we can write

(BN − zIN )−1

= (IN + PN )−
1
2

(
XNXN − zIN + zPN (IN + PN )−1

)−1
(IN + PN )−

1
2

= (IN + PN )−
1
2 Q(z)

(
IN − zUNĤ(z)−1Ω(Ir + Ω)−1UH

NQ(z)
)

(IN + PN )−
1
2

where Ĥ(z) = Ir + zΩ(Ir + Ω)−1UH
NQ(z)UN . This matrix of small size and

featuring Q(z) and deterministic matrices is now our center of interest. With

the notations

ãH
N = zaH

N (IN + PN )−
1
2 Q(z)UN

b̃N = Ω(Ir + Ω)−1UH
NQ(z)(IN + PN )−

1
2

we can then write our initial equation

aH
NÛkÛ

H
kbN

= − 1

2πi

∮
Ck

aH
N (IN + PN )−

1
2 Q(z)(IN + PN )−

1
2 bNdz +

1

2πi

∮
Ck

ãH
NĤ(z)b̃N .
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Of course, the interesting term is the second term, as, for N large, with

probability one, the first term has no pole within Ck (because the eigenvalues

of XNXH
N are asymptotically found within their limiting support). Since ãN ,

b̃N , and Ĥ(z) are small vectors or matrices with simple expressions in terms of

Q(z), their large dimensional behavior is easy to study and we obtain, through

dominated convergence arguments,

aH
NÛkÛ

H
kbN −

1

2πi

∮
Ck

zm(z)2aH
NUN (Ir + Ω)−

1
2 H(z)−1(Ir + Ω)−

1
2 UH

NbN
a.s.−→ 0

where

H(z) = diag((1 + zm(z)ω1(1 + ω1)−1)Ij1 , . . . , (1 + zm(z)ωt(1 + ωt)
−1)Ijt)

and m(z) is the Stieltjes transform of the Marc̆enko-Pastur law (3.20).

Decomposing UN as UN = [UN
1 , . . . ,U

N
t ], we then have

aH
NÛkÛ

H
kbN −

t∑
i=1

aH
NUN

i (UN
i )HbN

1 + ωi

1

2πi

∮
Ck

zm(z)2

(1 + ωi)ω
−1
i + zm(z)

dz
a.s.−→ 0.

From the proof of Theorem 9.1 (or equivalently from Theorem 9.2), (1 +

ωi)ω
−1
i + zm(z) = 0 for z in the interior of Ck only for i = k. Residue calculus

then gives

aH
NÛkÛ

H
kbN −

m(ρk)(1 + ρkm(ρk))

m(ρk) + ρkm′(ρk)
aH
NUN

k (UN
k )HbN

a.s.−→ 0

with ρk the real solution to (1 + ωk)ω−1
k + zm(z) = 0. Replacing m by its explicit

formula and using ρk = 1 + ωk + c(1 + ωk)ω−1
k (from Theorem 9.1), we finally

find the desired result.

Similar results were derived in [Benaych-Georges and Rao, 2011] for the models

BN = RN (IN + PN ) and BN = RN + PN with RN bi-unitarily invariant,

similar to those of Theorem 9.3 and Theorem 9.2. Being of less interest in

practice (in most practical scenarios, one is interested either in BN = (IN +

PN )
1
2 RN (IN + PN )

1
2 or BN = (XN + PN )(XN + PN )H), we only refer the

reader to the original article.

As the spiked models are of particular interest for signal detection and

statistical inference purposes, it is desirable to derive second order statistics

of the above results, in order to be able to derive statistical tests. Indeed, taking

for instance the result on the largest eigenvalues, the theorems above only give

conditions for their asymptotic presence or absence outside a given limiting

support. For practical applications however, with finite system dimensions, and

therefore with a non-zero probability of finding eigenvalues outside the support

even without perturbation, those results do not give any hint on an appropriate

test to decide on the presence or the absence of a population spike based on

the observation of the sample eigenvalues. For this, one needs to go further and

come up with central limit theorems for the quantities studied above. This is the

target of the following section.
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9.1.2 Second order statistics of spiked models

Although it might seem more natural to first of all study the fluctuations of

the extreme eigenvalues in matrix models without perturbations before looking

into spiked models, it turns out that the former is much more complicated than

the later. As a matter of fact, so far, no characterization of the asymptotic

fluctuations of the extreme eigenvalues for the non-perturbed case, even for the

simplest Wishart model, was obtained using the tools developed so far. These

results will be presented instead in Section 9.2, with the help of new tools which

will be shortly introduce.

In the present section, we characterize the fluctuations of the largest

eigenvalues and associated eigenspace projections in the case of detectable

spikes (i.e. when sample spikes are found outside the limiting support of the

underlying model distribution). Similar to the previous section, the techniques

follow the original ideas of Benaych-Georges [Benaych-Georges et al., 2010] but

also in parallel of Capitaine et al. [Capitaine et al., 2009] who characterized the

limiting first and second order statistics of deformed Wigner matrices rather than

deformed sample covariance matrices. The techniques employed for the proof of

Theorem 9.1 and Theorem 9.5, based in particular on the complex integration

approach, can in fact be used to characterize the limiting second order statistics

of individual eigenvalues and eigenvector projections, but fail to characterize

the joint fluctuations when the population spikes have multiplicity greater than

one. This is due to the fact that the contour integral technique cannot isolate

individual eigenvalues which converge to the same limit. The solution to this

is brought in [Benaych-Georges et al., 2010] via an elegant technique which we

shall discuss below.

The most general result, characterizing the joint fluctuations of eigenvalues and

eigenvectors for the model BN = (IN + PN )
1
2 RN (IN + PN )

1
2 with RN following

the conditions of Theorem 9.2, is given in [Couillet and Hachem, 2012], as follows.

Theorem 9.6 ([Couillet and Hachem, 2012]). Let BN ∈ CN×N be defined as in

Theorem 9.5, and assume ω1, . . . , ωt isolated in the sense of Theorem 9.5. Define

the following quantities

HN
i =

√
N(UN

i )H
(
ÛN
i (ÛN

i )H − ξiIN
)

UN
i

LNi =
√
N

λj1+...+ji−1+1 − ρi
...

λj1+...+ji − ρi


with ξi and ρi defined as in Theorem 9.2 and Theorem 9.5. Then, as N →∞,

(
(HN

i ,L
N
i )
)t
i=1
⇒ ((Hi,Li))

t
i=1
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with Li ∈ CN the vector of decreasingly-ordered eigenvalues of Ki ∈ CN×N ,

where (
Hi

Ki

)
=
(

(D(ρi)F(ρi)D(ρi)
H)

1
2 ⊗ Iji

)(G1,i

G2,i

)
where ‘⊗’ is the matrix Kronecker product, G1,1, . . . ,G2,t are independent GUE

matrices2 with G1,k,G2,k ∈ Cjk×jk , and D(ρ),F(ρ) are defined, for ρ ∈ R \ [a, b]

(recall that [a, b] is the support of F ), as

D(ρ) =

(
h(ρ)(1+h(ρ))h′′(ρ)

h′(ρ)3 −h(ρ)(1+h(ρ))
h′(ρ)2

− ρ
h′(ρ) 0

)

F(ρ) =

(
m′F (ρ)−mF (ρ)2 1

2m
′′
F (ρ)−mF (ρ)m′F (ρ)

1
2m
′′
F (ρ)−mF (ρ)m′F (ρ) 1

6m
′′′
F (ρ)−m′F (ρ)2

)
where h(x) = xmF (x).

Although the result is not easy to appreciate, a few important observations

can already be made. First, the scaled eigenvalues and eigenspace projections

of the t groups of sample spikes are asymptotically independent. Then, if ωk is

a population spike with multiplicity greater than one, the joint distribution of

the eigenvalues (or of the eigenspace projections) is, up to a scaling factor, the

joint distribution of the eigenvalues of a GUE matrix. This being said, when

the multiplicity of each population spikes is one and RN = XNXH
N with XN

normalized Gaussian, we have the following, more practical, corollary.

Corollary 9.3 ([Couillet and Hachem, 2012]). Assume the conditions and

notations of Theorem 9.6, and take ji = 1 for i ∈ {1, . . . , t} and RN =

XNXH
N with XN ∈ CN×n with independent Gaussian entries with zero mean

and variance 1/n. Then, as N,n→∞, N/n→ c, assuming ωi ∈ (−1,−
√
c) ∪

(
√
c,∞) for all i ∈ {1, . . . , t},(

(HN
i ,L

N
i )
)t
i=1
⇒ X ∼ N (0,diag(M(ω1), . . . ,M(ωt)))

where

M(ω) =

 c2(1+ω)2

(c+ω)2(ω2−c)

(
c (1+ω)2

(c+ω)2 + 1
)

(1+ω)3c2

(c+ω)2ω

(1+ω)3c2

(c+ω)2ω
c(1+ω)2(ω2−c)

ω2

 .

In the following, we provide a short idea of the technique at play for the

proof of the results above (alternative approaches can be found in [Bai and Yao,

2008a,b]).

2 We recall that a GUE matrix G ∈ Cj×j (from the Gaussian unitary ensemble) is a random
Hermitian matrix with independent entries, whose diagonal entries are N(0, 1) and upper-
diagonal entries are CN(0, 1).
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Proof. As already mentioned, the main difficulty is to deal with the sample

spikes all converging to the same limiting value and for which complex integration

methods are inadequate as contours cannot be simply designed that isolate these

eigenvalues for all N . We therefore use a technique from Benaych-Geroges here.

The key idea is to relate the eigenvalues λ1, . . . , λr to the determinantal equation

det
(
Ir + xΩ(Ir + Ω)−1UH(XNXH

N − xIN )−1U
)

= det Ĥ(x) = 0

to which they are the solutions (recall the proof of Theorem 9.1). Note in

particular that, for N sufficiently large, and with probability one, letting x1(i) >

y1(i) > x2(i) > . . . > yji(i), for i = 1, . . . , t,

P
(
xl(i) <

√
N(λj1+...+ji−1+l − ρi) < yl(i), for all i, l

)
= P

(
det Ĥ(ρi +N−

1
2xl(i)) det Ĥ(ρi +N−

1
2 yl(i)) < 0, for all i, l

)
.

Indeed, since det Ĥ(x) has zeros only at λ1, . . . , λr for all large N , it changes sign

between each of them. The product of two determinants taken at the intermediate

positions

λj1+...+ji−1+(l−1) < ρi +N−
1
2xl(i) < λj1+...+ji−1+l

< ρi +N−
1
2 yl(i) < λj1+...+ji−1+(l+1)

is therefore negative. The converse is also clear. Therefore, it suffices to study the

behavior of the determinant of Ĥ. From now on, let us focus on the ji eigenvalues

λj1+...+ji−1+1 to λj1+...+ji for simplicity of notations. Developing the determinant

and using the convergence relation already established in Theorem 9.1 and its

proof, one can show that

N
ji
2 det Ĥ(ρi +N−

1
2x)−

∏
j 6=i

(
ωi − ωk
ωi(1 + ωk)

)jk
× det

(√
N

ωiρi
1 + ωi

UH
i (Q(ρi)−mF (ρi)IN )Ui +

ωih
′(ρi)

1 + ωi
xIji

)
→ 0 (9.1)

in probability, with Ui = UN
i and Q(x) = (XNXH

N − xIN )−1. The source of

fluctuations of det Ĥ(ρi +N−
1
2x) therefore lies entirely in the fluctuations of√

NUH
i (Q(ρi)−mF (ρi)IN )Ui, which we need to study.

Using the left-unitary invariance of XN , denoting XNXH
N = VLVH its spectral

decomposition, it is clear that UV is a Haar matrix, which we can write under

the form UV = Z(ZHZ)−
1
2 (from Definition 4.6), where Z ∈ CN×r is a standard

Gaussian matrix. Clearly N−1ZHZ ∈ Cr×r a.s.−→ Ir and therefore the term can

be ignored. We conclude that
√
NUH

i (Q(ρi)−mF (ρi)IN )Ui is asymptotically
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equal in distribution to

N−
1
2 ZH

i

(
(L− zIN )−1 − 1

N
tr(L− zIN )−1IN

)
Zi

= N−
1
2

N∑
k=1

(
1

lk − z
− 1

N
tr(L− zIN )−1

)
(zi,kz

H
i,k − Iji)

where Zi ∈ CN×ji is such that Z = [Z1, . . . ,Zt], Z∗i = [zi,1, . . . , zi,N ], and

l1, . . . , lN are the diagonal entries of L. Note the addition of the term −Iji in the

right-hand side term which has no effect in the result but will be fundamental to

exhibit the GUE limit. Conditioned on L, this ji × ji matrix clearly has Gaussian

entries with zero mean (real on the diagonal and complex outside) with variance a

function of L. Using the convergence of the variance (see e.g. [Bai and Silverstein,

2004])

1

N

N∑
k=1

(
1

lk − z
− 1

N

N∑
k′=1

1

lk′ − z

)2

a.s.−→ m′F (z)−mF (z)2

then gives the limiting GUE fluctuations of the matrix (m′F (ρi)−
mF (ρi)

2)−
1
2

√
NUH

i (Q(ρi)−mF (ρi)IN )Ui.

Coming back to (9.1), and along with the discussion above, we then conclude

that det Ĥ(ρi +N−
1
2x) changes sign asymptotically when

det

(
ωiρi

1 + ωi
(m′F (ρi)−mF (ρi)

2)
1
2 Gi +

ωih
′(ρi)

1 + ωi
xIji

)
changes sign, where Gi ∈ Cji×ji is a GUE matrix. With the same reasoning as

previously, this corresponds to positions where x crosses one of the r eigenvalues

of the matrix

− ρi
h′(ρi)

(m′F (ρi)−mF (ρi)
2)

1
2 Gi.

This is exactly the claimed result for this block of eigenvalues. The independence

across the t blocks follows from the fact that the matrices Zi are independent.

For the fluctuations of the eigenspace projections, using the same complex

integration tools as in the proof of Theorem 9.5 (here we do not need to isolate the

eigenvectors attached to a given eigenspace), one can show that the fluctuations

of the eigenspace projections depend both on the fluctuations of
√
NUH

i (Q(ρi)−
mF (ρi)IN )Ui as well as on the fluctuations of

√
NUH

i (Q′(ρi)−m′F (ρi)IN )Ui,

which does not present major additional difficulties. Details are provided in

[Couillet and Hachem, 2012] which we do not further discuss here.

The above results are particularly interesting in signal processing in the

applicative context of local failure localization in large dimensional systems, e.g.

node failure or sudden parameter change in large sensor networks. The underlying

idea is that a local failure may change the network topology, modeled though

the covariance matrix of the nodal observations, by a small rank perturbation
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of a base scenario. The perturbation matrix is a signature of the failure which is

often easier to identify from its eigenvector properties than from its eigenvalues,

particularly so in homogeneous networks where each failure leads to similar

amplitudes of the extreme eigenvalues. See [Couillet and Hachem, 2012] for more

details.

This completes this section on spiked models. Some of the above results

will be recalled in the following section, when mentioning the phenomenon of

phase transition, corresponding to a dramatic change of the fluctuations of

the extreme eigenvalues when the population spikes move from non-isolated

to isolated. In the following, we move back to the standard random matrix

models with no perturbation and discuss the asymptotic statistics of the extreme

eigenvalues which turn out not to behave as Gaussian random variables in the

large dimensional regime.

9.2 Distribution of extreme eigenvalues

For motivation, we first discuss a scenario of application using the results on the

distribution of the extreme eigenvalues in a standard random matrix model. Let

us consider the case of the observation of a sample covariance matrix, upon which

the experimenter would like to decide whether the population eigenvalue matrix

is either an identity matrix or a perturbed identity matrix. A first idea is then to

decide whether the observed largest eigenvalue is inside or outside the support of

the Marc̆enko–Pastur law. However, due to the finite dimensionality of the matrix

in practice, there is a non-zero probability for the largest observed eigenvalue to

lie outside the support in the non-perturbed scenario. Further information on the

statistical distribution of the largest eigenvalue of sample covariance matrices is

then required, to be able to design adequate hypothesis tests. We will come back

to these practical considerations in Chapter 16.

The study of the second order statistics for the extreme eigenvalues of the

classically known random matrices took off in the mid-nineties, spurred by

the work of Tracy and Widom [Tracy and Widom, 1996] on N ×N (Wigner)

Hermitian matrices with i.i.d. Gaussian entries above the diagonal. As their work

does not use the same tools as developed so far, before introducing the results

from Tracy and Widom, we first provide some notions of orthogonal polynomials

in order to understand how these results are derived. This introduction is based

on the tutorial [Fyodorov, 2005] and on [Anderson et al., 2010, Chapter 3].

9.2.1 Introduction to the method of orthogonal polynomials

To study the behavior of some particular eigenvalue of a random matrix, it

is required to study its marginal distribution. Calling P≤
(λN1 ,...,λ

N
N )

(λN1 , . . . , λ
N
N )

the joint density of the ordered eigenvalues λN1 ≤ . . . ≤ λNN of some Hermitian
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random matrix XN ∈ CN×N , the largest eigenvalue λNN has density

PλNN (λNN ) =

∫
λN1

. . .

∫
λNN−1

P≤
(λN1 ,...,λ

N
N )

(λN1 , . . . , λ
N
N )dλN1 . . . dλNN . (9.2)

In the case where the order of the eigenvalues is irrelevant, we have that

P(λN1 ,...,λ
N
N )(λ

N
1 , . . . , λ

N
N ) =

1

N !
P≤

(λN1 ,...,λ
N
N )

(λN1 , . . . , λ
N
N )

with P(λN1 ,...,λ
N
N ) the density of the unordered eigenvalues.

From now on, the eigenvalue indexes 1, . . . , N are considered to be just labels

instead of ordering indexes. From the above equality, it is equivalent, and as will

turn out actually simpler, to study the unordered eigenvalue distribution rather

than the ordered eigenvalue distribution. In the particular case of a zero Wishart

matrix with n ≥ N degrees of freedom, this property holds and we have from

Theorem 2.3 that

P(λN1 ,...,λ
N
N )(λ

N
1 , . . . , λ

N
N ) = e−

∑N
i=1 λ

N
i

N∏
i=1

(λNi )n−N

(n− i)!i!
∏
i<j

(λNi − λNj )2.

Similarly, we have for Gaussian Wigner matrices [Tulino and Verdú, 2004], i.e.

Wigner matrices with upper-diagonal entries complex standard Gaussian and

diagonal entries real standard Gaussian

P(λN1 ,...,λ
N
N )(λ

N
1 , . . . , λ

N
N ) =

1

(2π)
N
2

e−
∑N
i=1(λNi )2

N∏
i=1

1

i!

∏
i<j

(λNi − λNj )2. (9.3)

The problem now is to be able to compute the multi-dimensional

marginalization for either of the above distributions, or for more involved

distributions. We concentrate on the simpler Gaussian Wigner case in what

follows.

To be able to handle the marginalization procedure, we will use the reproducing

kernel property, given below which can be found in [Deift, 2000].

Theorem 9.7. Let Kn ∈ Cn×n with (i, j) entry Kij = f(xi, xj) for some

complex-valued function f of two real variables and a real vector x = (x1, . . . , xn).

The function f is said to satisfy the reproducing kernel property with respect to

a real measure µ if ∫
f(x, y)f(y, z)dµ(y) = f(x, z).

Under this condition, we have that∫
det Kndµ(xn) = (q − (n− 1)) det Kn−1 (9.4)

with

q =

∫
f(x, x)dµ(x).
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The above property is interesting in the sense that, if such a reproducing

kernel property can be exhibited, then we can successively iterate (9.4) in order

to perform marginalization calculus such as in (9.2).

By working on the expression of the eigenvalue distribution of Gaussian Wigner

matrices (9.3), it is possible to write P(λN1 ,...,λ
N
N ) under the form

P(λN1 ,...,λ
N
N )(λ

N
1 , . . . , λ

N
N ) = C det

({
e−

1
2 (λNj )2

πi−1(λNj )
}

1≤i,j≤N

)2

for any set of polynomials (π0, . . . , πN−1) with πk of degree k and leading

coefficient 1, and for some normalizing constant C. A proof of this fact stems

from similar arguments as for the proof of Lemma 16.1, namely that the matrix

above can be written under the form of the product of a diagonal matrix with

entries e
1
2 (λNj )2

and a matrix with polynomial entries πi(xj), the determinant

of which is proportional to the product of e
∑
j(λ

N
j )2

times the Vandermonde

determinant
∏
i<j(λ

N
i − λNj ).

Now, since we have the freedom to take any set of polynomials (π0, . . . , πN−1)

with leading coefficient 1, we choose a set of orthogonal polynomials with respect

to the weighting coefficient e−x
2
, i.e. we define (π0, . . . , πN−1) to be such that∫

e−x
2

πi(x)πj(x)dx = δji .

Denoting now KN ∈ CN×N the matrix with (i, j) entry

Kij = kN (λNi , λ
N
j ) ,

N−1∑
k=0

[
e−

1
2 (λNi )2

πk(λNi )
] [
e−

1
2 (λNj )2

πk(λNj )
]

we observe easily, from the fact that det(A2) = det(ATA), that

P(λN1 ,...,λ
N
N )(λ

N
1 , . . . , λ

N
N ) = C det KN .

From the construction of KN , through the orthogonality of the polynomials

π0(x), . . . , πN−1(x), we have that∫
kN (x, y)kN (y, z)dy = kN (x, y)

and the function kN has the reproducing kernel property.

This ensures that∫
. . .

∫
det KNdxk+1 . . . dxN = (N − k)! det Kk

where the term (N − k)! follows from the computation of
∫
kn(x, x)dx for n ∈

{k + 1, . . . , N}.
To finally compute the probability distribution of the largest eigenvalue, note

that the probability that it is greater than ξ is complementary to the probability

that there is no eigenvalue in B = (ξ,∞). The latter, called the hole probability,
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expresses as

QN (B) = P
(
λNi < ξ, i = 1, . . . , N

)
=

∫
. . .

∫
P(λN1 ,...,λ

N
N )(λ

N
1 , . . . , λ

N
N )

N∏
k=1

(1− 1B(λNk ))dλN1 . . . dλNN .

From the above discussion, expanding the product term, this can be shown to

express as

QN (B) =

N∑
i=0

(−1)i
1

i!

∫
B

. . .

∫
B

det Ki dλ
N
1 . . . dλNi .

This last expression is in fact a Fredholm determinant, denoted det(I−KN |B),

where KN is called an integral operator with kernel kN acting on square

integrable functions on B. These Fredholm determinants are well-studied objects

which generalize the classical matrix determinants. In particular, the kernel kN
is a largely known object. The main interest of the following section is that,

up to an appropriate centering and scaling, QN (B) exhibits limiting properties

as N →∞. In the present scenario, since we investigate the fluctuations of the

properly centered and scaled largest eigenvalue of XN , we are precisely interested

into P (N
2
3 (N−

1
2λNi − 2) < ξ, i = 1, . . . , N), and therefore, after an immediate

variable change, into the kernel

aN (x, y) = N−
1
6 kN (2

√
N +N−

1
6x, 2

√
N +N−

1
6 y).

The kernel properties of kN entail that aN can be written under the form

aN (x, y) =
ψN (x)ψ′N (y)− ψN (y)ψ′N (x)

x− y
− 1

2
N−

1
3ψN (x)ψN (y)

where ψN (z) is a holomorphic function on C satisfying in particular ψN (z)→
Ai(z), with Ai(z) the Airy function. This implies that the probability

P (N
2
3 (N−

1
2λNi − 2) < ξ, i = 1, . . . , N) can be expressed as the Fredholm

determinant det(I−A|B) with A the integral operator with kernel

a(x, y) =
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x− y
.

That is,

P
(
N

2
3 (N−

1
2λNi − 2) < ξ, i = 1, . . . , N

)
→ det

(
I−A|(ξ,∞)

)
.

This result, implicitly known for a long time, is however seemingly unsatisfying

as the computation of Fredholm determinants is not an easy task.

The major contribution of Tracy and Widom, which we will introduce next, is

to show that the above Fredholm determinant intimately relates to differential

Painlevé equations, which conveys a closed form expression for the above limiting

probability distribution, known now as the Tracy-Widom law. However, and

quite interestingly, it was shown by Bornemann [Bornemann, 2009a,b] that the
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numerical evaluation of Fredholm determinants is in fact much lighter than the

actual resolution of Painlevé equations.

Further information on the tools above can be found in the early book from

Mehta [Mehta, 2004], the very clear tutorial from Fyodorov [Fyodorov, 2005], and

the specialized book from Anderson, Guionnet, and Zeitouni [Anderson et al.,

2010], among others. In the following, we introduce the main results concerning

limit laws of extreme eigenvalues known to this day.

9.2.2 Limiting laws of the extreme eigenvalues

The major result on the limiting density of extreme eigenvalues is due to Tracy

and Widom. It comes as follows.

Theorem 9.8 ([Tracy and Widom, 1996]). Let XN ∈ CN×N be Hermitian

with independent Gaussian off-diagonal entries of zero mean and variance 1/N .

Denote λ−N and λ+
N the smallest and largest eigenvalues of XN , respectively.

Then, as N →∞

N
2
3

(
λ+
N − 2

)
⇒ X+ ∼ F+

N
2
3

(
λ−N + 2

)
⇒ X− ∼ F−

where F+ is the Tracy–Widom law given by:

F+(t) = exp

(
−
∫ ∞
t

(x− t)2q2(x)dx

)
(9.5)

with q the Painlevé II function that solves the differential equation

q′′(x) = xq(x) + 2q3(x)

q(x) ∼x→∞ Ai(x)

in which Ai(x) is the Airy function, and F− is defined as

F−(x) , 1− F+(−x).

This theorem is in fact extended in [Tracy and Widom, 1996] to a more

general class of matrix spaces, including the space of real symmetric matrices

and that of quaternion-valued symmetric matrices, with Gaussian i.i.d. entries.

Those are therefore all special cases of Wigner matrices. The space of Gaussian

real symmetric matrices is referred to as the Gaussian orthogonal ensemble

(denoted GOE), that of complex Gaussian Hermitian matrices is referred to as

the Gaussian unitary ensemble (GUE) (already met previously in Theorem 9.6),

and that of quaternion-valued symmetric Gaussian matrices is referred to as the

Gaussian symplectic ensemble (GSE). The seemingly strange “orthogonal” and

“unitary” denominations arise from deeper considerations on these ensembles,

involving orthogonal polynomials, see, e.g., [Faraut, 2006] for details.
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It was later shown [Bianchi et al., 2010] that the random variables λ+
N and λ−N

are asymptotically independent, giving therefore a simple description of their

ratio, the condition number of XN .

Theorem 9.9 ([Bianchi et al., 2010]). Under the assumptions of Theorem 9.8(
N

2
3

(
λ+
N − 2

)
, N

3
2

(
λ−N + 2

))
⇒ (X+, X−)

where X+ and X− are independent random variables with respective distributions

F+ and F−. The random variable λ+
N/λ

−
N satisfies

N
2
3

(
λ+
N

λ−N
+ 1

)
⇒ −1

2

(
X+ +X−

)
.

The result of interest to our study of extreme eigenvalues of Wishart and

perturbed Wishart matrices was proposed later on by Johansson for the

largest eigenvalue in the complex case [Johansson, 2000], followed by Johnstone

[Johnstone, 2001] for the largest eigenvalue in the real case, while it took ten

years before Feldheim and Sodin provided a proof of the result on the smallest

eigenvalue in both real and complex cases [Feldheim and Sodin, 2010]. We only

mention here the complex case.

Theorem 9.10 ([Feldheim and Sodin, 2010; Johansson, 2000]). Let XN ∈ CN×n
be a random matrix with i.i.d. Gaussian entries of zero mean and variance 1/n.

Denoting λ+
N and λ−N the largest and smallest eigenvalues of XNXH

N , respectively,

we have:

N
2
3
λ+
N − (1 +

√
c)2

(1 +
√
c)

4
3
√
c
⇒ X ∼ F+

N
2
3
λ−N − (1−

√
c)2

−(1−
√
c)

4
3
√
c
⇒ X ∼ F+

as N,n→∞ with c = limN N/n < 1 and F+ the Tracy–Widom distribution

defined in Theorem 9.8. Moreover, the convergence result for λ+
N holds also for

c ≥ 1.

As we shall see in Section 16.4, a quantity of particular interest for signal

detection under unknown noise variance is the ratio T = λ+
N ( 1

N tr XNXH
N )−1.

Indeed, while we assume above the entries of XN of variance 1/n, in practice, one

is often led to considering noise observations XN with entries of variance σ2/n

for some unknown σ2. Taking the above ratio cancels this unknown parameter.

Now, a mere application of the Slutsky lemma, Theorem 8.12, along with the

above result, shows that T ⇒ F+ in the large dimensional regime, and we have

a first practical result of deep interest in signal processing.

However interesting since simple, this result, along with many limiting second

order statistics, has the major drawback that the rate of convergence towards
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the limit is rather slow (due to the slow rate of convergence of λ+
N to the Tracy–

Widom). That is, N,n have to be taken rather large for the Tracy–Widom

approximation to be relevant, especially in the tails. To address this question,

Nadler [Nadler, 2011] provides a refined result, by introducing further statistical

orders, as follows

Theorem 9.11 ([Nadler, 2011]). Let XN ∈ CN×n be a random matrix with i.i.d.

Gaussian entries of zero mean and variance 1/n with largest eigenvalue λ+
N .

Denote

T =
λ+
N

1
N tr XNXH

N

Then, as N,n→∞ with N/n→ c,

P

(
T − µN,n
σN,n

> y

)
= 1− F+(y) +

1

2Nn

µ2
Nn

σ2
Nn

(F+)′′(y) +
C(y)

N
2
3

where we defined

µN,n =
1

n

(√
n− 1

2
+

√
N − 1

2

)2

σN,n =

√
µN,n
n

 1√
n− 1

2

+
1√
p− 1

2

 1
3

and where C(y) is a constant term.

It is easy to see in the above formulation that all terms in the right-hand

side are O(N−
2
3 ) and that, therefore, the expression may seem meaningless. It

however turns out that C(y) is relatively small for rather large values of y which

makes the approximation without the C(y)N−
2
3 term very useful in practice.

The empirical against theoretical distributions of the largest eigenvalues of

XNXH
N are depicted in Figure 9.4, for N = 500, c = 1/3.

Observe that the Tracy–Widom law is largely weighted on the negative half

line. This means that the largest eigenvalue of XNXH
N has a strong tendency

to lie much inside the support of the l.s.d. rather than outside. For the same

scenario N = 500, c = 1/3, we now depict in Figure 9.5 the Tracy–Widom law

against the empirical distribution of the largest eigenvalue of T
1
2

NXNXH
NT

1
2

N in

the case where TN ∈ RN×N is diagonal composed of all ones but for T11 = 1.5.

From Theorem 7.2, no eigenvalue is found outside the asymptotic spectrum of

the Marc̆enko–Pastur law. Figure 9.5 suggests that the largest eigenvalue of

T
1
2

NXNXH
NT

1
2

N does not converge to the Tracy–Widom law since it shows a much

heavier tail in the positive side; this is however not true asymptotically. The

asymptotic limiting distribution of the largest eigenvalue of T
1
2

NXNXH
NT

1
2

N is

still the Tracy–Widom law, but the convergence towards the second order limit
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Figure 9.4 Density of N
2
3 c−

1
2 (1 +

√
c)−

4
3

[
λ+
N − (1 +

√
c)2
]

against the Tracy–Widom
law for N = 500, n = 1500, c = 1/3, for the covariance matrix model XXH of
Theorem 9.9. Empirical distribution taken over 10 000 Monte-Carlo simulations.

arises at a seemingly much slower rate. This is proved in the following theorem.

To appreciate the convergence towards the Tracy–Widom law, N must then be

taken much larger.

Theorem 9.12 ([Baik et al., 2005]). Let XN ∈ CN×n have i.i.d. Gaussian

entries of zero mean and variance 1/n and TN = diag(τ1, . . . , τN ) ∈ RN×N .

Assume, for some fixed r and k, τr+1 = . . . = τN = 1 and τ1 = . . . = τk = 1 + ω

while τk+1, . . . , τr lie in a compact subset of (0, τ1). Assume further that the ratio

N/n is constant, equal to c < 1 as N,n grow. Denoting λ+
N the largest eigenvalue

of T
1
2

NXNXH
NT

1
2

N , we then have

• If ω <
√
c

N
2
3
λ+
N − (1 +

√
c)2

(1 +
√
c)

4
3
√
c
⇒ X+ ∼ F+

with F+ the Tracy–Widom distribution.

• If ω >
√
c

(
c
(1 + ω)2(ω2 − c)

ω2

)− 1
2

N
1
2

[
λ+
N −

(
1 + ω + c

1 + ω

ω

)]
⇒ Xk ∼ Gk
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Figure 9.5 Distribution of N
2
3 c−

1
2 (1 +

√
c)−

4
3

[
λ+
N − (1 +

√
c)2
]

against the
Tracy–Widom law for N = 500, n = 1500, c = 1/3, for the covariance matrix model

T
1
2 XXHT

1
2 with T diagonal with all entries 1 but for T11 = 1.5. Empirical

distribution taken over 10 000 Monte-Carlo simulations.

with Gk the distribution function of the largest eigenvalue of the k × k GUE,

given by:

Gk(x) =
1

Zk

∫ x

−∞
· · ·
∫ x

−∞

∏
1≤i<j≤k

|ξi − ξj |2
k∏
i=1

e−
1
2 ξ

2
i dξ1 . . . dξk.

with Zk a normalization constant. In particular, G1(x) is the Gaussian zero

mean and unit variance distribution function.

Obviously, the second part of this result is not new, since it recalls Theorem 9.6.

The corollary of Theorem 9.12 is that, if the largest population eigenvalue (i.e.

the largest population spike) is not large enough for any eigenvalue of the sample

covariance matrix to escape the support of the Marc̆enko–Pastur law, whatever

its multiplicity k, then the asymptotic distribution of the largest eigenvalue is the

Tracy–Widom law. This confirms that the behavior observed in Figure 9.5 has

not reached its asymptotic limit. Theorem 9.12 goes further by stating that, if

on the contrary τ1 is larger than the transition limit 1 +
√
c, where an eigenvalue

will be found outside the support of the Marc̆enko–Pastur law, then, if k = 1,

the largest eigenvalue in T
1
2

NXNXH
NT

1
2

N has a central limit with convergence rate

O(n−
1
2 ) instead of the Tracy–Widom rate O(n−

2
3 ) when ω <

√
c. This sudden

convergence rate change is referred to by the author in [Baik et al., 2005] as

a phase transition. The case ω =
√
c is also treated in [Baik et al., 2005] that

shows that λ+
N converges in distribution to yet another law Fk, depending on the
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multiplicity k of ω, with rate O(n
2
3 ); the law Fk does not have a simple expression

though. Since the case ω =
√
c is highly improbable for practical applications,

this case was deliberately discarded from Theorem 9.12.

On the other hand, this nice result is yet another disappointment for

signal detection applications. Remember that one of our initial motivations

to investigate further the asymptotic distribution of the largest eigenvalue of

T
1
2

NXNXH
NT

1
2

N was the inability to visually determine the presence of a spike

ω <
√
c from the asymptotic spectrum of T

1
2

NXNXH
NT

1
2

N . Now, it turns out that

even the distribution of the largest eigenvalue in that case is asymptotically the

same as that when TN = IN . There is therefore not much left to be done in the

asymptotic regime to perform signal detection under the detection threshold
√
c.

In that case, we may resort to further limit orders, or derive exact expressions

of the largest eigenvalue distribution. Similar considerations are addressed in

Chapter 16.

We also mention that, in the real case XN ∈ RN×n, if ω >
√
c has multiplicity

one, Paul proves that the limiting distribution of λ+
N −

(
1 + ω + c(1 + ω)ω−1

)
is still Gaussian but with variance double that of the complex case, i.e.

2n−1
(
(1 + ω)2 − c(1 + ω)2ω−2

)
[Paul, 2007]. Theorem 9.12 is also extended in

[Karoui, 2007] to more general Gaussian sample covariance matrix models, where

it is proved that under some conditions on the population covariance matrix, for

any integer k fixed, the largest k eigenvalues of the sample covariance matrix have

a Tracy–Widom distribution with the same scaling factor but different centering

and scaling coefficients.

Theorem 9.13 ([Karoui, 2007]). Let BN = T
1
2

NXNXH
NT

1
2

N with XN ∈ CN×n
having independent Gaussian entries with zero mean and variance 1/n, and TN

Hermitian nonnegative with eigenvalues τ1 ≥ . . . ≥ τn. Assume FTN ⇒ H with

compact support within [a, b], and τ1 → b, τN → a. Further assume that H has a

density h in a left neighborhood I of b such that h(x) ≥ C(b− x) for some C > 0

and for all x ∈ I. Then, denoting λ+
N the largest eigenvalue of BN , as N,n→∞

with N/n = cN such that 0 < lim inf cN ≤ lim sup cN <∞,

n
2
3

σN

(
λ+
N − µN

)
⇒ X+ ∼ F+

with F+ the complex Tracy-Widom distribution, and

µN =
1

ζN

(
1 + cNζN

∫
t

1− tζN
dFTN (t)

)
σ3
N =

1

ζ3
N

(
1 + cNζ

3
N

∫ (
t

1− tζN

)3

dFTN (t)

)
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where ζN is the unique solution in [0, 1/τ1) of the equation in x

cx2

∫ (
t

1− tx

)2

dFTN (t) = 1.

Of course, assuming that cN converges (fast enough) to a constant c, the

statement of the result above can be changed by taking the limits in µN and σN .

Note the additional, up to now uncommon, assumption of the local existence

of a density for h with the local bound h(x) ≥ C(b− x). This condition is in

fact essential for the existence of the solution ζ as the defining integral tends

to ∞ as x ↑ 1/τ1. This assumption, which translates the fact that H must have

a “sharp edge” in b, is completely in line with the Marc̆enko-Pastur case and

the observations from Silverstein and Choi [Silverstein and Choi, 1995] on the

square-root behaviour at the edge of the spectrum when H is discrete.

This concludes this chapter on the analysis of the extreme eigenvalues of

standard random matrix models. In the next section, we summarize the different

chapters of the theoretical part before moving to the applications of (most of)

these results.


